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Abstract— When exploring an unknown environment, a mo-
bile robot must decide where to observe next. It must do this
whilst minimising the risk of failure, by only exploring areas
that it expects to be safe. In this context, safety refers to the
robot remaining in regions where critical environment features
(e.g. terrain steepness, radiation levels) are within ranges the
robot is able to tolerate. More specifically, we consider a setting
where a robot explores an environment modelled with a Markov
decision process, subject to bounds on the values of one or more
environment features which can only be sensed at runtime. We
use a Gaussian process to predict the value of the environment
feature in unvisited regions, and propose an estimated Markov
decision process, a model that integrates the Gaussian process
predictions with the environment model transition probabilities.
Building on this model, we propose an exploration algorithm
that, contrary to previous approaches, considers probabilistic
transitions and explicitly reasons about the uncertainty over
the Gaussian process predictions. Furthermore, our approach
increases the speed of exploration by selecting locations to visit
further away from the currently explored area. We evaluate our
approach on a real-world gamma radiation dataset, tackling the
challenge of a nuclear material inspection robot exploring an
a priori unknown area.

I. INTRODUCTION

For many tasks that autonomous mobile robots are well
suited to, the robot may need to plan and navigate in an
environment where there is an a priori unknown distribution
of a hazard. This could be steep terrain (for planetary rovers),
water depth or current (for underwater vehicles), or radiation
exposure (for disaster recovery/nuclear inspection). In this
paper, we provide a robust safe exploration approach to handle
cases where the dynamics of this hazard are unknown.

We build upon the work in [1], extending it to handle
probabilistic transition models and support more complex
safety specifications. The aim of our exploration task is
to maximise robot safety while minimising the expected
cumulative cost to build a model of the dynamics of the
environment features. The exploration is considered complete
when the model reaches a user-specified degree of accuracy
for the states that it can safely visit.

We use a Gaussian process (GP) [2] to model and
predict the values of unknown environment features, since a
GP provides a flexible, non-parametric method of function
approximation. We assume the hazard is a smooth, stationary
function, and predict mean and uncertainty across the domain —
this is important as a safe approach requires taking uncertainty
about the safety of states into account.
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We present two new formalisms for describing uncertainty
over unknown feature values in an MDP setting, and an
algorithm which makes use of these for safe exploration. The
first of these formalisms is an MDP with Unknown Feature
Values (U-MDP) which we use to model the exploration
problem. The second formalism is an Estimated MDP (Est-
MDP) which we use to plan in an approximation of the
U-MDP. In both models, there is a subset of state features
with unknown values. In the U-MDP there is a deterministic
mapping which defines the values of unknown state features at
given known states. The Est-MDP approximates the U-MDP
by replacing the deterministic mapping with a probabilistic
mapping based on its current knowledge. Our new algorithm,
SafeEst-MDP, exploits this probabilistic mapping, encoded
in the Est-MDP transition function, to plan safe paths to
states expected to be informative during exploration. These
safe paths take into account the probability of falling into an
unsafe state at each step needed to reach, and return from,
one of these informative states.

The contributions of this paper are a new framework
for tackling exploration tasks under uncertainty, and the
evaluation of the framework on a real-world nuclear inspection
dataset. We demonstrate that our method offers several
advantages over existing safe approaches, including support
for probabilistic action outcomes, and more expressive safety
constraints. Our experimental results show that our proposed
exploration approach significantly outperforms the SafeMDP
algorithm presented in [1]. This is both in terms of the cost
incurred, and distance travelled, to complete the exploration,
and the number of measurements required to do so. Overall,
our approach is significantly more efficient in producing a
GP model that accurately predicts the unknown state feature
values in the set of safe states.

II. RELATED WORK

MDPs are commonly used for planning under uncertainty
for robots e.g. [3], [4], [5], and there has been previous
work concerning safe exploration of this type of model.
Safe exploration of MDPs (without explicitly modelling the
unknown state feature values) has been addressed in [6],
where a technique for the problem of exploring an MDP
whilst ensuring returnability to the initial state is presented.
GP exploration (without the added reachability constraints
of an MDP) has been investigated in [7], where the value
of an objective function is optimised while avoiding the
risk of sampling the function where its value is below a
safety threshold. Building upon these works, [1] introduced
the SafeMDP algorithm for safe exploration of MDPs using
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GPs. SafeMDP reasons about the notions of reachability

from and returnability to a set of states known to be “safe”.

Our approach builds on this, proposing a novel model for
the safe exploration of states in an MDP. Our MDP with
Unknown Feature Values allows us to drop SafeMDP’s
assumption of a deterministic transition function, and include
GP estimates directly into the planning model. This facilitates
the introduction of more complex safety specifications. We
compare our algorithm with SafeMDP and show that we are
able to more efficiently and safely explore the environment.
Other works have built on [1], investigating goal-driven
behaviour [8], [9]. We aim to add goal-driven behaviour
in future work.

As well as MDP approaches that assume a fully known
model of the environment, partially observable MDPs
(POMDPs) have been used in robotics [10] to plan to gain
information about the world [11], [12]. Similar to our setting,
exploration problems in a sequential Bayesian optimisation
framework have also been posed as POMDPs. Due to their
greatly increased complexity, exact solutions to POMDPs are
generally intractable and previous literature often makes use
of Monte Carlo Tree Search (MCTS) techniques to generate
approximate solutions.

Examples of POMDPs for path planning with a GP
observation model can be found in [13], [14], [15]. These
POMDP approaches are able to plan in a non-myopic
manner by reasoning over beliefs, and aim to carry out
Bayesian optimisation-based “informative path planning”.
This is similar in many ways to our goal of planning
safe paths to informative states — however, they do not
consider a safety constrained setting as we do. Although
one can interpret our use of a GP as maintaining belief
over state values in much the same way as a POMDP, we
do not directly reason about partial observability. Our path
planning approach is therefore more myopic than a POMDP,
but requires significantly less computation (giving better
scalability to larger problems) and provides better guarantees
on safety than is possible with a standard POMDP reward
structure. It does this by separating the safety of paths (based
on constrained reachability calculations) from the task of
determining informative states to sample. The safe exploration
task cannot be directly translated into a reward structure over a
POMDP without its dimensionality growing unfeasibly large.
Moreover, it is not possible to encode safety and reward into
a single reward in a principled manner.

III. PRELIMINARIES
A. Markov Decision Processes & Constrained Reachability

An MDP is defined as a tuple M = (5,5, A, T, c), where
S is a finite set of states; 5 € S is the initial state; A is a
finite set of actions; T': S x A x S — [0,1] is a probabilistic
transition function; and ¢ : S x A — R>¢ is a cost function.
Examples of cost functions are the expected time to execute
an action, or the expected energy required to do so.

A path through an MDP is a sequence w = sg —3 51 — ...
where T(s;, a;, 8;+1) > 0 for all : € N. We denote the set of
all paths of M starting from state s as Path . The choice

of action to take at each step of the execution of an MDP is
made by a policy. In this paper, we consider deterministic,
stationary policies, defined as functions 7 : S — A that map
each state s € S to the action to execute in s, and denote the
set of all such policies as II. Given an MDP M and a policy
7 € 11, we can define a probability measure Pr}, . over the
set of paths Patha, s [16]. Furthermore, for a measurable
function X : Pathp,s — R, we write Ef, (X) for the
expected value of X with respect to Priy, .

In this work, we consider cost-optimal constrained reacha-
bility problems for which the probability of satisfaction might
be less than one. These involve identifying a policy to reach
a set of goal states whilst avoiding a set of forbidden states.
More formally, let G C S be a set of goal states and F' C S
be a set of forbidden states. We define the set of paths that
reach G whilst avoiding I as:

reach-pc = {(so =% 51 3 ...) € Pathps, | existsi €N
such that s; € G and s; ¢ F for all j <i}.
(1)

We will consider policies that are cost-optimal, in the
sense that they minimise the expected cumulative cost to
reach either a goal state, or a state where reaching the goal
is not possible. Given w = sg X S1 N e Pathpg,s,, We
define [, as the timestep until which cost will be accumulated
for path w:

min; s. t. 5; € G
ly = min; s. t.
Priyi%, (reach—p ) = 0  otherwise,

if w € reach-p

2)
where Priyi’ (reach-r,g) denotes the supremum over II of
Prii, s (reach—r ). Note that the second condition in the
definition of [,, encompasses the case where a forbidden state
is visited before a goal state, and the case where the path
never reaches a goal or a forbidden state. Finally, consider
the function cumul-r g : Patha,s — R that maps a path

w = So iy S1 24 .. to the cost accumulated up to ly,:
lo—1
cumul g g(w) = Z c(si, a;). 3)
i=0

Defining the set of policies that maximise the probability
of reaching G whilst avoiding F as II* = {m ¢ II | w =
arg max,., Prﬂ’g(reachﬁ F.c)}, the optimisation objective
for constrained reachability can now be defined as finding
the policy m-r,¢ € II that has minimal expected cumulative
cost:

T-r,c = argmin B}, o(cumul-rqg). 4
mell*

The above optimisation problem is a variant of a safest
and stochastic shortest path problem [17], with the minimal
expected cost being known to converge to a finite value. In
order to find 7_ g g, we encode the constrained reachability
problem in co-safe linear temporal logic and use the approach
presented in [4].

We will also be interested in the probability of reach-
ing a set of states within a bound on the number of
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allowed timesteps. For notational consistency, we denote
as Priy (reachf& G) the probability, starting in state s and
under policy 7, of reaching a state in G within n steps. We
can calculate this probability by building the set S<" of
states reachable by applying = from s for n timesteps, and
determining the probability of reaching G in the sub-model
of M with state space equal to S=".

B. Gaussian Process

A Gaussian process is a collection of random variables, any
finite number of which have a joint Gaussian distribution [2].
A GP model is of the form f(s) ~ GP(m(s), k(s,s’)), and
represents a probability distribution over functions, fully
specified by its mean function m(s) and kernel function
k(s,s’). We can let m(s) = 0 without loss of generality.

Given a set of j noisy observations y = (f(s1) +
ni,..., f(sj) + n;) (where n; ~ N(0,02) is Gaussian
observation noise) at the set of observed states S; =
[$1,...,8]T, we can use a GP to predict the value of the
unknown function at all other states.

The predictive posterior is a Gaussian distribution with
mean f1;(s) = k] (K; + 021)" 'y, covariance X;(s,s') =
k(s,s') — k] (K; + 02I)"'k;(s’) and variance o3(s) =
k;(s, s). For these equations, k; = [k(s1,8),...,k(s;,s)]T,
the positive semi-definite kernel matrix K; = [k(s, s')]s 55,
and I € R7*J is the identity matrix.

Regularity assumptions must be made about the similarity
of the unknown function at nearby states. The choice of
kernel and kernel hyperparameters encodes these regularity
assumptions. Hyperparameters may include lengthscale and
variance parameters, and their values may be fixed or
assigned a prior distribution to encode prior knowledge. We
optimise the marginal log likelihood to best estimate the GP
hyperparameters online.

We make the standard modelling assumptions that the
unknown function f has bounded norm in the Reproducing
Kernel Hilbert Space associated with the chosen kernel
function, and also that it is Lipschitz continuous with respect
to some metric d(-,-) on S [1], [8].

IV. PROBLEM FORMULATION

We define an MDP with Unknown Feature Values (U-MDP)
Me° = (5°,5, A,T° c) as an MDP where the state space
is factored as S° = S, x S, where S}, = S,i, X ..ox SE
is a set of n; state features with known values and S, =
Sl x ... x ST is a set of n,. state features with unknown
values. Furthermore, there is an unknown mapping o : S —
S that defines which values o(sx) € S. are observed at
Sk € Sk. In other words, the state of the U-MDP is defined
as (sg,0(sk)) € Sk x S, where the mapping function o
is a priori unknown. Finally, given that a state is uniquely
defined by the value of the known state feature s, € Sg,
the outcome of the transition function only represents the
change in the known state feature. Formally, T° : (Sg x
Se) x A x Sk — [0,1], where T°((sg, Se), a, S},) represents
the probability of moving to state (s}, o(s},)) given that action
a was taken at state (sj,0(sx)). Note that this formalisation

allows us to make the dynamics of the state features with
known values dependent on the state features with unknown
values, which allow us for richer modelling than previous
works. We also define a safety function over the states as
X : S — {0,1} where x(s) = 1 when s is considered safe
and 0 otherwise. A simple safety function could be an upper-
bound threshold b € R on the value of a state feature in
Se, as used in Section VI. However, our approach allows
for safety to be defined as an arbitrary Boolean function
over all state features, something which is not possible with
existing approaches. The sets of safe and unsafe states can
then be defined as safe = {s € S x S, | x(s) = 1} and
unsafe = (S, x Se) \ safe, respectively.

Our approach is to use a GP, trained on observations up
to timestep ¢, to iteratively estimate the mapping o between
known state feature values and their corresponding unknown
state feature values. To avoid dealing with continuous state
spaces, which is outside of the scope of this work, and to
simplify notation, we assume a single state feature with
unknown values. This state feature can take values in a finite
partition of R, i.e. S¢ = {I1,...,I,} where I; are non-
overlapping intervals of R such that U;—; .. ,I; = R. Thus,
for an exploration timestep t, we define GP; : S X S, —
[0,1] such that GP;(sg, ) is the probability, predicted by
the GP taking into account the recorded observations up to
timestep ¢, of o(sy) € I. To compute GP¢ (s, I), we integrate
the GP posterior at sy, over interval . Further details will be
given in V-B. The extension to multiple unknown value state
features (using separate GPs or a multidimensional GP) is
straightforward. Furthermore, with a slight abuse of notation,
given a set of intervals Z € 2% we define GP;(sy,Z) =
> ez 9Pi(sk, I). In particular, we will write GP¢ (s, safe)
to denote the probability, according to the GP given the
recorded observations up to timestep t, of s, being safe.

The problem we tackle in this paper can now be defined as,
given a user-defined safety function over the states of the U-
MDP M?, observe sufficient states to estimate the unknown
mapping o to a given accuracy €, across the reachable states
in safe, without visiting a state in unsafe. We assume that
we have a known-safe starting set (and corresponding noisy
observations), that is sufficient to give enough information to
be able to start exploring. The starting set must also satisfy
the reachability and returnability requirements that are a key
part of the exploration algorithm.

We denote noisy observations of o as 0, and assume that
the observation noise o,, < €.

V. SAFE EXPLORATION FRAMEWORK

A. Overall Description

The flow diagram (Figure 1) provides a high-level descrip-
tion of the exploration approach. At each exploration step, the
robot uses its current knowledge of the U-MDP to determine
which goal state it should next visit in order to best improve
its knowledge of other uncertain states. It uses an Estimated
MDP (Est-MDP) to represent its current knowledge of the
U-MDP and makes decisions based on this estimation. In the
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Observe and
update state
A

Is policy safe?

Take policy
action

Take noisy observation and

update GP model ound new
v goal and
Update Est-MDP policy?
l_nl_",“ U-MDP, (Section V-B)
initial safe set
and safety
specification Determine new goal state and policy to
reach the goal state (Algorithm 2)
Fig. 1. Flow diagram of the exploration method.

Algorithm 1 SAFE EXPLORATION (SafeEst-MDP)

Input: U-MDP M?, safety function x, kernel k(s, s'), start observations
o(SE,,) Output: Explored U-MDP
I: s = (sk,0(s;)) < 55 Sg 83 t+ 0
2: while sy # nil do
. <
3: if sp = s4 or PTT(M;,S (reach:&unmfe
t—t+1
E E
Sk,t A Sk,t—l U {sk}
GPy <+ update and optimise GP¢_1 with 5(s)
sg, ™ <~ CHOOSEGOAL (Algorithm 2, Section V-C)
end if
s’ = (s}, 0(s},)) < execute 7(s) and observe outcome
10: s+ s
11: end while
12: No new goal state identified, end exploration

) > (1 - pmin) then

LRI Nk

following we define the Est-MDP and then describe how our
algorithm selects goal states to explore.

We provide further detail on the approach in Algorithm 1.
The algorithm receives a U-MDP M to be explored, and the
starting set of known states 550, with corresponding observa-
tions. To encode any prior knowledge about the environment
features, a kernel function for the GP is also provided along
with any prior distributions on kernel hyperparameters.

The exploration algorithm repeatedly finds new goal states
to explore, until no more goals are available (line 2). Similar
to the approach proposed by Turchetta et al. [1], the algorithm
maintains a set of explored states .S, ,Et that have been visited
until timestep ¢ (and must therefore be safe), which is passed
to the goal selection algorithm. However, we make use of a
richer underlying model and a more complex scoring function
for deciding between potential goal states to observe.

The robot checks its current policy over an n-step horizon
to determine the probability of remaining in safe states
over the next n action-choice steps — this corresponds to
checking whether the policy can continue being executed
safely from the current state. The calculation is based on the
current version MY of the Est-MDP, obtained from M and
GP; as explained in Section V-B, i.e., we use the current

(sk,2,0(5K,2))
Tte : (1—P)

Wpt X g'Pt(Sk,%Il)

\ Py X GPy(sg,2,12)

GP:(sk,2)

(8k,2,11)

(8k,2,1I2)

Py x GPy(sk,2,13)

(8k,2,13)

Py x GPy(sk,2,14)

(8k,2,14)

00

Fig. 2. Combination of probabilistic transition function and GP distribution.

approximation of the underlying model for each policy check.
When the policy safety probability goes under a user-defined
threshold p,,,;,, or the robot reaches its current goal (line 3),
then the robot carries out the sampling procedure in lines
4-7. The current state is added to the explored set, the GP is
updated with a new observation at the current state, and a
new goal and policy are chosen according to Algorithm 2.
If the policy check is satisfied and the current goal state has
not been reached then the robot executes the current policy,
observing the environment and updating the state accordingly
(lines 9-10). Note that if the U-MDP transition function
depends only on state features with known values Sy, then
the policy action at (s, 0(sx)) will be independent of the
value of 0(s). In such cases, it is only necessary to observe
the unknown state feature values when updating the GP, not
when updating the state for policy execution in line 9.

B. Estimated MDP

The Estimated MDP (Est-MDP) encodes both the prob-
abilistic transition function of M¢° and the GP model at
timestep t. We define the Est-MDP transition function
by weighting the transitions in M? with probabilities of
observing the different values of S., according to GP;.
Formally, given U-MDP M° and GP; : Si x S. — [0,1]
at timestep ¢, the Est-MDP at timestep ¢ is defined as

¢ = (Sk x S,5,A,Tf, c) where:

Tte((skv I)? a, (S;cv I/)) = To((skv I)v a, S;C)Q'Pt(s;w I/)'
4)
Figure 2 illustrates the construction of 77, where integra-
tion over the probability density is used to determine the
transition probabilities to assign to each interval.

C. Choice of goal state

The choice of goal states makes use of the Est-MDP model,
and is detailed by Algorithm 2. A good goal state should
provide information when observed (i.e. have a high predictive
variance before observation) relative to the cost taken to reach
it, and importantly be safe to reach and return from.

The set of candidate goal states consists of states that
are considered safe with high probability and that have a
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Algorithm 2 CHOOSEGOAL

Input: Est-MDP M¢, SkE,t’ GP;, current state s, x, k(s,s’)
Output: New goal state sy and corresponding policy m
1: Sl[cj,t — Sk \ SkE,t
2: Scand — {sk € S]lcj,t | gPt(Sk, Safe) > Pmin and Zt(sk) > E}
3: while S.4,q # 0 do
Take next batch of N states Sy with highest uncertainty in S.qpnq
for scqnqg € Sy do

max

4
5
6: Preach < PTMC,S
7.
8
9

(reaChﬁunsafe,{(scand,l) | IESE})

Taax 4 (reach

Preturn <= Prigess ~unsafe,{(sk,5(sk)) lskESE,})
if preach < Pmin OF Dreturn < Pmin then
: Remove s.qpnq from Sy
10: end if

11: end for

12: if Sn # 0 then

13: sg ¢ argmax,, ¢ g, score¢(s, si)

14: return sy, and corresponding policy T—unsafe,{(sg,I) | I€S}
15: end if

16: end while
17: return nil

GP predictive variance of X;(sx) > ¢, as shown in line
2 of Algorithm 2. Other than the safety check, there are
two additional checks that are carried out to identify a goal
state among the set of candidate goal states: reachability and
returnability. The state with the highest score (goal score
function - Section V-D) that passes all 3 checks is returned as
the new goal state. The policy returned is the policy generated
from the reachability check for the chosen goal state, on the
Est-MDP.

We calculate reachability and returnability probabilities
DPreach and Pretyrn, based on constrained reachability prob-
lems over the current Est-MDP with the forbidden set defined
as the set of unsafe states. These calculations are carried
out in batches of N states with the highest variance and
therefore likely highest score, to avoid computing scores for
too many low-scoring states. The reachability check (line 6)
is performed between the current state s; (as the initial state)
and and a goal set of all states in the Est-MDP with known
feature s.q,,q. The returnability check (line 7) is performed
between Sqqng (as the initial state)' and a goal set of the
already explored (hence surely safe) states. These probabilities
are compared to p,,;n, Which can be considered as a measure
of the level of risk that the robot is willing to accept during
exploration, in line 8. If the algorithm reaches line 16, then
the GP posterior at all safely reachable unexplored states has
low enough predictive variance, and the goal choice algorithm
returns nil, effectively terminating exploration.

D. Goal Scoring Function

The goal scoring function score; : .S x Sj, — R is designed
to indicate how beneficial a state s would be to visit and
observe, given the current state s and the knowledge of the
Est-MDP at timestep ¢t. This score should take into account

IThis is a notational simplification because s.qnq € Sk, hence it defines
a set of possible initial states {(Scand,I) | I € Se}. We consider this when
calculating the returnability probability by calculating the constrained reacha-
bility probability for each possible initial state (scqnq, /), and weighing the
results according to the probability of reaching (Scqnd, ) When executing
the optimal constrained reachability policy T unsafe,{(spqna,l) | T€Se}-

Y¢(sk) (i.e. the GP’s predictive variance at s;), the optimal
expected cost ¢+ to reach {(sg,I) | I € S.} from current
state s whilst avoiding unsafe states (i.e the expected cost
to reach s under policy T—ynsafe,{(si,1) | I€S.})> and the
reachability/returnability probabilities for s;. A suggested
scoring function is:

SCOI'Ct(S7 Sk) = (Et (Sk))(cik)_’n (preachpreturn - pgm-n)w,

(6)
where the parameters v; and o provide relative weightings
on different parameters.

VI. EXPERIMENTS

We validate our approach with two experiments based on
the scenario of a mobile robot investigating a radioactive
environment. For these experiments, we consider the MDP
cost function to represent expected time for action execution,
taken to be equivalent to the travel distance the transition
entails.

A. Radiation Data Collection

We collected a real-world dataset of gamma radiation
intensity observations using a mobile robot. The University of
Lancaster Neutron Laboratory houses a 75 MBq californium-
252 source encased in a steel cladded container of light
water. The source produces direct gamma emission through
spontaneous fission, as well as through neutron activation
of other materials. The source is exposed to one side of the
container, and a radiation field is produced locally within the
laboratory environment.

With the source exposed, a Clearpath Jackal unmanned
ground vehicle (UGV) was teleoperated from a remote
location to explore the facility, using 2D LIDAR and optical
cameras for operator situational awareness. The UGV was
equipped with a compact Scionix CeBrj scintillator detector,
coupled with a Mixed-Field Analyzer (MFA) from Hybrid In-
struments. As the CeBrs detector is inherently unresponsive to
neutrons, it discriminates between neutron and gamma fluxes.
This radiation instrumentation was previously developed for
integration with submersible robots for characterisation of
the Fukushima Daiichi nuclear sites [18].

Individual photon count events are integrated over one
second by the MFA, and recorded by the robot as an integer
count per second at a frequency of 1 Hz. Three circuits of
the facility and the source container were completed before
returning to a starting location external to the laboratory.
Through the use of SLAM (Simultaneous Localisation and
Mapping), the radiation intensity was cross referenced to a
spatial location, producing a dataset of integer counts and
(x,y) locations shown in Figure 3, where the key shows counts
per second values. We use 554 of the possible 1037 data
points as we take the median count per second value when
data points arise at the same (X,y) location.

We create a “ground-truth” model for reference, which is
a GP trained on the 554 dataset points using a Matern 3/2
kernel. The GP posterior is also shown in Figure 3, and is a
good fit for the expected behaviour of a radiation source as
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Fig. 3. Predicted posterior distribution over environment feature (gamma
radiation level), based on GP model. The red dots are sample points in the
dataset that can be observed.

it is symmetrical and falls off in a 1/r% manner as physics
would suggest.

B. Single Radiation Source Dataset

We create a U-MDP from the points in the dataset, resulting
in a known state space of 554 states and a single unknown
value state feature to represent the radiation counts per second
value. Each known state therefore corresponds to an (X,y)
location in the dataset, with the corresponding radiation count
value comprising the value observed by the robot at the
state. The transition function defined allows the robot to
move deterministically to one of up to 6 neighbouring known
states, which can be up to 0.4m away. Observations of the
radiation level unknown state variable are taken directly from
the dataset at the relevant locations. We specify an upper
safety bound on the radiation level of 25 counts per second.

For all experiments below (including Section VI-C), the
U-MDP transition functions are independent of the radiation
level so observations are carried out only when updating the
GP (as discussed at the end of Section V-A). We use PRISM
[19] to solve MDPs, and GPflow [20] for our GP models. For
the exploration algorithm, we set p,,;, = 0.95, relating to
95% confidence, and check candidate goal states in batches
of N=3. A Matern 5/2 kernel is used for the exploration
GP. The parameter weightings in the scoring function were
71 = 1 and 9 = 0.25. Setting 73 = 1 should result in the
score function being roughly proportional to information gain
per unit time, which is an intuitively reasonable factor to
maximise for exploration.

We demonstrate the ability of SafeEst-MDP to safely learn
the unknown feature over the environment by comparing GP
posterior distributions between the GP produced by SafeEst-
MDP and the full dataset ground truth GP. We carry out
comparisons using the Kullback-Leibler (KL) divergence, a
measure of the similarity of probability distributions. The KL
divergence is calculated between the joint multivariate normal
distributions that result from evaluating the two GP posterior
distributions at all 554 states, giving a 554-dimensional
multivariate normal distribution for each. Figure 4 shows
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Fig. 4. KL divergence between the posterior distributions of the full dataset
GP model and those from runs of the SafeEst-MDP algorithm with different
GP lengthscales.

this KL divergence for the SafeEst-MDP GP model after a
given number of explored states, for three different kernel
lengthscales used. Our results show that a kernel lengthscale
of | = 0.3m causes the robot to be too cautious, as it
terminates after 80 explored states believing that all remaining
states are unsafe. On the other hand, a lengthscale of [ = 0.8m
causes the robot to explore rapidly, but it enters an area of high
radiation it is not expecting and fails its safety specification.
Overall, this demonstrates that the lengthscale hyperparameter
defines an upper limit on rate of change of radiation that the
robot can expect.

The KL divergence converges towards zero for [ = 0.4m
(showing that the robot is building a useful, predictive model)
with only around 200 of the 554 available known states
observed. It cannot completely converge to zero as, under
the SafeEst-MDP algorithm, the robot is unable to sample
from unsafe locations. A large prior distribution was set on
the kernel variance hyperparameter to ensure that it did not
optimise to zero while the robot sampled low-radiation points.

C. Multiple Radiation Source Map

Our second experiment poses the challenge of using the
SafeEst-MDP exploration algorithm on a simulation of a map
with multiple radiation sources. As radiation from multiple
sources should be additive (ignoring low-level background
radiation), we create the map as a linear combination of affine
transformations of the ground truth GP in Section VI-A. This
gives simulated maps of multiple sources differing in strength
and location. The approach is justified by the behaviour of
the GP fitted from the previous experiment, where the GP is
able to accurately model a single radiation source in a way
that prevents the robot breaking the safety specification.

Our algorithm is compared with the SafeMDP [1] ex-
ploration algorithm, on 8 different simulated maps. Each
simulated map is a Sm x 5m grid world with deterministic
transitions defined between states - this is to provide a fair
comparison as SafeMDP can only handle deterministic state
transitions. With state side length set to 0.2m, this gives a
known state space of 625 states. The safety upper bound is
set to 28 counts per second for this experiment.
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Fig. 5. Exploration progress vs time comparison for SafeEst-MDP and
SafeMDP.

The results of this comparison are summarised in Figure 5,
which shows the average predicted variance in the robot’s
current estimated safe set, at the specified time, for both
algorithms. The exploration time has been normalised relative
to the difficulty of the different maps, by scaling the time
variable for each map to effectively make the mean completion
time equal between maps. This has been done to give
representative error bars on both algorithms’ performance,
accounting for the fact that each map has varying difficulty of
exploration. On average, over all tested maps, our proposed
algorithm is able to determine the radiation level at all
reachable safe states (to within a defined standard deviation
of 3 counts per second) in 52% of the time compared
to the SafeMDP algorithm, while carrying out 56% fewer
observations. It is able to determine the size of the ground-
truth reachable safe set in a comparable amount of time.

Overall, these results show that SafeEst-MDP is more cost
and sample efficient with respect to observations than similar
approaches. This means it requires fewer, computationally
expensive, GP update/optimisation and replanning sequences.
The performance increase is largely due to SafeEst-MDP’s
ability to choose goal states that are multiple steps away from
the currently explored set (SafeMDP will only choose goal
states neighbouring the currently explored set), and the fact
that it takes into account the expected cost to reach a goal
state as well as the GP variance at that state.

VII. CONCLUSIONS

In this paper we presented SafeEst-MDP, a new MDP-based
approach for safe exploration, and evaluated its effectiveness
in a representative safety-constrained task using real-world
data from a hazardous radioactive environment. We demon-
strated that our method offers several advantages over existing
safety approaches, both in terms of exploration performance
and supporting more expressive safety constraints. Further
illustration can be found in this paper’s accompanying video.

Planning processing time is significantly increased for
SafeEst-MDP compared to SafeMDP, due to the increased
computational load of generating and solving Est-MDP mod-
els. However, this planning can be carried out comparatively

less frequently due to its higher sample efficiency, and
for many applications the heavy computation work can be
performed remotely from the mobile robot.

There is scope for significant future work on applying
our probabilistic exploration planning approach to other
extensions of safe exploration, such as goal-driven exploration
or more complex optimisation of the choice of efficient states
to sample.
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