
Dec-PPCPP: A Decentralized Predator–Prey-based Approach to
Adaptive Coverage Path Planning Amid Moving Obstacles

Mahdi Hassan, Daut Mustafic, Dikai Liu

Abstract— Enabling multiple robots to collaboratively per-
form coverage path planning on complex surfaces embedded
in R3 in the presence of moving obstacles is a challenging
problem that has not received much attention from researchers.
As robots start to be practically deployed, it is becoming
important to address this problem. A novel decentralized multi-
robot coverage path planning approach is proposed that is
adaptive to unexpected stationary and moving obstacles while
aiming to achieve complete coverage with minimal cost. The
approach is inspired by the predator-prey relation. For a robot
(a prey), a virtual stationary predator enforces spatial ordering
on the prey, and dynamic predators (other robots) cause the
prey to be repelled resulting in better task allocation and
collision-avoidance. The approach makes the best use of both
worlds: offline global planning for tuning of model parameters
based on a prior map of the surface, and real-time local
planning for adaptive and swift decision making amid moving
obstacles and other robots while preserving global behavior.
Comparisons with other approaches and extensive testing and
validation using different number of robots, different surfaces
and obstacles, and various scenarios are conducted.

I. INTRODUCTION

Coverage Path Planning (CPP) is essential for robotic tasks
such as surface cleaning, painting and abrasive blasting [1].
Research work has largely focused on planar surfaces (e.g.,
for floor cleaning robots) [2], [3], [4]. There are numerous
works on multi-robot coverage [5], [6], [7]; however, very
few of them consider actual moving obstacles (not just
considering other robots as moving obstacles) [8]. There have
also been many CPP algorithms applicable to 3D coverage
[9], [10], [11], [12], few of which consider multiple robots
[13], but moving obstacles are typically not considered. To
the best of the authors’ knowledge, no multi-robot CPP
algorithm is validated or shown to be applicable to both
planar surfaces and surfaces embedded in R3 with adaptive
capability relative to unexpected moving or stationary obsta-
cles.

As an example scenario, consider an inspection crawler
robot [14] that is capable of traversing complex and three-
dimensional (3D) structures (e.g. ship-hulls, reservoir tanks
and buildings). Suppose that the robot is tasked with a
coverage task such as the full surface cleaning. Moving
obstacles, e.g. humans performing various operations on
the surfaces or gondola-like platforms transporting operators
and equipment, may unexpectedly become present in the
environment. If multiple robots are to operate on the surfaces,
then each robot is to collaborate with other robots, minimize

Authors are from the Robotics Institute at the University of Tech-
nology Sydney (UTS:RI), 15 Broadway, Ultimo NSW 2007, Australia
Mahdi.Hassan@uts.edu.au

Prey (Robot 1)

Start Position
Moving Obstacle 1

Trajectory

Stationary Predator

Moving Obstacle 2

Dynamic Predator
(Robot 2)

Dynamic Predator (Robot 3)

Fig. 1: An illustration of Dec-PPCPP from the perspective of robot
1. The prey (robot 1) continues covering the uncovered areas while
avoiding moving obstacles. In doing so, it considers both dynamic
predators (other robots) and virtual stationary predator.

the cost of its path, and prevent collision with moving
or stationary obstacles while maintaining a desired global
behavior.

A decentralized and adaptive CPP for multi-robot col-
laborative coverage is presented in this paper. The robot
team can be heterogeneous in their speed, coverage size,
etc. A decentralized approach is beneficial [15] in providing
the desired computational efficiency for scalability with
respect to the number of robots as well as robustness to
failures (late starts or failure of certain robots does not halt
the coverage task). The adaptive behavior of the approach
enables it to adapt with respect to unexpected stationary
or moving obstacles that may become present. To adapt
to such unexpected changes in real-time, each robot needs
to make swift local planning since global re-planning may
be too expensive for quick responses. However, local real-
time planning may produce poor overall paths. Thus, the
proposed planner is designed to make the best use of both
worlds: global offline planning based on an available map
of the surface (to optimize model parameters), and real-time
local planning for swift adaptation to local changes while
preserving global behavior. It is shown using several case
studies, that the real-time planner is able to retain the global
behavior. The approach is simple to implement despite the
use of both local and global planning.

The approach is inspired by the predator-prey behavior.
It is termed Dec-PPCPP, short for Decentralized Predator-
Prey CPP. The idea behind the approach is illustrated in Fig.
1. Each robot considers itself to be a prey and perceives
other robots as dynamic predators. Each robot also considers
a virtual predator that remains stationary at a particular
location. Thus, the prey aims to maximize its distance to

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 11732

these two types of predators while searching for food by vis-
iting all unvisited target points in an optimized manner. The
effect of the stationary predator remains active throughout the
entire motion of the prey; thus, enforcing a spatial order (an
overall direction of motion) on the prey even when the prey
encounters unexpected moving obstacles. In other words, it
prevents the back-and-forth motion of the prey from one
region to another especially when the prey has to temporarily
alter its motion strategy due to unexpected obstacles. On the
other hand, the effect of dynamic predators is intermittent and
becomes active only when any number of dynamic predators
(other robots) get within a certain proximity to the prey. This
results in fewer motion disruptions between robots and better
partitioning of the target surface. It is important to note the
distinction between moving obstacles and dynamic predators.

The concept of PPCPP has been investigated for single
robot coverage planning problem [16]. This paper aims at
addressing the decentralized multi-robot coverage planning
problem by developing a decentralized PPCPP approach
(Dec-PPCPP). In particular,
• The mathematical modeling and the algorithm are mod-

ified to enable decentralized coverage by a robot team
that may have different capabilities (e.g. speed);

• A new reward function related to dynamic predators is
designed to enable effective interaction between robots
for better collision-avoidance and task allocation;

• Analysis for decentralized coverage is included (com-
putational complexity and complete coverage);

• Comparisons and validations are conducted using sev-
eral case studies and comparative scenarios.

II. PROBLEM DEFINITION

Let a set of target points O = {o j : j = 1,2, . . . ,nO} rep-
resent an object’s surface which can be planar or embedded
in R3. It is assumed that the set O is given or can be
constructed from a known map of the surface. Target points
are henceforth simply referred to as targets.

Suppose that n robots, R1,R2, . . . ,Rn, which can have
different capabilities (such as speed and coverage size), are
to collectively go through all o j ∈ O to perform a coverage
task. Let X = {X s ∪Xd} = {xl : l = 1,2, . . . ,nl} denote all
the stationary obstacles X s and moving obstacles Xd that
may become present in the environment. For a robot Ri and
at each step, only a subset Xi ⊆ X may be encountered or
relevant for consideration.

The multi-robot decentralized coverage problem is there-
fore defined as follows: Given the set of targets O, how
to devise a computationally tractable real-time planner that
enables each robot to traverse a path with the aim of achiev-
ing: 1) a minimal cost path, 2) swift adaptation to a nearby
detected obstacle x j ∈ Xi for collision avoidance without
drastic impact on the overall performance, and 3) coverage of
all targets O in collaboration with other robots. For efficient
collaborative coverage by the robots, the decentralized plan-
ner should inherently result in appropriate task allocation,
reduction of robots disrupting each others’ motion, reduction
of repeated coverage, and complete coverage with minimal

cost. The cost of the path could consider the path execution
time, path length, smoothness, etc.

In this work, it is assumed that actions and observations
are deterministic, the environment is fully observable, and
that there are no communication dropouts between robots.

III. THE DEC-PPCPP APPROACH

In brief, using Dec-PPCPP during the real-time deploy-
ment, each robot iteratively determines the next best neigh-
boring target that will be visited based on the local envi-
ronment and the information received from other robots.
This one-step planning based on local information makes the
approach efficient for real-time coverage and swift for adap-
tation with respect to obstacles. Four reward functions are
designed to act as heuristics for evaluating the performance
of uncovered and obstacle-free neighboring targets, and the
neighbor with maximum reward is selected for visiting next.
In the rare case of a robot reaching a dead-end (no uncovered
and obstacle-free neighbor to select), then a point-to-point
planner will guide the robot to the nearest uncovered target. If
a robot encounters a moving obstacle that is within a certain
proximity to itself, it will temporarily stop coverage to avoid
collision and resume coverage when the obstacle is no longer
a risk. It will then swiftly maintain the global optimized
behavior to prevent it from switching back-and-forth between
regions. The pseudo-code in Algorithm 1 shows the details
of the real-time Dec-PPCPP from ith robot’s perspective.

The ith robot will be calculating its next best target while it
is moving from its current position pi to its destination target
od

i . The first destination target is the start target, i.e. od
i = os

i
(Alg. 1: line 2). The coverage task continues so long as the
set of uncovered targets Ou

i is not empty or until the current
coverage time ti is below the maximum time tmax allowed for
the coverage task (Alg. 1: line 3).

For the ith robot to calculate its next best target, it will
first communicate with other robot R j, j : {1,2, . . . ,n}\ i to
receive updates (Alg. 1: lines 4 to 8). Accordingly, the ith
robot will be aware of other robots position p j and their
destination target od

j , and it will update the set of covered
targets Oc

i (Alg. 1: line 6), the set of uncovered targets Ou
i

(Alg. 1: line 9), and the set of boundary targets Ob
i (Alg.

1: lines 7 and 10). The boundary targets are the uncovered
targets closest to the covered targets. They are used during
the dead-end condition, as will be explained later.

The ith robot then scans the environment (Alg. 1: line 11)
and updates the set of targets Oo

i occupied by obstacles. It
also updates the information of the set of moving obstacles
Xd

i that can be observed. Since the robot is only concerned
with the adjacent neighboring targets (henceforth simply
neighbors) at each step, then Oo

i can be updated with the
status of neighbors only for increased efficiency.

If a moving obstacle in Xd
i is closer than a distance

αi to the ith robot, then the robot’s priority is to move
away from the obstacle (Alg. 1: lines 12 to 19); otherwise,
the robot continues with the coverage task (Alg. 1: lines
20 to 22). From all the moving obstacles, Xd

i detected by
the robot, a subset Xδ

i ∈ Xd
i that are within δ -proximity

11733

Algorithm 1 Dec-PPCPP (from the perspective of ith robot)

1: Initialize: Ou
i ← O\os

i ; Oc
i ← os

i ; Oo
i ← /0; od

i ← os
i ;

B Move to the first target
2: StartMoving(pi,od

i) B pi is current position, od
i is destination

B Continue covering targets until a stopping criterion is met
3: while Ou

i 6= /0 or ti < tmax do
B Receive updates from other robots

4: for all j ∈ {1,2, . . . ,n}\ i do
5: (Oc

j,O
b
i ,p j,od

j)← ReceiveUpdate(R j)

6: Oc
i ← Oc

i ∪Oc
j ∪od

j B update covered targets
7: Ob

i ← Ob
i ∪Ob

j B update boundary targets
8: end for
9: Ou

i ← Ou
i \Oc

i B update uncovered targets
10: Ob

i ← Ob
i \Oc

i B update boundary targets
B Scan the environment and update

11: (Oo
i ,X

d
i)← Scan&Update(O,Oo

i)

B Move away from a nearby moving obstacle
12: Xδ

i ←
{

xl ∈ Xd
i |d(pi,xl)≤ δ , l = 1,2, . . . ,nl} B set of obstacles

in δ -proximity of robot
13: αi← f (Xδ

i) B virtual sphere radius based on fastest obs.
14: m∗← argminm d(pi,xm ∈ Xδ

i) B index of closest obstacle
15: if d(pi,xm∗)≤ αi then B if obstacle inside virtual sphere
16: N← NearestNeighbors(O,od

i ,r)
17: N f ← N\Oo

i B Obstacle free targets
18: k∗← argmaxk

(
d(ok ∈ N f , xm∗)

)
B farthest target index

19: on
i ← ok∗ B next target to move to

20: else
21: on

i ← NextBestNeighbor
(
i,Oc

i ,O
o
i ,o

p
i ,o

d
i , · · ·

22: Ψs
i ,r,{p1,p2, . . . ,pn}\pi

)
B Algorithm 2

23: end if
B Move to the next target and update states

24: if pi = od
i then B wait until robot arrives at destination

25: StartMoving(pi,on
i) B start moving to next target

26: Oc
i ← Oc

i ∪on
i ; Ou

i ← Ou
i \on

i ; Ob
i ← Ob

i \on
i

27: op
i ← od

i ; od
i ← on

i

28: end if
29: end while

to the robot are considered (Alg. 1: line 12 where the
function d(pi,xl) calculates the closest distance between the
ith robot’s position pi and the lth obstacle xl ∈ Xδ

i). A virtual
sphere with radius αi protects the robot from collisions. The
value of αi can be chosen based on an appropriate function
that considers the fastest obstacle in Xδ

i (Alg. 1: line 13).
If the closest obstacle is within the virtual sphere (Alg. 1:
lines 14 and 15), then the robot first finds the obstacle-free
neighbors N f which are within a radius r (Alg. 1: lines 16
and 17), and moves to the farthest target in N f (Alg. 1: lines
18 and 19). Other methods for collision avoidance that are
suitable to the intended application may be used.

If no moving obstacle is close enough to the robot, then the
robot will determine its next best neighbor on

i for coverage
(Alg. 1: line 21). To do so, it will follow the process
shown in Algorithm 2. At first, it will find the nearest
uncovered neighbors, Ou

i that are within a neighborhood
radius r (Alg. 2: line 1). The obstacle-free neighbors, Nu, f

Algorithm 2 NextBestNeighbor
1: Nu← NearestNeighbors(Ou

i ,od
i ,r) B uncovered neighbors

2: Nu, f ← Nu \Oo
i B uncovered and obstacle free neighbors

3: Ob
i ←{Ob

i ∪Nu, f }\Oo
i B update boundary targets

B Perform dead-end recovery if all neighbors are covered
4: if Nu, f = /0 then
5: ob

i ← TempGoal(od
i ,O

b
i ,O) B temporary goal target

6: on
i ← Pt2PtPlanner(od

i ,o
b
i ,O)

B Find the neighbor with maximum reward
7: else
8: for j = 1 to |Nu, f | do
9: Nu

j ← NearestNeighbors(Ou
i ,o j ∈ Nu, f ,r)

10: Nu, f
j ← Nu

j \Oo
i

11: R j ← TotalReward
(
Nu, f

j ,o j,o
p
i ,o

d
i ,Ωi,Ψ

s
i ,{p1,p2, . . . ,pn}\pi

)
12: end for
13: j∗← argmax j(R j) B Equations (6) and (7)
14: on

i ← o j∗

15: end if

are then determined (Alg. 2 line 2), and the boundary targets,
Ob

i are updated (Alg. 2: line 3).
Due to obstacles and interaction with other robots, it

may happen that the robot ends up in a location where all
neighbors are already covered or occupied, i.e. Nu, f = /0. This
state of the robot is referred to as dead-end in this paper since
the robot has no uncovered neighbors to choose from. If the
robot ends up in a dead-end (Alg. 2: line 4), only then it
is allowed to repeat coverage of certain targets to reach an
uncovered target. To do so, it first finds the nearest uncovered
boundary target, ob

i ∈Ob
i which it considers as the temporary

target to reach (Alg. 2: line 5). To reach ob
i , the robot will

utilize a point-to-point planner (Alg. 2: line 6) that is suitable
for the application (e.g., A* or Dijkstra). However, as the
robot moves towards ob

i and every-time it reaches a target
along the planned path, the robot may switch to another path
or boundary target since the coverage status and environment
can change due to obstacles and other robots. Thus, only the
next target, on

i is of interest (Alg. 2: line 6). The coverage
task resumes once the robot is out of dead-end.

If the robot is not in a dead-end, then it will determine
the neighbor with the maximum reward (Alg. 2: lines 7 to
14). In brief, it will loop through the neighbors in Nu, f (Alg.
2: line 8), and for each neighbor o j, j ∈ {1,2, . . . , |Nu, f |}, it
will calculate the total reward R j (Alg. 2: line 11). Then,
it will consider the neighbor with maximum reward as the
next best neighbor on

i (Alg. 2: lines 13 and 14). Four reward
functions are considered for calculating the total reward R j
for the jth neighboring uncovered target o j: 1) stationary
predator avoidance reward, 2) dynamic predator avoidance
reward, 3) path smoothness reward, and 4) boundary reward.
The formulations of these rewards are explained in the next
Section. The inputs (Alg. 2: line 11) to these reward functions
include the jth neighbor o j and its uncovered and obstacle-
free neighbors Nu, f

j , the previous target op
i covered by the ith

robot, the destination target od
i , the weighting factors for the

reward functions Ωi (obtained through offline optimization -

11734

explained in the next section), the stationary predator location
Ψs

i , and all other robots’ locations {p1,p2, . . . ,pn}\pi which
act as dynamic predators on the ith robot.

The ith robot, after arriving at the destination target od
i

(Alg. 1: line 24), will start moving towards the next best
neighbor on

i (Alg. 1: line 25) and updates all states (Alg. 1:
lines 26 and 27). Note that od

i becomes on
i (Alg. 1: line 27),

and the process is repeated to find the next best neighbor on
i .

IV. MATHEMATICAL MODELING

A. Stationary Predator Avoidance Reward

In Dec-PPCPP, each robot considers itself a prey that
needs to avoid predation from two types of predators: 1) a
stationary virtual predator, and 2) dynamic predators (other
robots). In this subsection, the stationary predator avoidance
reward is formulated, which is similar to the work in [16].
A prey, while searching the target area for food (to achieve
coverage), aims to continually maximize it distance to a
stationary predator, denoted as Ψs

i where i is the robot
index. Thus, naturally it will cover the regions farthest from
the predator and gradually moves closer and closer to the
predator as it covers more of the target area. This behavior
results in an orderly overall motion for the prey which pre-
vents it from moving back-and-forth between regions. This
behavior is particularly helpful when the prey encounters a
moving obstacle since after a temporary change of motion
to avoid a collision, the prey will be forced (due to predator
avoidance) to resume coverage from the region where it was
covering last. This results in shorter and more efficient paths.
The stationary virtual predator for each robot can be placed
opposite to the robot’s starting position or opposite to the
region where the robot is intended to cover.

The function for calculating the stationary predator avoid-
ance reward for moving to the jth neighbor, o j is:

Rsp(o j
)
=

D(o j)−Dmin(oi)

Dmax(oi)−Dmin(oi)
(1)

where D(o j) = ‖o j −Ψs
i‖ is the distance from o j to the

predator Ψs
i , Dmax(oi) = max j ‖o j −Ψs

i‖ is the maximum
distance to the predator from one of the neighbors of the prey
oi, and similarly, Dmin(oi) = min j ‖o j−Ψs

i‖ is the minimum
distance. Note that Dmax(oi)−Dmin(oi) is therefore a constant
for a prey location and Rsp(o j

)
∈ [0,1]. Thus, the prey will

aim to move to the farthest neighbor to achieve the maximum
reward Rsp(o j

)
= 1.

B. Dynamic Predator Avoidance Reward

Unlike the stationary predator, the dynamic predators
(other robots) do not affect the prey’s motion for the entire
coverage task. Instead, they only cause a local temporary
effect on the prey’s motion when they are close to the prey.
The closer a dynamic predator is to a prey, the higher the
reward that the prey obtains by moving to an uncovered
neighbor that is farther from the predator. Since the robots
see each other as predators, then this behavior results in
the robots pushing each other away while performing the
coverage task. Thus, two main benefits are obtained: 1) the

robots are less likely to collide with each other or block each
other’s path, and 2) the robots will naturally cover different
regions which result in better task allocation.

Let Ψd
i,k denote the kth dynamic predator (k ∈

{1,2, . . . ,n}\ i) for the prey representing the ith robot. The
function for calculating the dynamic predator avoidance
reward for the prey (ith robot) moving to the jth neighbor,
o j is formulated as (due to the kth predator Ψd

i,k):

Rd p(o j,Ψ
d
i,k
)
= S(oi)

D(o j)−Dmin(oi)

Dmax(oi)−Dmin(oi)
(2)

where D(o j), Dmax(oi), and Dmin(oi) are calculated in the
same way as in Section IV-A except that the predator is now
the location of the kth robot, i.e. Ψd

i,k = pk. For brevity, the
notation Ψd

i,k is dropped from above functions.
The function S(o j) is the inverted Sigmoid function:

S(oi,Ψ
d
i,k) =

1

1+ expκ(a− b
2)

(3)

where κ determines the slope of the sigmoid function, a =
‖oi−Ψd

i,k‖ is the distance from the prey’s current destination
target oi = od

i to the predator Ψd
i,k, and b is the effective range.

When the kth predator Ψd
i,k is far away (i.e., when a > b),

then S(oi,Ψ
d
i,k)≈ 0 meaning that this reward becomes almost

negligible. This is important since the dynamic predator
should only be relevant as it moves closer to the prey,
otherwise the prey should continue emphasizing more on
maintaining the global behavior of keeping a spatial order
(or an overall direction of motion) enforced by the stationary
predator (previous reward). The larger the effective range b,
the farther away the robots will be from each other when
covering the target area. Note that Rd p

(
o j,Ψ

d
i,k

)
∈ (0,1).

C. Smoothness Reward

Another relevant reward for robotic coverage applications
is the smoothness of the path. A smoother path that has fewer
turns can reduce frequent accelerations and decelerations and
can result in a faster and energy-efficient coverage. As such,
the prey is given an extra reward for continuing motion in a
straight direction. This reward function, which is similar to
the work in [16], is formulated as follows:

Rs(o j
)
=

Θ(o j)−Θmin(oi)

Θmax(oi)−Θmin(oi)
(4)

where Rs
(
o j
)
∈ (0,1] is the reward associated with the jth

neighbor, o j, of the current prey target, oi, due to the angle

Prey

Dynamic
Predator
(Another Robot)

a

b

bb/2

S

a

Fig. 2: The concept for the dynamic predator avoidance reward.

11735

Θ(o j) = ∠opoio j ∈ (0◦,180◦] which is the angle between
the vectors

(
op− oi

)
and

(
oi− o j

)
, and op is the previous

target covered by the prey. Θmax(oi) = max j ∠opoio j is
the maximum possible angle considering all neighbors, and
similarly Θmin(oi) is the minimum angle.

D. Boundary Reward

Boundary targets are those that are closest to the boundary
of the surface and the covered regions (i.e. lie on the bound-
ary of the uncovered region). An additional reward is given
to the prey for covering the boundary targets. This results
in regular coverage since it is more natural to continually
cover the targets closest to what has already been covered.
Boundary targets have less uncovered neighbors since they
are next to the covered targets and surface boundary. The less
uncovered neighbors a boundary target has, the stronger it
fits the definition of a boundary target. As such, this reward
function aims to reward the prey for covering a neighbor that
has the least uncovered neighbors.

Similar to [16], this reward function is formulated as:

Rb(o j
)
=

Bmax(oi)−B(o j)

Bmax(oi)−Bmin(oi)
(5)

where Rb
(
o j
)
∈ [0,1] is the reward associated with the jth

neighbor o j of the current prey target oi, B(o j) returns the
number of uncovered neighbors of o j, Bmax(oi) =max j B(o j)

for j = {1, . . . , |Nu, f
j |} where Nu, f

j is the set of uncovered
and obstacle-free neighbors (Alg. 2: line 10), and similarly
Bmin(oi) = min j B(o j).

E. Total Reward (Sum of All Rewards)

The total reward for moving to an uncovered neighbor o j
is the sum of all the rewards previously stated, i.e.:

R
(
o j
)
= Rsp(o j

)
+ω

p
(

Rd p(o j,Ψ
d
i,1
)
+Rd p(o j,Ψ

d
i,2
)
+ · · ·

+Rd p(o j,Ψ
d
i,n
))

+ω
s
(

Rs(o j
))

+ω
b
(

Rb(o j
))
(6)

where ω p, ωs and ωb are the weighting factors associated
with the dynamic predator avoidance, the smoothness and
the boundary reward functions, respectively.

Thus, for j = {1, . . . , |Nu, f
j |}, the index j∗ of the uncovered

neighbor with maximum reward is:

j∗ = argmax
j

(
R
(
o j ∈ Nu, f

j

))
. (7)

Hence, the prey will move to the target o j∗ ∈Nu, f
j next (Alg.

2: lines 13 and 14), and the process is repeated.

F. Mathematical Model for Optimizing Weighting Factors

Various factors such as the location of the stationary
predator and the geometric shape of the object will play a
role in the importance of each reward. Thus, for a given
surface, the weighting factors in (6) need to be optimized by
each robot, but only once prior to the real-time deployment.
This will enable each robot to make use of the available map
to optimize the parameters. The weighting factor ω p which

is related to the dynamic predator avoidance reward can be
tuned to suit robots’ speed, size of the environment, and the
type of robot. Thus, only the weighting factors related to the
smoothness and boundary rewards are optimized; hence, the
design variables are Z = (ωs,ωb).

The cost of a path for a robot is defined with respect to
the total coverage time. Therefore, the objective function is:

min
Z

f (Z) = T (PZ) (8)

where T (PZ) is the time it takes the corresponding robot
to cover the path PZ using the same procedure in Alg. 1
but considering the values in Z decided by an optimization
algorithm. The optimizer will iteratively change the values
in Z to obtain a path with minimal completion time. Other
objective functions, such as minimal path length, minimal
energy, or minimal coverage repetition rate may also be used.

V. ANALYSIS

A. Computational Complexity

Suppose binary vectors are used to store the status of the
targets in the sets Oc

i , Ou
i , and Ob

i . For example, if the kth
target is covered, then the kth index of the vector for Oc

i is
set to ‘true’, and vice versa. Thus, updates can be performed
fast (Alg. 1: lines 4 to 10) by sharing the index of the
targets that changed status since the last communication. Let
c1,c2, . . . ,cn be the number of targets with status change for
each robot since the last communication with the ith robot.
These values are small and can be considered constant for
deriving computation complexity. Thus, the time complexity
for the updates is O(n) where n is the number of robots.

Suppose k-d tree data structure is used for storing the
targets in O and finding nearest neighbors. The queried
nearest neighbors can then be check with the above binary
vectors to find their status. The collision status of these
neighbors is also determined by scanning the environment
(Alg. 1: line 11). To query, delete or insert a point in the
k-d tree, the time complexity is O(logm) where m is the
number of targets in the set O. Therefore, following the same
procedure as in the previous work [16], the time complexity
for finding the neighbor with maximum reward (Alg. 2: line
7 to 14) is O(logm).

When the prey is at a dead-end (Alg. 2: lines 4 to 6), the
time complexity depends on the point-to-point planner. Note
that the dead-end situation happens only a small number of
times during the entire coverage task. The time complexity
of the ‘scan and update’ procedure (Alg. 1: line 11) is
needed for all algorithms, and therefore not considered in
this analysis. The other components of the algorithms are
single operations (no loops) that don’t considerably grow in
time with respect to the number of robots or the number of
targets representing the surface.

The overall time complexity of the algorithm (not includ-
ing the dead-end recovery or ‘scan and update’ procedure) is
O(n)+O(logm) where n is the number of robots and m is
the number of targets in the set O. Note that typically n�m.
Given that the simplified problem of using only one robot

11736

(a) Results

4

2

3

1

5

6

Ψ1
s

Ψ2
sΨ3

s

Ψ4
s

Ψ5
s

(b) The environment (c) Scen. 2 with 3 robs. (d) Rd p = 0

Fig. 3: Five scenarios with different number of obstacles are considered (Scenario 1: Obstacle 1 only; Scenario 2: Obstacles
4 – 6; Scenario 3: Obstacles 1 – 3; Scenario 4: Obstacles 2 – 6; Scenario 5: Obstacles 1 – 6). Results for different number
of robots (2 – 5 robots) and without dynamic predator avoidance reward Rd p are also shown. Example paths with/without
Rd p are shown. Robots 1, 2 and 3’s paths are in black, blue and red, respectively.

to cover all targets in an optimal manner with no obstacles
being present reduces to the Traveling Salesman Problem
(TSP) which is NP-hard, the complexity of the proposed
algorithm makes it practical for scale-up in real systems.

B. Complete Coverage

As per Alg. 1, each robot is only allowed to select a
neighbor that is uncovered. This restriction stops a robot from
revisiting covered targets or getting stuck. Thus, all robots
collectively cover the uncovered targets one by one until no
more uncovered target is left (Alg. 1 line). A robot is allowed
to revisit a covered target only when it is in a dead-end or
when it needs to avoid collision with a moving obstacle. In
both of these cases, the robot will resume coverage as soon
as these two conditions are no longer present. Each robot
will always communicate with other robots before making
a decision on its next best neighbor. This communication
prevents a robot from covering a target that has already been
covered by another robot. If another robot malfunctions and
stops coverage, there is no condition for other robots to stop
covering the remaining targets. However, the unpredictable
behavior of unexpected dynamic or stationary obstacles may
block pathways or targets before a robot can cover the
blocked targets. The robots can resume coverage when these
blocked/occupied targets become obstacle-free.

VI. CASE STUDIES

Four case studies, each considering various scenarios and
conditions, are designed to validate and test Dec-PPCPP.
More specifically, the following aspects are considered:
different sizes, shapes and number of stationary obstacles;
different number of robots; Dec-PPCPP with and without
the dynamic predator avoidance reward; different 3D objects;
different cost functions; robot team with different speeds;
moving obstacles with different speeds and sizes; and certain
robots in the team malfunctioning (failing to start on time or
breaking down during the coverage task).

Genetic Algorithm (GA) is used to optimize the weighting
factors in (8). The aim is to show the performance of Dec-
PPCPP assuming that optimized weighting factors are given;

thus, although various optimization algorithms may be used,
comparing the performance of these algorithms with respect
to Dec-PPCPP is beyond the scope of this paper. It takes
less than 5 milliseconds for the prey to calculate its next best
neighbor at each step, but there is room for improvement.

A. Case Study 1: Coverage amid stationary obstacles

The purpose of this case study is to demonstrate the
performance of Dec-PPCPP with respect to different number
of robots and to validate the use of the dynamic predator
avoidance reward (i.e., Rd p in Eq. (2)). Five scenarios are
used where in each scenario different number of stationary
obstacles from those shown in Fig. 3b are considered. Each
scenario is also repeated with different number of robots (2
to 5 robots). The obstacles are not known to the robots prior
to the real-time deployment.

The results are shown in Fig. 3a where performance is
compared relative to two cases: 1) the ideal case (lower
bound on optimum) where the cost is calculated as [num-
ber of targets × time to travel between two non-diagonal
neighbors] / number of robots, and 2) the case with no
dynamic predator avoidance reward, i.e. Rd p = 0. Taking
the average of all results, the paths generated through Dec-
PPCPP perform 16.9% worse than the ideal paths. Note that
in Dec-PPCPP the locations of the obstacles are not known
in advance and the ideal paths may not be achievable (since
no diagonal moves, interaction between robots, or repetitions
are considered in the ideal path). Taking the average of all
results, Dec-PPCPP performs 5.3% better when compared to
the case where Rd p = 0. As can be seen in Fig. 3c and 3d
(for scenario 2 with 3 robots), when Rd p is set to zero, the
paths are not only less efficient but also very chaotic. Note
that other reward functions have already been validated in
the previous work [16]. A video for the scenario shown in
Fig. 3c is provided.

B. Case Study 2: Comparison with other approaches

Dec-PPCPP is compared to BNNB, NB-MSTC, and B-
MSTC. A comparison study of these methods was conducted
in [8] where BNNB was shown to perform better for the

11737

Ψ1
s

Ψ2
s

(a) The scenario

(b) The paths

Fig. 4: The scenario and the resulting paths are shown.

TABLE I: Comparison against other approaches.

Approaches Coverage rate
of R1 (%)

Coverage rate
of R2 (%)

Repetition
rate (%)

Dec-PPCPP 51.5 48.5 1.87
BNNB 50.1 49.9 1.9
NB-MSTC 12.6 87.4 0
B-MSTC 32.3 67.7 7

scenario in Fig. 4. The robots are considered as obstacles
with respect to each other. The resulting path from Dec-
PPCPP for this scenario is shown in Fig. 5b. The comparison
results are shown in Table I. A video is also provided.

As shown in Table I, Dec-PPCPP performs almost the
same as BNNB. However, unlike BNNB, it is shown in the
following case studies that Dec-PPCPP is applicable to 3D
coverage with moving obstacles. Note that the optimization
was carried to minimize the repetition rate so as to compare
with the above methods. Path execution time and other
objectives could be added for better results.

C. Case Study 3: 3D Coverage amid moving obstacles

The aim of this case study is to show the performance
of four robots operating in a 3D environment with moving
obstacles, as illustrated in Fig. 5a. To show the robustness
of Dec-PPCPP to failures, robot 3 fails to start on-time and
starts at t=20 and robot 2 malfunctions and stops at t=50.
To make the scenario harder, the obstacles are designed to
continuously go back-and-forth on the trajectories shown in
Fig. 5a. For comparison’s sake, three cases are considered: 1)
with no moving obstacles, 2) with moving obstacles having
half the speed of the robots, and 3) with moving obstacles
having the same speed as the robots. Figure 5b is related to

Ψ1
s

Ψ2
s

Ψ3
s

Ψ4
s

Obstacle 2
Trajectory

Obstacle 1
Trajectory

(a) The scenario

(b) The paths for case 2

Fig. 5: The scenario and the resulting paths are shown.

TABLE II: Results for different cases.

No ob-
stacles

Obs. speed =
0.5*Robs’ speed

Obs. speed =
Robs’ speed

Dec-PPCPP 99.8 110.8 112.1
Dec-PPCPP
with Rd p = 0 130.9 172.6 160.5

case 2 and a video is provided.
The results are shown in Table II. It can be seen that

the performance of Dec-PPCPP, amid moving obstacles
continuously running through the surface, is not substantially
worse than when there are no obstacles. For further validation
of the dynamic predator avoidance reward Rd p, the three
cases are repeated with Rd p = 0. It is clear from Table II
that when Rd p = 0 the results are significantly worse.

D. Case Study 4: 3D Coverage of complex surfaces

In this case study, the performance of Dec-PPCPP is
shown for coverage of complex surfaces amid moving ob-
stacles by robots that have different speeds. Two different
surfaces are considered (Fig. 6 and Fig. 7). To increase the
difficulty, the moving obstacles are designed to continually
go back-and-forth on the shown trajectories (Figs. 6c and
7b). Note that the targets are not uniformly distributed,
nonetheless Dec-PPCPP is able to generate a path for these
targets.

The real-time performance of Dec-PPCPP is compared to
the case where there are no obstacles and the case where
dynamic predator avoidance reward is not considered (Rd p =
0). The result are shown in Table III. The resulting paths are
also shown in Figs. 6c and 7b. Videos of both scenarios are
also provided. Note that for scenario 1 (the UTE), robot 2 has
twice the speed of robot 1. For scenario 2 (complex object),
robots 2 and 3 have 1.5× and 2× the speed of robot 1.

11738

Industrial

robot

Mobile base

(a) Scenario 1: the UTE (b) Area to be covered

Ψ1
s

Ψ2
s

Obstacle 1
Trajectory

Obstacle 2
Trajectory

(c) The resulting path

Fig. 6: Scenario 1: Covering a UTE surface with two robots having different speeds.

(a) Scenario 2: Complex ob-
ject

Ψ1
s

Ψ2
s

Obstacle 1 Trajectory

Obstacle 2
Trajectory

Ψ3
s

(b) The resulting path

Fig. 7: Scenario 2: covering surfaces of a complex object
with three robots having different speeds.

TABLE III: Results for case study 4.

Dec-PPCPP No obstacles Rd p = 0
UTE Scenario 8.02 7.51 8.51
Complex Object 8.99 8.89 9.58

VII. CONCLUSION

The Dec-PPCPP approach was shown to be applicable to
a robot team performing decentralized coverage tasks on pla-
nar surfaces as well as surfaces embedded in R3. Particularly,
when moving obstacles are present in the environment, it was
shown to adapt and generate good results relative to the case
where there are no obstacles. Due to the stationary virtual
predator, each robot maintains a direction of overall motion
causing the overall path to be reasonably organized (less
back-and-forth between regions) despite moving obstacles
being present. Each robot perceives other robots as dynamic
predators, which results in the robots repelling each other
causing better task allocation and collision-avoidance. How-
ever, the effect of dynamic predators is only relevant when
robots are close to each other since, otherwise, they should
emphasize more on the global behavior resulting from the
stationary obstacles. Case studies were presented to validate
and show the effectiveness of the approach with respect
to aspects such as different obstacles, different number of
robots, different 3D objects, and failure of robots.

Future work includes extending Dec-PPCPP to be robust
for intermittent communication and applicable to unknown
environments. Optimizing various parameters such as the
stationary predators’ locations can also be investigated.

REFERENCES

[1] R. Almadhoun, T. Taha, L. Seneviratne, and Y. Zweiri, “A survey
on multi-robot coverage path planning for model reconstruction and
mapping,” SN Applied Sciences, vol. 1, no. 8, p. 847, 2019.

[2] R. Bormann, F. Jordan, J. Hampp, and M. Hägele, “Indoor coverage
path planning: Survey, implementation, analysis,” in International
Conference on Robotics and Automation, May 2018, pp. 1718–1725.

[3] J. Song and S. Gupta, “ε?: An online coverage path planning algo-
rithm,” IEEE Transactions on Robotics, vol. 34, no. 2, pp. 526–533,
April 2018.

[4] M. Hassan and D. Liu, “A deformable spiral based algorithm to smooth
coverage path planning for marine growth removal,” in International
Conference on Intelligent Robots and Systems, 2018, pp. 1913–1918.

[5] A. Mellone, G. Franzini, L. Pollini, and M. Innocenti, “Persistent
coverage control for teams of heterogeneous agents,” in Conference
on Decision and Control (CDC), Dec 2018, pp. 2114–2119.

[6] A. C. Kapoutsis, S. A. Chatzichristofis, and E. B. Kosmatopoulos,
“Darp: divide areas algorithm for optimal multi-robot coverage path
planning,” Journal of Intelligent & Robotic Systems, vol. 86, no. 3-4,
pp. 663–680, 2017.

[7] C. Gao, Y. Kou, Z. Li, A. Xu, Y. Li, and Y. Chang, “Optimal multirobot
coverage path planning: ideal-shaped spanning tree,” Mathematical
Problems in Engineering, vol. 2018, 2018.

[8] H. Liu, J. Ma, and W. Huang, “Sensor-based complete coverage
path planning in dynamic environment for cleaning robot,” CAAI
Transactions on Intelligence Technology, vol. 3, no. 1, pp. 65–72,
2018.

[9] A. Bircher, M. Kamel, K. Alexis, M. Burri, P. Oettershagen, S. Omari,
T. Mantel, and R. Siegwart, “Three-dimensional coverage path plan-
ning via viewpoint resampling and tour optimization for aerial robots,”
Autonomous Robots, vol. 40, no. 6, pp. 1059–1078, 2016.

[10] I. A. Hameed, A. la Cour-Harbo, and O. L. Osen, “Side-to-side 3d
coverage path planning approach for agricultural robots to minimize
skip/overlap areas between swaths,” Robotics and Autonomous Sys-
tems, vol. 76, pp. 36–45, 2016.

[11] C. Wu, C. Dai, X. Gong, Y.-J. Liu, J. Wang, X. D. Gu, and C. C. Wang,
“Energy-efficient coverage path planning for general terrain surfaces,”
IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2584–2591,
2019.

[12] A. Breitenmoser, H. Sommer, and R. Siegwart, “Adaptive multi–
robot coverage of curved surfaces,” in Distributed Autonomous Robotic
Systems, M. Ani Hsieh and G. Chirikjian, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, pp. 3–16.

[13] H. I. A. Perez-imaz, P. A. F. Rezeck, D. G. Macharet, and M. F. M.
Campos, “Multi-robot 3d coverage path planning for first responders
teams,” in International Conference on Automation Science and En-
gineering, Aug 2016, pp. 1374–1379.

[14] M. Eich, F. Bonnin-Pascual, E. Garcia-Fidalgo, A. Ortiz, G. Bruzzone,
Y. Koveos, and F. Kirchner, “A robot application for marine vessel
inspection,” Journal of Field Robotics, vol. 31, no. 2, pp. 319–341,
2014.

[15] G. Best, O. M. Cliff, T. Patten, R. R. Mettu, and R. Fitch, “Dec-
mcts: Decentralized planning for multi-robot active perception,” The
International Journal of Robotics Research, vol. 38, no. 2-3, pp. 316–
337, 2019.

[16] M. Hassan and D. Liu, “PPCPP: A predator–prey-based approach to
adaptive coverage path planning,” IEEE Transactions on Robotics,
vol. 36, no. 1, pp. 284–301, Feb 2020.

11739

