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Abstract— Localizing and tracking the pose of robotic grip-
pers are necessary skills for manipulation tasks. However, the
manipulators with imprecise kinematic models (e.g. low-cost
arms) or manipulators with unknown world coordinates (e.g.
poor camera-arm calibration) cannot locate the gripper with
respect to the world. In these circumstances, we can leverage
tactile feedback between the gripper and the environment. In
this paper, we present learnable Bayes filter models that can
localize robotic grippers using tactile feedback. We propose a
novel observation model that conditions the tactile feedback
on visual maps of the environment along with a motion model
to recursively estimate the gripper’s location. Our models are
trained in simulation with self-supervision and transferred
to the real world. Our method is evaluated on a tabletop
localization task in which the gripper interacts with objects. We
report results in simulation and on a real robot, generalizing
over different sizes, shapes, and configurations of the objects.

I. INTRODUCTION

Humans take advantage of tactile perception in many
manipulation tasks. We can locate, recognize, grasp, and ma-
nipulate objects without looking at them. Tactile perception
is also very useful in situations where visual feedback is not
available. For example, we can easily find our wallet on a
table in a dark room. The ability to make sense of tactile
input has influenced neuroscience researchers. In the early
work [1], the researchers coined the term sensory substitution
in which humans are able to use one sensory modality, e.g.,
tactile, to stimulate another modality, e.g., vision. This and
following work has led to the invention of devices that lets
visually-impaired people to ‘perceive’ the world with touch.
Moreover, [2] showed that humans integrate vision and touch
when they are using tools in a near-optimal fashion.

Tactile perception is a desired skill for several robotic
applications. Similar to humans, the studies have shown that
the robots that can leverage touch feedback are more effective
than those that only rely on visual or proprioceptive sensors.
Some of the examples where tactile perception is shown
to be essential are grasping [3], shape reconstruction [4],
contact-rich tasks [5], and object recognition [6]. One other
manipulation skill that benefits from the tactile sensing is
tactile localization where the aim is to estimate the pose of an
object or an end-effector using tactile feedback received from
the environment. While the majority of the earlier work aims
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Fig. 1. Tactile Localization Task: The gripper traverse over the table
and objects (top-right) while collecting tactile observations (bottom-right)
to localize itself.

to localize the objects (as discussed in Section II), we focus
on the problem of localizing the gripper with respect to a
global map of the environment. Compared to the localization
with visual feedback [7], tactile localization is not affected
by the occlusions between the camera and the end-effector.
Tactile localization can be useful in situations where there is
no precise forward kinematic model of a robotic arm (e.g.
low-cost manipulators) or the pose of the arm cannot be
defined in with respect to the world coordinates.

Localization is a fundamental problem in robotics. The
majority of the work focuses on this problem in the context
of mobile robot navigation where the goal is to find and
track the location of a mobile robot on a global map. Tactile
localization is similar to the mobile robot localization in
terms of the problem formulation but differs in the sensing
modalities. In tactile localization, the robot receives a “sense
of touch” from the environment in the form of proprioceptive
measurements (joint angles and velocities) or external sensor
readings (force or torque). These tactile measurements can
be used to find which state the robot is in.

Tactile feedback has a limited use in state estimation due
to its noisy and high-frequency nature, but it can provide
rich information about the contact interactions, which can
help determine object properties and locations. Bayes fil-
ters [8] are well suited for state estimation problems with
uncertain observations and transition functions. The Bayes
filters work by maintaining a belief of the state and use
an observation and a motion model. The observation and
motion models update the belief using the measurement
received from the environment and the actions taken by
the robot. In our case, these models are not known so we
propose to learn them from data. We design observation and
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motion models using neural network layers and implement
Bayes filtering as tensor operations. Our observation model is
based on the U-net architecture [9] and facilitates the multi-
modal sensor inputs. It uses the images of the environment
as visual maps and tactile feedback as the observation to
generate the likelihood probabilities, and the motion model
transitions the belief to the next timestep. We evaluate our
method on a tabletop localization task in which the robotic
gripper traverses over the table and interacts with objects.
Our approach is compared against two baselines: a uniform
observation model and a naive version of our observation
model which does not use the visual maps. The contributions
of this paper are to (1) formulate tactile localization as a
Bayes filtering problem with learned models, (2) introduce
a self-supervised data collection procedure to gather a large
amount of contact interaction data to train these models, and
(3) show that these models can generalize over novel objects
and can be directly transferred into real-world. Our method
is able to achieve 93% success rate in the simulation and
90% in the robot experiments.

II. RELATED WORK

A. Learning Bayes Filters

Model-free learning has shown great success in many
robotics tasks in the last few years. Also, the progress in
the sim-to-real research made it possible to train large neural
networks in simulation and transfer these models to the real
world. However, choosing the right class of models is still
an open problem for many robotic tasks. One approach that
addresses this issue is embedding robotic algorithms as priors
into model-free learning. [10] proposed a Histogram filter
that can be trained end-to-end and showed that it outperforms
LSTM networks for state estimation problems. [11] com-
bined the learnable Histogram filters with QMDP method to
solve planning under partial observability. The authors con-
currently extended their methods to continuous state space
by proposing differentiable particle filters [12], [13]. [14]
and [15] combined learnable Bayes filter with deep rein-
forcement learning to achieve active localization. All the
methods mentioned above have conducted their experiments
in simulation and focused on the problem of mobile robot
localization with visual or lidar sensors except [11] in which
the authors also show results on a 2D grasping experiment.
In contrast, we focus on the problem of tactile localization
where the objective is to estimate the position of a gripper
with respect to the global map of the environment.

B. Tactile Localization

The work of [16], [17], [18], [19] are early examples of
using sequential Bayes filters to estimate the object pose
using fingertip contact sensing. The focus is on estimating the
full pose of a simple object. The work above does not take
into account any prior knowledge of the motion dynamics
of the object. However, if the robot is manipulating the
object, we can potentially leverage the process dynamics to
improve object tracking. This idea is explored in [20]. The
work in [21] fuses observations of visual features with the

touch information. The idea is to use visual information in
combination with the touch data to better localize the object.
However, the object must be visible to the camera during
manipulation – something that can be difficult. In the recent
years, high-resolution tactile sensors such as Gelsight have
gained growing attention. Early work [22] localized the pose
of a USB stick by matching the tactile imprint against a
model of a USB symbol using this sensor. Furthermore, [22]
fused the Gelsight data with the point cloud using the
Iterative Closest Point (ICP) algorithm. [23] also uses ICP for
localization with pre-computed tactile shape. Recently, [24]
used Particle filters for localization of objects using the
proprioceptive sensors of a robotic arm. The belief of the
objects is used as the input to the reinforcement learning to
guide the actions. This work focus on the local localization
problem where the robot has a non-uniform prior as the
initial belief. Another limitation of this work is that the pose
of the arm is assumed to be known with respect to the world
coordinates. The objective of all the work described above is
to localize the pose of an object with respect to the gripper.
The dual of this problem is to localize the gripper with
respect to the environment. For example, the work in [25]
localizes the pose of a robotic hand with respect to a flexible
piece of plastic textured to the environment. Similarly, [26]
propose to use a visual-tactile sensor to match the features
of the sensor reading with the pre-generated features of a
fixed environment image to localize the gripper. The feture
matching is done by scale-invariant feature transform (SIFT)
method. In both of these work, the environment is fixed and
known beforehand. Our method is able to generalize over
different environment configurations and does not use any
feature pre-computation.

III. PROBLEM STATEMENT
Bayes filters are a family of algorithms used for state

estimation problems using the observations received from
the environment and actions taken by the agent. A Bayes
filter estimates the state of a dynamical system by main-
taining a posterior probability over states that conditions
on observations and actions. Let st be the state, ot be the
observation, and at be the action of the system at time t. The
posterior probability (also called belief ) is then written as :
bel(st) = p(st|a1:t−1, o1:t). The Bayes filters updates the
belief by taking the prediction step and observation update
step:

bel(st) = ηp(ot|st)︸ ︷︷ ︸
Observation Update

∑
st−1∈S

p(st|st−1, at−1)bel(st−1)︸ ︷︷ ︸
Prediction Update

where p(ot|st) is the observation model, p(st|st−1, at−1) is
the motion model and η is the normalization factor. If there
is no prior information of system’s state, the belief at t=0,
bel(s0) can be initialized uniformly. Note that Bayes filters
assume to have the Markov property of the states in which
the current belief bel(st) contains full information of the past
observations and actions.
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Fig. 2. Bayes Filter Network Diagram: The depth image and tactile observation are fed into their encoders (a, b) and the output feature maps are
concatenated. The (c) likelihood decoder takes these feature maps and generates the likelihood map. The motion model (d) predicts the belief at next
timestep which is then multiplied with the likelihood map and normalized to produce the next belief.

Our overarching goal is to localize a robotic gripper with
respect to a variety of scenes. One possible approach to find
out the gripper’s location is to visually track it with an ex-
ternal camera, however, this is not feasible due to occlusions
by the arm. Furthermore, this method requires a calibration
that needs to be reperformed every time the camera or the
robot moves. We, therefore, must rely primarily on touch-
based localization during contact interactions. The robot has
the opportunity to take a depth image of the environment
prior to the interaction but after that, it only has access
to the tactile feedback. The tactile observations during the
interaction is conditioned on this environment image. The
core of our touch localization framework is a discrete Bayes
filter (Histogram filter) with learned models. To this end,
we have two goals: (1) Learn an observation model that
is conditioned on an environment image. This observation
model would describe the expected tactile feedback as a
function of the gripper position for a new scene, as conveyed
by the image of the scene. (2) Learn a motion model that
will transition the belief given the action and old state.

We propose to represent the observation and motion mod-
els of the Bayes filter as neural networks and learn them
using gradient descent. Let fO(·) be a neural network that
takes the environment image, tactile observation and the
action as input and generates the likelihood probabilities of
the current observation, i.e. fO(ot, at, I) = p(ot|st, at, I).
Let fM (·) be a neural network that takes the previous belief
and the action as input and predicts the belief at the next
timestep, i.e. fM (bel(st − 1), at) = bel(st). The state space
is defined as the projected pixel coordinates of the gripper
in the environment image: st = (px, py) ∈ ZH×W where H
is the height and W is the width of the image, I . The belief
is encoded as a H ×W matrix and computed as:

bel(st) = ηfO(ot, at, I)� fM (bel(st − 1), at)

where � is element-wise multiplication.

IV. LEARNING BAYES FILTER MODELS

A. Observation Model

Our observation model is based on the U-net autoencoder
architecture introduced in [9]. It consist of 3 modules: (a)
Image Encoder, (b) Observation Encoder and (c) Likelihood
Decoder. The image encoder takes the depth image and
passes it through 6 2-D convolution layers. Each layer is
followed by batch normalization and ReLu activation. We
apply max-pooling after the 4th and the 6th layers. Similarly,
the observation encoder feeds the tactile observations into
3 1-D convolution layers where the first two layers are
followed by ReLu activation. The output of the observation
encoder is reshaped into a 2D matrix with the same dimen-
sion of the image feature maps. The output of these encoders
is then concatenated and fed into the likelihood decoder.
We use two transposed convolution layers to upsample the
feature maps. After each transposed convolution, there are
two 2-D convolution layers which are followed by batch
normalization and ReLu activation. The first one has 32
and the second one has 16 filters. Finally, we apply a
single 2D convolution layer with N filters where N is the
number of discrete probability values. Each pixel gives the
independent probability of receiving the current observation.
We apply a channel-wise softmax normalization and train
with categorical cross-entropy loss.

B. Motion Model

We define the motion model as a 2D convolution oper-
ation where the kernel weights ωM ∈ R3×3 represent the
transition probability function. Since the transition function
is probability mass function, the output of the convolution
operation needs to be positive and sum to 1. This is enforced
by a softmax normalization after multiplying the kernel. We
use a kernel size of 3 because the gripper can only traverse
1 pixel at each time step. The motion model is trained with
the binary cross-entropy loss.
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Fig. 3. Left: Simulation Environment Top-Right: Training Objects
Bottom-Right: Test Objects

C. Data Collection

Training neural networks requires a substantial amount
of training data. Recent work [5], [27] showed that sim-
ulations can be used to generate large amount of labeled
data by self-supervision. In this setting, the agent explores
the environment by following a random policy and collects
data from the simulation environments. We follow a similar
data collection procedure to train our observation and motion
models. A simulation environment is developed using the
MuJoCo [28] physics engine to collect tactile observations
and their corresponding states. The environment consists of
a free-floating gripper, a table and objects on the table (see
Figure 3). A top-down facing depth camera is positioned
over the table. The gripper moves from one edge of the table
with a linear motion up to the opposing edge of the table.
The state space is comprised of the coordinates of the gripper
in the camera frame. In order to find the pixel coordinates of
the gripper, we first transform the pose of the gripper base to
the camera frame and then project it into pixel coordinates:
p = MintMextPw where Mint and Mext are intrinsic and
extrinsic camera matrices, respectively, p = (px, py) is the
pixel coordinates of the gripper, and Pw is 3D position of
the gripper’s base in the environment.

The joint angles of the gripper are used as the tactile
observations. The gripper used in this work has hydro-static
linear actuators [29] which allows us to set the finger joint
stiffness to a low value. This way, the gripper can interact
with objects without moving them. To generate the dataset,
we first sample objects from our object set. The sizes and
the positions of the objects are sampled from a uniform
distribution. Then the gripper traverse over every pixel row
and column while interacting with the table and objects. The
dataset is populated with the depth images, observations,
likelihood maps and states: D = {(oN , sN , LN , I)

i} where
i is the index of the environment configuration, N is the
number of pixels in the image, and L ground-truth likelihood
map. Note that we take images of the environment before
that episode starts. To train the observation model with full
supervision, we need to generate the ground truth likeli-
hood maps for each observation. This likelihood map would

describe the probability of receiving current observation
given any state. In a single configuration of objects, the
gripper collects observations from each state. To generate
the likelihood maps, we look at the distance between the
current observation and all the other observations. These
distances are then normalized between 0 and 1 where the
closest distance is 1 and farthest distance is 0 to represent
the probability values. Finally, the probability values are
discretized into 16 values.

V. EXPERIMENTS

A. Simulation Experiments

We conduct simulation experiments to investigate the
localization success of our proposed method and more
importantly the generalization capabilities over different
size, shape and configurations of the objects. The proposed
method is evaluated on two sets of objects: (1) Primitive
objects including squares, spheres, capsules, and cylinders.
(2) 3DNet objects [30] which includes arbitrary shaped
objects that are commonly used in daily life. Note that
we train the models using the primitive object set and use
the 3DNet objects to show that our method can generalize
to objects that were not present in the training set. The
simulation environment and the object sets can be seen in
Figure 3. We compare our results against two baselines: (1)
a uniform observation model, i.e. p(o|s) = 1/HW, ∀s ∈ S,
and (2) a naive version of our observation model which does
not use the image encoder module (Figure 2.a) and directly
outputs the likelihood probabilities from the observation
encoder module (Figure 2.b). At anytime during the filtering,
the state can be inferred by the argmax operation on the
belief s̃t = argmax(bel(st)). The l1-norm is used to calculate
the error between the predicted state s̃t and the true state st,
et = |st − s̃t|.

TABLE I
QUANTITATIVE RESULTS: LOCALIZATION SUCCESS RATE

Uniform Naive Bayes Filter (ours)
Primitive Objects 18 33 93

3DNet Objects 15 32 78

The localization is considered to be successful if the error
at the end of the episode is less than 4. We generate 100
random configurations for each of the object set and run 10
episodes for each configuration. The starting position of the
gripper is also randomly selected. Note that we make sure
that the gripper interacts with at least one object on the table.
We achieve 93% success rate for the primitive objects set and
78% success rate for the 3DNet object set. It is evidenced
by Table I that our approach outperforms the baselines by a
large margin. We observe two failure modes. If the gripper
touches an object early in the episode and it localizes well
but then its belief becomes uncertain afterwards since it is not
receiving any unique observation. The second failure mode
is when more than one object has similar size and shape. In
this case, there are multiple states that can generate similar
observations, therefore, the belief has high probabilities in
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Fig. 4. Qualitative Results: We show how the belief change over time for 10 steps. The top-left is the uniform initial belief and the bottom-right is the
final belief. The red pixel shows the true location. As the gripper interacts with the objects, the belief becomes less uncertain about the true position.

multiple states. We also show qualitative results in Figure 4
in which the evolution of the belief over 10 time steps is
demonstrated. As can be seen from the figure, the belief
gets less uncertain about the correct position of the gripper
as it interacts with the objects.

B. Real World Experiments

To show that our Bayes filter models can be transferred
to real world environments, we deployed the models learned
in simulation on a real robot. The gripper is attached to a
Universal Robot arm (see Figure 1) which is programmed
to traverse a linear path over the table and objects with
constant speed. A Structure depth sensor is placed over
the table. The outlier pixels in the image are replaced
with the average of neighbor pixels. We applied a low-pass
filter on the finger positions to get rid of the noise caused
by the bumps on the table and objects. We generated 4
random configuration where we used different objects for
each of the configuration. For each configuration, we run
5 episodes from random starting position. To calculate the
ground truth states, the position of the gripper is obtained
from the forward kinematics and projected in to the camera
pixel coordinates. Similar to the simulation experiments, the
localization is considered to be successful if the error is under
4. The accuracy of the localization is found to be 90%.

VI. CONCLUSIONS

In this work, we have addressed the problem of tactile
localization where the goal is to localize a robotic gripper
with respect to an global map of the environment using
tactile feedback. We formulate the localization problem as
a recursive Bayes filtering problem and learn the filter
models from data. The models are implemented as layers of
neural networks and trained with gradient descent. A self-
supervised and simulation-based data collection procedure
is introduced to collect contact interactions between the
environment and the gripper. We showed that in addition

to successful localization with unseen object configurations,
our approach can also localize with novel objects. We also
showed that our models can be transferred to real hardware
without any domain randomization or retraining.

The main drawback of our method is the assumption that
the gripper does not move objects. To mitigate this problem,
we would like to extend the localization formulation to track
the objects as well. Another limitation is that the gripper used
in this work can operate with low stiffness, thereby, we can
use the joint angles as the tactile observations. However, this
might not be true for every gripper. To overcome this, we
want to leverage other tactile sensors that can be commonly
used. Our future work also includes combining the proposed
localization method with policy learning to perform manipu-
lation tasks by jointly learning the localization and planning.

APPENDIX

The neural networks are implemented using PyTorch
framework [31]. All the convolution layers in the image
encoder and the likelihood decoder has a kernel size of 3
except the transposed convolutions which has a kernel size 2.
The image encoder has 6 layers with the following numbers
of filters [16, 16, 32, 32, 64, 64]. The likelihood decoder has
a 4 convolution layers and 2 transposed convolution layers
with the following numbers of filters [32, 32, 16, 16] and [69,
32], respectively. The observation encoder has 3 layers and
each of them has a kernel size of 3. The number of filters are
[16, 32, 64]. We collect 600000 trajectories for training set
and 60000 trajectories for the validation set. Each trajectory
has 140 time steps which results in 84000000 data points.
We use Adam optimizer with 0.0003 and 0.001 learning rate
for the observation and motion networks. The training for
the observation model has batch size of 512 and 300 epochs
and the training for the motion model has batch size of 64
and 100 epochs. The observation model is trained in 24 hour
and the motion model is trained in 1 hour.
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