
Occlusion Handling for Industrial Robots

Ling Zhu, Meghna Menon, Mario Santillo and Gregory Linkowski

Abstract— Industrial robots contain minimal sensing capabil-
ity beyond recognition of their internal state. It is critical that an
external vision system should cover the designated robot work
space with awareness of blind spots and occlusions. This work
presents two mechanisms to handle occlusions in an external
multi-robot vision system: occlusion-aware optimal sensor posi-
tioning, and event-driven occlusion detection. When deploying
sensors to the system, various scenarios are considered during
optimization to reduce potential occlusions and increase sensor
coverage. These methods are tested on a working cell with three
industrial robot arms. The experimental results demonstrate
the effectiveness of the proposed scenario-based multi-objective
optimization for sensor positioning. Once the sensors are
deployed, occlusion detection is actively triggered prior to robot
path planning.

I. INTRODUCTION

Industrial robots are heavily used across the manufacturing
industry for their speed, accuracy and load-carrying capabil-
ities. For these reasons, however, industrial robots are often
bound to operate within caged spaces, physically separated
from human interaction and requiring technician training
to even perform routine tasks. Additionally, these robots
contain little on-board sensing for dynamic path adjustment
or recognition of an impending collision.

In circumstances where it is necessary to partially or
fully uncage the industrial robots, 2D LiDAR-based safety
scanners can be installed to ensure safe operation of the
robot. Not only can these sensors be expensive, but also
they generally require increasing the work cell footprint
to account for human motion entering the guarded space.
Additionally, elaborate scanner-field programming may be
required to operate the work space as intended. Traditionally,
scanner coverage is configured in an ad-hoc basis without
regard for minimization of potential occlusions. Any external
sensing which generates a 3D point cloud (PCD) or a 2D
image is also inevitably hindered by such occlusions.

In line with the vision of Industry 4.0 [13], facilities
are turning more toward collaborative robots and multi-
robot systems. This necessitates a more robust ability to
track and coordinate such robots while minimizing occluded
regions from movement of manipulators, material objects,
and human counterparts in the scene. An example of this
can be seen in Figure 1. In the first image, a robot is fully
captured by a two RGB-D cameras. However, as the robot
performs movements to complete a task, full coverage of the
robot is lost. To ensure coverage of robot work space for

Authors are with Ford Motor Company, Research and Advanced En-
gineering, Dearborn, MI 48124 United States lzhu40, mmenon8,
msantil3, glinkows@ford.com

Fig. 1. The robot is fully covered by two RGB-D cameras (top), and
inadequate coverage occurs after the robot moves to a different orientation
(bottom). Coverage is denoted by rainbow fill on the robot.

advanced safety and path-planning schemes, the combined
optimal deployment of sensors is critical.

In order to effectively minimize occluded regions within a
robot work space and allow for safe autonomy and collabo-
ration of industrial robots, we propose a novel framework to
handle the occlusions: occlusion-aware optimal positioning
for multi-modal sensors, coupled with event-driven occlusion
detection. When placing sensors in a defined work space, we
perform multi-scenario optimization [8] to determine optimal
placement to cover dynamic robot movements in the work
space. This is achieved via input of randomized or user-
defined robot poses, minimizing potential occlusion through
different scenarios. Once the sensors are deployed, occlusion
detection is performed during robot path planning to ensure
safety.

There have been several works in the area of work space
coverage through optimal placement of sensors to generate
accurate measurements with minimized propagated error
[9], [11], [17], [12]. These papers utilize methods such
as greedy search, dual sampling, convex optimization and
genetic algorithms with the goal of finding a global optimum
across the array of sensors in the space. In [22], the author in
particular highlights the optimized placement of light sources
in addition to the sensors themselves. However, these works
fail to consider occlusions that are dynamically changing in
the scenes. For industrial robots, when multiple robots are
presented in the work space, the occlusions change based
on the movement of each robot. Additionally, work space
is often limited and the robots perform routine tasks. Thus,
consideration of the most frequent robot poses and reduction
of occlusions for these poses would enhance the system
performance. As far as the work is concerned, this research
is the first in considering different poses with occlusion in
the area of optimal sensor positioning.

There also have been many works presented in the area
of occlusion detection and occlusion-aware dynamic object
tracking. The prior art can be categorized between the use of
2D and 3D vision systems. Several papers utilize parameters
such as probabilistic visibility, spatiotemporal data around

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 10663

the target, and Haar-like features to determine occlusions
in 2D images [16], [18], [21], [2]. When using 3D data or
generating 3D reconstructions through multi-view images,
use of segmentation, transformations of image views, and
neural network approaches were employed to characterize
the occluded regions [20], [15], [14], [1], [19]. For industrial
robots, these image-based recognition methods are subject
to much higher safety standards, and ultimately not suited
for the application. Recent work [10] uses raycasting to
configure the free space and occlusions surrounded by self-
driving car, and it’s applicable for mobile robots not the
sensing from fixture.

Our framework addresses limitations in these works
through utilization of fused depth data from a multiple depth
cameras. This fused data is converted into a 2D matrix (i.e.
low-resolution depth images), which allows reduced latency
between the cameras and server. Applying the same occlu-
sion detection algorithm, we formulate multiple objective
functions considering multiple scenarios in the optimization,
and minimize occluded regions in all scenarios using multi-
objective optimization. The occlusion detection algorithm is
completely separable to each voxel, which can leverage the
computation power of GPUs.

II. OCCLUSION HANDLING FRAMEWORK

There are two aspects of occlusion handling that we aim to
address in our work. Figure 2 shows the occlusion handling
framework.

Fig. 2. Framework for occlusion handling

A. Mapping of Robot Work Cell

The first step is to map the robots to various desired poses
via random generation of valid joint positions in space. For
each pose set, the mapping process generates a corresponding
PCD of the work cell from simulated RGB-D cameras
positioned around the space (Figure 2, top).

B. Optimization of Sensor Coverage

The PCDs are then used as inputs to the optimization
algorithm, with each PCD considered as a scenario. Once all
the different PCDs are obtained, the optimization algorithm
runs offline.

From the user input, the objective function utilizes the
occlusion detection algorithm presented in Section III to
establish the covered, out-of-sight, and occluded regions of
the work space. A multi-objective optimization is proposed
in Section IV maximizes the covered volume for all scenarios
(poses), and provides multiple optimal solutions. User is then
able to choose a preferred solution that fits the demands of
their work space. Running the optimization with specified
robot poses (scenarios) and commonly held poses ensures
higher coverage.

With the optimal camera positions selected from the
framework output, the user can deploy the cameras in their
physical work cell, networked to a centralized server. Once
all the sensors have been deployed and calibrated, our oc-
clusion detection algorithm can monitor and report warnings
regarding occluded regions in critical areas prior to robot
path planning.

III. OCCLUSION DETECTION

Our design of the occlusion detection algorithm focuses on
two aspects: accurate detection and event-driven capability.
For accurate detection, multiple 3D sensors such as RGB-
D or LiDAR are used, which provide depth information
with high accuracy comparing to 2D information. However,
handling PCD information from multiple sensors in real-time
can be computationally expensive. To reduce latency of the
detection algorithm, only downsampled depth images from
the camera system are required by the central server. In ad-
dition, the algorithm applies to completely separable spaces
within the multi-camera system to allow parallelization.

A. Detection Algorithm

The first step of performing detection is space configu-
ration of the given area that needs to be examined. This
process is performed through voxelization of the given space.
After this process is performed, each voxel is checked with
a downsampled depth map from each RGB-D camera to
determine if the voxel is covered by any of the cameras.
Since the depth images can be considered as ray-based, each
voxel is calculated based on the location to find if it aligns
with the specific ray from each camera. Figure 3 shows the
raycasting procedure using depth images. In the figure, the
3D green box within the camera field of view (FOV) is a
voxel within the work space. This voxel is evaluated against
the corresponding value in the downsampled depth image

10664

Fig. 3. Occlusion detection using raycasting: The voxel is traced to the
corresponding ray from the camera, checked against the depth matrix, and
marked accordingly.

(numerical values corresponding to distance from the cam-
era) shown at the right, and marked as one of the following
flags: [covered, occluded, out-of-sight]. These covered and
occluded voxels change as events occur in the work space
(i.e. robot movement or materials entering the cell). Out-
of-sight voxels remain the same unless the cameras are re-
positioned. This allows algorithm to only require checking
the out-of-sight voxels once upon initialization, and reduces
complexity of detection with regards to covered and occluded
voxels. The time complexity of the detection algorithm for
each voxel is O(M), where M is defined as the number of
cameras. Voxels can be run through the detection algorithm
in parallel. The detailed algorithm is shown below.

Algorithm 1 Occlusion detection algorithm
1: for each Vi ∈V do
2: Vi← out−o f − sight
3: [xworld ,yworld ,zworld] = getXY Z(Vi)
4: for each m← 1 to M do
5: [xcameram ,ycameram ,zcameram] = Trans f orm(Rm, Om, [xworld ,yworld ,zworld])
6: [pitch, yaw] = calcualte ray angle([xcameram ,ycameram ,zcameram])
7: if pitch ∈ [pitchmin, pitchmax]∧ yaw ∈ [yawmin,yawmax] then
8: [d j ,dk] = angle2index([pitch, yaw])
9: Vi← occluded

10: if Dm[d j , dk] < xcameram then
11: Vi← covered
12: Break
13: end if
14: end if
15: end for
16: end for

In the algorithm, V is the voxel array, Rm and Om are the
rotation matrix and translation of mth camera to world frame,
pitch and yaw are the angles of the ray from camera origin
to the voxel, and Dm is the downsampled depth image of
mth camera. Line 3 calculates the location of the voxel in
world frame. Then in line 4 - line 14, the algorithm checks
whether each voxel is occluded. The outer for loop at line
1 can be run in parallel. Note that after the first run of the
algorithm, out-of-sight voxels can be removed from the set
V to further reduce the computation.

B. Depth Image Resolution
Depth image downsampling is optional, but it becomes

critical when sensors communicate information to a server
in a wireless manner. If each sensor is equipped with its own

Fig. 4. Depth images of robot work space: original (left, 480x640),
downsampled (right, 87x116)

Fig. 5. Verification of downsampled depth matrix by re-generating PCD

Fig. 6. Occluded (left) and out-of-sight areas (right) for a single camera

processor, transmitting downsampled depth matrix highly
improves system performance. This downsampling can also
smooth the depth image to reduce sensor noise without
removing valuable information. From the experiment, Fig-
ure 4 shows the original depth image downsampled from
one camera viewing the work space.

After reducing the resolution, the maximum voxel size
within the camera sight is 2cm. From the visualization, the
downsampled depth matrix is still able to adequately capture
the surface of the robots. To further verify that information
is not lost through this process, we re-generated the PCD
using the same downsampled depth matrix shown in the
right image from Figure 4. In Figure 5, the left image is
a full resolution PCD from one RGB-D camera, and the
right image is the PCD generated from downsampled depth
matrix. When comparing re-generated PCD with the original,
though it is generated from a low-resolution depth matrix,
the surfaces of the robot are still captured. Figure 6 shows
the occluded area and out-of-sight area of a single camera
found by the occlusion detection algorithm. It also uses the
downsampled depth matrix shown in Figure 4.

IV. SCENARIO-BASED MULTI-OBJECTIVE OPTIMIZATION
FOR SENSOR POSITIONING

To generate optimal sensor poses, we perform optimiza-
tion targeting to maximize the volume covered by the 3D
sensors. In performing this optimization, the out-of-sight
volume and occluded volume are minimized. For a given
sensor position, the occluded volume is non-deterministic
and incorporates the robot’s poses to determine the volume.

10665

To effectively evaluate this volume, we consider multiple sets
of poses (scenarios) in the multi-robot setup, and optimize
the covered volume in all of these scenarios, resulting
in a multi-objective optimization problem. Traditionally, to
handle multiple scenarios in optimization, all scenarios are
converted into a single objective optimization problem by
aggregation such as through a weighted sum. However,
the use of a single objective optimization only provides a
single optimal solution. In the case of varied robot poses,
scenarios will conflict and the single optimal solution will not
provide a satisfactory trade-off between scenarios. Instead,
we utilize multi-objective optimization for multi-scenario
problems presented in [7], [23], [8] which provides a set of
solutions that represent different trade-offs among objectives.
From this set of solutions, a user can choose one of the
solutions based on priority and necessity with respect to the
evaluated task. Primarily, user-specified poses that might be
performed throughout the defined task are added as possible
scenarios to evaluate the quality of the solution. For example,
if user evaluates multi-robot part picking from specified bins,
the user can specify scenarios related to the picking poses
such that the optimization of sensor positioning minimizes
occlusions throughout the task performed. The user might
provide scenarios such as robot being stationed in a ready
pose, or one robot performing the part picking task while the
others have remained in a ready-state pose.

A. Multi-objective Optimization

In multi-objective optimization problems, the set of so-
lutions obtained are considered to be equally good. These
solutions, defined as non-dominated solutions or Pareto op-
timal solutions [5], provide trade-offs between objectives.

1) Problem formulation: The scenario-based multi-
objective sensor positioning problem is formulated as fol-
lows:

Maximize f1(x) =C(x, PCD1),

Maximize f2(x) = tN
k=2C(k)(x, PCDk)

subject to Gi = 1, i ∈ [1, N],
xmin

i ≤ xi ≤ xmax
i , i ∈ [1, M]

(1)

This is a constrained bi-objective maximization problem.
The constant Gi is the coverage ratio of the critical area. The
user can add other constraints as well. The objective function
is evaluated in two possible forms:

• The covered volume of one scenario is directly assigned
to the objective function (e.g., f1).

• A set of covered volumes from multiple scenarios are
aggregated, and aggregated value is assigned to the
objective function (e.g., f2).

With a significant scenario, the first form should be used
to emphasize the scenario. For the aggregation form, we use
a worst-case aggregate function which evaluates the worst
value for all K scenarios:

tK
k=1 f (k)(x) =

K
min
k=1

f (k)(x). (2)

This is by far the most widely used aggregate function in
practice. It takes the most pessimistic case and results ”over-
designed” solutions for some scenarios.

The covered volume for a given scenario (robot poses
represented as PCD) is given below. First, the depth matrix
is generated from the PCD of kth scenario for each sensor
m. With all depth matrices, the occlusion detection algorithm
finds the volume covered by sensor, and the covered ratio of
all working area is returned to calculate objective function.
This covered ratio of the given critical area is assigned to
the constraint function.

Algorithm 2 Objective and constraint function (Scenario k)
1: Initialize(V)
2: for each m← 1 to M do
3: Dm← PCD2DepthMatrix(PCDk , Rm, Om)
4: end for
5: V ← occlusion detection(V,D,R,O) (see Algorithm 1)
6: C← coverageRatio(V)
7: G← coverageRatio(Vcritical)
8: return C,G

2) NSGA-II: In this work, a fast elitist multi-objective
genetic algorithm, known as NSGA-II [3], is used for solving
the above multi-objective optimization. This method sorts
the population and preserves the good individuals while
maintaining diversity of the search. Using non-dominated
sorting and crowding distance, NSGA-II quickly converges
to the optimum front as well as maintaining the diversity
among the individuals in the front. Since NSGA-II performs
better when there are two or three objectives, we keep the
number of objectives less or equal to three.

V. EXPERIMENTS

Experimental study is carried out using a work space with
three manipulators shown in Figure 2(top two figures). The
volume of the work space evaluated is 4m x 3.35m x 2m.
First, we deployed multiple RGB-D cameras to cover the
work space that the robot arms can reach. To obtain the
PCD of different poses, we used the GAZEBO simulation
environment setup with RGB-D cameras to construct a PCD
of the scene.

For application of the multi-objective optimization, we
used 4-6 RGB-D cameras with the same specification as
the Intel Realsense D435 camera whose field of view is
[80o,58o,5m] (horizontal, vertical, range) to cover the work
space. The height of camera position is fixed to 2.28m, and
the roll is set to 0. The remaining four parameters (position:
x and y, yaw and pitch) are decided by the optimization.
In testing, results from manual setup are also given as
a baseline. The camera poses for manual process are set
empirically. For the four-camera case, we put cameras at
the top four corners of the work space respectively, and
positioned the cameras toward the work space at between
30◦ to 45◦ angles. In the five-camera case, we put the fifth
camera at the center-top of the work space facing a vertically
downward direction. With the addition of the sixth camera,
we positioned the camera at the center of the edge where
two of robots are located.

10666

TABLE I
SOLUTIONS (CAMERA POSES) [X,Y, PITCH, YAW] AND UNCOVERED AREA IN EACH SCENARIO

Method Solutions Scenario 1 Scenario 2 Scenario 3 Random
Pose m3 % m3 % m3 % m3 %

Manual

4 [0, 0, 60◦, 45◦], [4, 0, 60◦, 135◦], 0.50 2.2 0.61 2.7 0.76 3.4 0.52 2.3[4, 3.35, −60◦, 135◦], [0, 3.35, −60◦, 45◦]

5 [0, 0, 60◦, 45◦], [4, 0, 60◦, 135◦], [4, 3.35, −60◦, 135◦], 0.32 1.4 0.44 1.9 0.39 1.7 0.40 1.8[0, 3.35, −60◦, 45◦], [2, 1.675, 0◦, 90◦]

6 [0, 0, 60◦, 45◦], [4, 0, 60◦, 135◦],[4, 3.35, −60◦, 135◦], 0.27 1.2 0.28 1.3 0.26 1.2 0.35 1.6[0, 3.35, −60◦, 45◦], [2, 1.675, 0◦, 90◦], [2, 0, 45◦, 90◦]

4 [0.41, 3.32, −43◦, 65◦], [3.64, 3.34, −48◦, 120◦], 0.19 0.8 0.31 1.4 0.33 1.5 0.33 1.5[0.08, 0.16, 46◦, 43◦], [4.00, 0.04, 48◦, 135◦]
Single 5 [0.01, 3.28, −52◦, 57◦], [3.90, 3.33, −37◦, 153◦], [0.01, 0.03, 11◦, 35◦], 0.14 0.6 0.25 1.1 0.22 1.0 0.30 1.3Scenario [3.93, 0.10, 53◦, 137◦], [2.75, 0.83, 32◦, 77◦]
Optimization 6 [0.04, 2.84, −46◦, 49◦], [1.49, 3.21, −23◦, 96◦],[3.99, 3.26, −50◦, 153◦], 0.13 0.6 0.21 0.9 0.21 0.9 0.28 1.3[0.00, 0.07, 55◦, 39◦], [1.69, 0.00, 47◦, 43◦], [3.86, 0.24, 35◦, 121◦]

4 [0.07, 3.33, −41◦, 59◦], [3.68, 3.35, −50◦, 119◦], 0.19 0.8 0.24 1.0 0.24 1.0 0.33 1.5[0.04, 0.10, 54◦, 42◦], [3.84, 0.00, 40◦, 134◦]
Multi 5 [0.01, 3.35, −48◦, 56◦], [3.77, 3.25, −36◦, 146◦], [0.00, 0.06, 6◦, 35◦], 0.14 0.6 0.19 0.9 0.19 0.9 0.29 1.3Scenario [3.90, 0.01, 48◦, 137◦], [2.69, 0.82, 31◦, 76◦]
Optimization 6 [0.02, 2.98, −44◦, 28◦], [1.52, 3.33, −37◦, 101◦], [3.98, 3.28, −49◦, 153◦] 0.15 0.7 0.17 0.8 0.17 0.7 0.27 1.2[0.12, 0.10, 53◦, 48◦], [1.46, 0.00, 41◦, 36◦], [3.93, 0.24, 20◦, 124◦]

For each fixed number of cameras, the optimization runs
independently. We used NSGA-II and single objective GA
with a population size of 40, the SBX recombination operator
[6] with pc = 0.9 and index ηc = 15, and the polynomial
mutation operator [4] with pm = 0.33 and index ηm = 20. The
algorithms are run for a maximum of [100−500] generations.

A. Optimization Setup

1) Scenarios and objectives:
a) Scenario 1: All robots in ready pose state: The

ready pose shown in Figure 2(top two figures) is the pose
which occurs most frequently. Every time a robot finishes a
task, it returns to ready-pose state. Before planning any task,
each robot moves to the ready-state and starts planning. To
emphasize this pose, we set this pose as one objective.

b) Scenario 2: One robot moves, other two are in ready
pose state: In most cases, one of the robots starts planning
and moving. Then given the status of the first robot, the other
robots plan accordingly. To initiate this scenario, we mapped
a set of poses that one robot moves to various positions,
while the other two robots are in ready-state. The objective
function uses worst-case aggregation given in Section IV,
and takes the worst value of coverage of all these poses, and
assigns it the second objective.

c) Scenario 3: All three robots move together: In this
scenarios, we set all three robots to different poses. Similar
to scenario 2, worst-case aggregated value is assigned to
objective function.

User can choose specific poses or a series of poses that
mimic the movement of robots. Also, other objects such as
table, bins, and workers can be included in the scenario. The
scenario-based optimization provides flexibility for the user
to design any scenarios including complex or corner-case
scenarios.

B. Results

In the single scenario optimization, only scenario 1 is
considered in optimization. Hence, only a single objective
is presented, and one optimal solution is found. Then, we

compared the results with the optimal solution from multi-
objective optimization using three scenarios. Table I shows
optimal solutions and calculated uncovered area for each
scenario. The best values are shown in bold font. For scenario
2 and 3, the worse-case aggregated values are shown in the
table. For multi-objective optimization, since the optimiza-
tion will output multiple solutions, the table only shows one
selected solution. For further verification, all solutions shown
in table are tested on 25 random robot poses that are not
included in the given scenarios, the average value on 25
random poses are shown in the rightmost column of the table.

1) Single scenario optimization: From the table, results
from optimization methods outperform a manual setup of
sensors in all cases. We found that manual setting generates
scattered occlusions and uncovered area. These are very
difficult to capture by human eye, and numerous adjustments
are required with no guarantee of finding optimal positions.
From the table, single objective optimization finds the best
solution for scenario 1, and performs slightly worse in the
other two scenario compared to multi-objective optimization.
However, the slight difference in the value can cause signif-
icant impact if the occluded area is in an undesired location.
Figure 7 shows the optimal solution for four-camera cases.
The left figure shows the optimal poses in scenario 1, and
the right figure shows the same positioning in scenario 2. In
the figure the blue line is the camera orientation and the red
box at the edge of each line is the camera location, and the
area in magenta color is occlusion. It shows that the optimal
positioning creates occluded area as one robot moves away
from ready-state, and the robot cannot complete its task any
further due to the occluded area in the path.

2) Multi-objective optimization with multiple scenarios:
In multi-objective optimization we use three scenarios,
and optimize all scenarios simultaneously using NSGA-II.
NSGA-II finds optimal front, and the user can select one of
the preferred solutions. The selected optimal solutions from
NAGA-II have a comparable performance in scenario 1, and
outperforms in scenario 2 and 3.

For random poses, the optimal solutions from NSGA-II

10667

Fig. 7. The optimal solution of single scenario optimization creates
occluded area in other scenarios

Fig. 8. Manual solution (left) and optimal solution (right) from multi-
objective optimization is tested on unexpected objects in the scene

perform better than manual positioning as well as solutions
from single scenario optimization. We also tested on unex-
pected scenario shown in Figure 8. The occlusion detection
algorithm is run on a manual positioning of the cameras (left)
and the optimal positioning of the camera from NSGA-II
(right). The scene includes unexpected objects such as human
and table, showing that the optimized positioning provides
more robust occlusion aware coverage.

C. Discussion

From the above results, it is clear that using a multi-
objective optimization method provides multiple solution
with higher coverage and less occlusions under given sce-
narios. With the optimal location and orientation of cameras,
the user can reduce the number of cameras with optimal
placement. This can significantly reduce the cost without
losing quality of coverage.

VI. CONCLUSIONS

In this paper, we presented two mechanisms to handle
occlusion for the industrial robots. Occlusion-aware optimal
sensor positioning and event-driven occlusion detection. The
occlusion-aware sensor positioning considers multiple robot
pose scenarios during the optimization and optimizes sensor
coverage throughout all scenarios. Scenario-based multi-
objective optimization was adopted to solve the problem.
Once the sensors were deployed, event-driven occlusion
detection is shown to greatly enhance the safety of the
vision system. From the experimental study, the optimal
sensor positioning can reduce the number of sensors with
high coverage under various scenarios. The work will extend
to applications in larger scale industrial environments for
dynamic multi-robot path planning and task execution.

REFERENCES

[1] A. Ayvaci, M. Raptis, and S. Soatto, “Sparse occlusion detection with
optical flow,” International journal of computer vision, vol. 97, no. 3,
pp. 322–338, 2012.

[2] M. A. Baumann, D. C. Dupuis, S. Léonard, E. A. Croft, and J. J.
Little, “Occlusion-free path planning with a probabilistic roadmap,”
in 2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 2008, pp. 2151–2156.

[3] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and
elitist multiobjective genetic algorithm: Nsga-ii,” IEEE Transactions
on Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[4] K. Deb, Multi-objective optimization using evolutionary algorithms.
John Wiley & Sons, 2001, vol. 16.

[5] K. Deb, “Multi-objective optimization,” in Search methodologies.
Springer, 2014, pp. 403–449.

[6] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous
search space,” Complex Systems, vol. 9, no. 2, pp. 115–148, 1995.

[7] K. Deb, L. Zhu, and S. Kulkarni, “Multi-scenario, multi-objective
optimization using evolutionary algorithms: Initial results,” in 2015
IEEE Congress on Evolutionary Computation (CEC). IEEE, 2015,
pp. 1877–1884.

[8] K. Deb, L. Zhu, and S. Kulkarni, “Handling multiple scenarios in evo-
lutionary multiobjective numerical optimization,” IEEE Transactions
on Evolutionary Computation, vol. 22, no. 6, pp. 920–933, 2017.

[9] E. Hörster and R. Lienhart, “On the optimal placement of multiple
visual sensors,” in Proceedings of the 4th ACM international workshop
on Video surveillance and sensor networks, 2006, pp. 111–120.

[10] P. Hu, J. Ziglar, D. Held, and D. Ramanan, “What you see is what
you get: Exploiting visibility for 3d object detection,” CVPR, 2020.

[11] S. Joshi and S. Boyd, “Sensor selection via convex optimization,”
IEEE Transactions on Signal Processing, vol. 57, no. 2, pp. 451–462,
2008.

[12] J. Kim, Y. Ham, Y. Chung, and S. Chi, “Systematic camera place-
ment framework for operation-level visual monitoring on construction
jobsites,” Journal of Construction Engineering and Management, vol.
145, no. 4, p. 04019019, 2019.

[13] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry
4.0,” Business & information systems engineering, vol. 6, no. 4, pp.
239–242, 2014.

[14] A. Li and Z. Yuan, “Symmnet: a symmetric convolutional neural
network for occlusion detection,” arXiv preprint arXiv:1807.00959,
2018.

[15] M. Li, B. Guo, and W. Zhang, “An occlusion detection algorithm for
3d texture reconstruction of multi-view images,” International Journal
of Machine and Computing, vol. 7, no. 5, 2017.

[16] A. Mittal and L. S. Davis, “A general method for sensor planning in
multi-sensor systems: Extension to random occlusion,” International
journal of computer vision, vol. 76, no. 1, pp. 31–52, 2008.

[17] G. Olague and R. Mohr, “Optimal camera placement
for accurate reconstruction,” Pattern Recognition, vol. 35,
no. 4, pp. 927 – 944, 2002. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0031320301000760

[18] J. Pan and B. Hu, “Robust occlusion handling in object tracking,” in
2007 IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 2007, pp. 1–8.

[19] C. Rauch, T. Hospedales, J. Shotton, and M. Fallon, “Visual articulated
tracking in the presence of occlusions,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2018, pp.
643–650.

[20] S. Schneider, M. Himmelsbach, T. Luettel, and H.-J. Wuensche,
“Fusing vision and lidar-synchronization, correction and occlusion
reasoning,” in 2010 IEEE Intelligent Vehicles Symposium. IEEE,
2010, pp. 388–393.

[21] Y. Xu, L. Qin, G. Li, and Q. Huang, “An efficient occlusion detection
method to improve object trackers,” in 2013 IEEE International
Conference on Image Processing. IEEE, 2013, pp. 2445–2449.

[22] S. Yi, R. M. Haralick, and L. G. Shapiro, “Optimal sensor and light
source positioning for machine vision,” Computer Vision and Image
Understanding, vol. 61, no. 1, pp. 122–137, 1995.

[23] L. Zhu, K. Deb, and S. Kulkarni, “Multi-scenario optimization using
multi-criterion methods: A case study on byzantine agreement prob-
lem,” in 2014 IEEE Congress on Evolutionary Computation (CEC).
IEEE, 2014, pp. 2601–2608.

10668

