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Abstract— Multi-modal estimation systems have the advan-
tage of increased accuracy and robustness. To achieve accurate
sensor fusion with these types of systems, a reliable extrinsic
calibration between each sensor pair is critical. This paper
presents a novel self-calibration framework for lidar-inertial
systems. The key idea of this work is to use an informative
path planner to find the admissible path that produces the
most accurate calibration of such systems in an unknown
environment within a given time budget. This is embedded
into a simultaneous localization, mapping and calibration lidar-
inertial system, which involves challenges in dealing with agile
motions for excitation and large amount of data. Our approach
has two stages: firstly, the environment is explored and mapped
following a pre-defined path; secondly, the map is exploited
to find a continuous and differentiable path that maximises
the information gain within a sampling-based planner. We
evaluate the proposed self-calibration method in a simulated
environment and benchmark it with standard predefined paths
to show its performance.

I. INTRODUCTION

Autonomous systems require sensors to perceive the envi-
ronment in order to achieve their specific tasks. Combining
measurements from multiple sensors adds robustness and
compensates for individual sensor limitations. In multiple
sensor systems, however, information needs to be integrated
in a consistent manner to accurately estimate system’s state.
The main precursor for the state estimation process is then
to determine the fixed relative pose between the multiple
sensors, known as extrinsic calibration.

This process is challenging for combinations of pro-
prioceptive and exteroceptive sensors and known methods
remain driven by manual operations. We are interested in the
question of how to develop autonomous methods for self-
calibration of such sensor combinations that make use of
informative path planning.

Although not extensively explored, theory and algorithms
for information driven calibration have been developed for
diverse combination of sensing modalities. For instance,
combinations of extereoceptive pairs, which collect data from
the external environment [1] or proprioceptive-extereoceptive
sensors, which measure both internal and environment prop-
erties as in the case of Visual-Inertial (VI) systems [2]. These
latter combinations that include Inertial Measurement Units
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Fig. 1: Left: Most informative trajectory for Lidar/inertial cal-
ibration within the 3D map generated by IN2LAAMA during
exploration. Middle: Photo of the mapped room only for reference.
Right: sensor suite used (Velodyne VLP-16 Lidar and Xsens MTi-3
IMU).

(IMUs) in particular, require sufficient motion excitation to
yield an accurate calibration and thus good performance
estimation.

The key challenge in developing self-calibration methods
for IMU coupled systems lies in exploring such motions to
obtain an accurate estimation of the relative pose between
sensors. Predicting the information that will be gained during
the estimation process if the sensor system follows a given
path is then crucial for such methods.

In the case of lidar-inertial calibration [3], [4], the lidar
sensor produces a large quantity of data over time and
estimation algorithms that reason about this data are compu-
tationally expensive. Any automated method with this sensor
combination would need to handle both a large amount of
data and agile motions for excitation.

The main idea of this paper is to find the best possible
calibration for a lidar-inertial system by using informative
path planning. We consider the problem of jointly calibrat-
ing the sensors and localizing them within an unknown
environment, which is commonly encountered in practice
and typically solved using probabilistic batch-optimization
methods. Fig. 1 shows an example of the admissible path that
produces the most accurate calibration in the 3D map of the
environment generated by IN2LAAMA during exploration.
Our key insight is that the filter-based techniques exploiting
the information theoretic metrics can be used as efficient
approximate estimators for information-based planners.

The proposed approach is divided into two stages: the
exploration stage, where a pre-defined path is followed to
obtain both an initial estimate of the extrinsic calibration and
a map the environment; and the exploitation stage, where our
approach searches for the best admissible path for calibration
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through a sampling-based planner. In the latter stage, the
current state estimate is used as the linearization point to
calculate the information gain over multiple poses via an
Extended Kalman Filter (EKF) based approximation of the
system’s covariance as a proxy for the batch-optimization
estimation solution.

Empirical results show that this approximation follows the
trend of the full batch-optimization covariance as expected.
We also validate that our proposed pipeline is in accordance
with a previously published observability analyisis [5]. We
report a set of simulation results that compare our planning
method to standard pre-defined trajectories and a greedy
approach. Results show that our information driven planner
outperforms all of the above.

The key contributions of our work are as follows:
• We present an algorithm that generates continuous and

differentiable paths within a sampling-based motion
planner to maximise the information gain of the ex-
trinsic calibration between a 3D lidar and 6-DOF IMU
and generates a map of the environment.

• The proposed information-based planner is fed only
with the uncertainty of the calibration parameters, which
are decoupled from the full state. This allows not only
less complex computations but also focusing on the
estimation of the extrinsic calibration of the proprio-
ceptive/exteroceptive pair, which is the ultimate goal of
this paper.

Although a similar information-based planner [6] has been
used for system identification using only proprioceptive sen-
sors, to the best of the author’s knowledge, no previous work
has used this approach within a simultaneous localization,
mapping and self-calibration framework with a propriocep-
tive/exteroceptive sensor pair.

II. RELATED WORK
Within the sensor self-calibration community, it is well

known that the quality of calibration parameter estimates
depends on the trajectory that is used to collect the measure-
ments. As a result, researchers have come up with approaches
that design informative trajectories for self-calibration, met-
rics to quantify the information content in a particular trajec-
tory, and methods to determine whether or not certain motion
types are degenerate (making the calibration parameters
estimation partly or fully unobservable).

There are multiple approaches in the literature that tackle
the problem of informative path planning for self-calibration
systems, with [2] and [6] being the most similar to our
work. In [6] the authors use a sampling based motion
planner to identify the parameters of a multi-rotor system,
and propagate uncertainties of the system using an EKF by
incorporating measurements from a proprioceptive sensor.
Although our work also incorporates a sampling based mo-
tion planner, and propagates uncertainties through an EKF,
we incorporate measurements from both an exteroceptive
and proprioceptive sensor in order to recover the extrinsic
calibration parameters of the multi-modal sensor pair while
generating a map of the environment. Another key difference

is that [6] propagates the full state in both the prediction and
update step of their filter since their parameters are embedded
in the state. Our work focuses purely on the uncertainty
propagation of the calibration parameters by decoupling it
from the state estimate. Also similar to our work, [2] uses
information theoretic measures to analyse information gain
in a predefined path segment offline, and choose the most
informative segments for VI calibration. In our work, we
use a sampling based motion planning algorithm to search
the space of possible beliefs and find the most informative
trajectory for lidar-inertial calibration within a given time
budget. It is common practice to use informative path plan-
ning in an online fashion and this has been done to reduce
localization and mapping error in [7], [8] and [9]. Eckenhoff
et al. [10] presents an online auto-calibration system for
a multi-camera-IMU system based on multi-state constraint
Kalman Filter. The authors of [1] propose an informative path
planning algorithm for extrinsic sensor calibration that leads
the robot to move in the direction of maximum uncertainty
reduction. Similar works in information-based path planning
lie in sampling-based methods, where we build our work
and some of the common algorithms are [11], [12] and
[13]. Another popular method for finding informative self-
calibration trajectories is based on optimization. In [14], the
authors use an optimization-based auto-calibration method
that analyses the observability of the calibration trajectory
using the determinant of the Hessian matrix. Similar to
this approach, [15] solves a vision-odometry auto-calibration
problem as a constrained optimization problem.

To determine the observability of calibration parameters
under certain motion types, various methods have been
devised for detecting whether or not the extrinsic calibration
parameters for a coupled system are observable. The authors
in [5] perform a comprehensive observability analysis for
the spatial and temporal calibration parameters for general
inertial-aided navigation systems. The major contribution
from their work shows that when a coupled sensing system
undergoes random motion, the calibration parameters are
fully observable and can be determined accurately. They also
identify four degenerate motions under which the calibra-
tion parameters cannot be recovered in full, supported by
formal proofs. In a similar way, [16] and [17] perform an
observability analysis of calibration paths taken based on the
Fisher Information Matrix. Other work has used non-linear
observability analysis based on Lie derivatives [18], [19]. For
example, [18] studies the non-linear observabilty of a system
state and the control inputs that lead to better calibration
parameters. They develop a framework which incorporates
higher-order Lie derivatives in approximating the local ob-
servability Gramian which is used to determine the quality
of the observability. The downside to this framework is that
it assumes accurate measurements and does not provide a
measurement noise model.

III. METHOD

This section presents an overview of the proposed method,
followed by detailed descriptions of its constituent blocks.
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Fig. 2: Overview of the proposed method.

I0 I1 Ik

Ik+1

C

fdt0 fdt1 fdtk

fdtk+1

f1 fk

fk+1fdt• : Time-shift factor

f• : IMU, Lidar, and biases factors

Fig. 3: Factor graph representation of the optimization problem
solved in IN2LAAMA. The nodes drawn with continuous lines are
part of the optimization between t = 0 and t = tk. The dashed-line
node and gray factors are added to the graph upon addition of a
new frame in the estimation. Im represents the IMU pose, velocity,
biases and time-shift correction associated to the lidar scan at time
t = tm. C represents the calibration parameters. The estimated state
S is the union of C and the different Im.

A. Overview

Let us consider a system with a rigidly mounted 3D lidar
and a 6-DOF IMU, where the calibration parameters Rc and
pc represent the relative rotation and translation between the
two sensors, respectively. Given a path π0:k between times
t = 0 and t = tk, both the calibration parameters and the
trajectory of the system are estimated with IN2LAAMA [4],
a simultaneous localization, mapping and calibration frame-
work for lidar-inertial data. The matrix Pk, representing the
covariance matrix of the calibration parameters, is used as
an indication of the calibration estimates quality.

This work presents a path planning algorithm that com-
putes the most informative path for extrinsic calibration
between the lidar and IMU for t > tk. It can be formally
defined as

π∗k:k+L = argmin
πk:k+L

(tr(Pk+L)), (1)

where L ∈ N is the planning horizon and πk:k+L is the path
from t = tk to t = tk+L.

Fig. 2 presents an overview of the method as a block
diagram. First, a pre-defined path π0:k is executed and
IN2LAAMA provides the corresponding trajectory, calibra-
tion parameters and map estimates. A Rapidly exploring Ran-
dom Belief Trees (RRBT) planner is then used to generate
a graph and propagate uncertainties in the belief nodes at
each vertex in the graph. A function is used to generate a
feasible and continuous trajectory connecting two vertices
in the graph. The continuous trajectory and estimated map
are used for simulating measurements which are used to
compute the expected calibration covariance for the new

belief. Ultimately, the aim is to select the optimal path
by tracking the vertices on the graph, through which the
belief with the smallest covariance matrix based on the A-
optimality criterion [20] was propagated. This optimal path
is associated with the maximum information gain to improve
the quality of the calibration parameter estimates.

B. Lidar-Inertial calibration framework

As described above, we consider the spatial calibration
problem for a coupled lidar-IMU sensing system. The
IN2LAAMA [4] framework is used to perform the extrinsic
calibration between a 3D lidar and a 6-DOF IMU and
localize that system in a unknown environment. Given lidar-
inertial data between t = 0 and t = tk, the framework
estimates simultaneously the trajectory of the system (ori-
entations, velocities and positions), the extrinsic calibration
parameters Rc and pc (representing respectively the relative
rotation and translation from the IMU to the lidar frame),
and, as mentioned before, Pk the covariance matrix associ-
ated to Rc and pc. In this application, IN2LAAMA outputs
the IMU positions p

{t1...tk}
W , rotations R

{t1...tk}
W and velocity

v
{t1...tk}
W at the end of the lidar frame as opposed to the

beginning in the original formulation [4]. The subscript W
represents the earth-fixed world reference frame. The additive
accelerometer and gyroscope biases are also part of the
estimated state.

The estimation is based on the minimization of point-
to-plane and point-to-line distances under the constraint of
inertial measurements. It can be represented as a factor graph
as shown in Fig. 3. The estimated state S∗ is the solution of
the following non-linear least-square optimization:

S∗k =argmin
Sk

ck(S) = argmin
Sk

k∑
i=1

‖rfi‖2Σrfi

+

k∑
i=0

‖rfdti ‖
2
Σrfdti

(2)

with rfdti the constraints on the estimated inter-sensor time-
shift, rfi the residuals that account for lidar and IMU factors,
and Σ• the covariance matrix of •. The calibration covariance
matrix Pk is estimated by inverting the information matrix
Jrk(S∗k)>Jrk(S∗k) using a sparse QR factorization [21] and
marginalizing out the block that corresponds to Rc and pc,
similar to [22]. The matrix Jrk(S∗k) is the Jacobian of rkΣ

1/2
rk

with respect to S, with rk the vector built stacking all the
rfi and rfdti in ck, and Σrk the block-diagonal matrix made
of Σrfi

and Σrfdti
.
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Note that one could easily change the framework used here
for another inertial-based calibration framework as long as it
estimates the necessary outputs (system trajectory, calibration
parameters and their associated covariance matrix).

C. Path planner and data simulator

RRBT is the sampling-based motion planning algorithm
used in this work. The algorithm constructs a motion graph
with a set of vertices v ∈ V which represent sensor positions,
velocities and accelerations and has an associated set of
belief nodes v.b. The vertices are connected by bidirectional
edges e ∈ E. A vertex in the graph can be reached through
multiple paths, and each belief node describes a unique
path through the graph [11]. The planner uniformly samples
positions in the free space and attempts to connect them to
existing vertices in V . A search queue is used to store the
open belief nodes of all successful connections and these are
propagated through to the new vertex. For our application,
we construct the graph to explore the free space and focus
on information gathering, with no set goal configuration. We
refer the reader to [11] for a detailed explanation of the
algorithm.

In order to generate coherent IMU readings in the sim-
ulator, the system requires smooth and continuous 3D tra-
jectories, with an order of continuity of at least 2 to guar-
antee continuous velocities and accelerations. To meet this
constraint, we use 3rd order and 5th order polynomials for
attempting to connect two vertices in the graph. The cubic
polynomials are used for connecting the newest vertex to
it’s nearest vertex in the graph. This allows us to specify
starting accelerations and velocities at the vertex, based on
the velocity and accelerations of the previous IMU frame,
therefore guarantee continuous velocities and accelerations.
For each of the three axes independently, we define a cubic
polynomial as,

c(t) = a3t
3 + a2t

2 + a1t+ a0

c′(t) = 3a3t
2 + 2a2t+ a1

c′′(t) = 6a3t+ 2a2 . (3)

Given a set of points which includes a starting point, an
initial velocity and acceleration from the previous frame, and
the time spent between two consecutive frames it is possible
to determine the value of the coefficients a0, a1, a2 and a3
as follows

c(0) = ptki = a0

c′(0) = vtki = a1

c′′(0) = f tki = 2a2

c(∆t) = a0 + a1∆t+ a2∆t2 + a3∆t3

(4)

where each dimension i of the IMU position vector
ptkW =

(
ptk1 , p

tk
2 , p

tk
3

)>
, the IMU velocity vector vtkW =(

vtk1 , v
tk
2 , v

tk
3

)>
and the IMU acceleration in the world frame

f tkW =
(
f tk1 , f

tk
2 , f

tk
3

)>
is treated independently.

Each first connection establishes the acceleration and
velocity of the newest vertex. All other connections are fully

constrained up to accelerations, and we use 5th order poly-
nomials for the re-connections. For the rotations, sinusoidal
functions with randomly selected frequencies and amplitudes
are used to excite the three dimensions independently. We
transform the Euler angles given by the sinusoidal functions
to obtain the rotation matrix for the next time step, R

tk+1

W .
We then take the derivative of the rotation to calculate the
respective angular velocity ω and the angular acceleration α
as follows,

[ω
tk+1

W ]∧ =
dR

tk+1

W

dt
R
tk+1

W

>
α
tk+1

W =
dω

tk+1

W

dt
(5)

where [•]∧ represents the skew symmetric operator, such that

[ω
tk+1

W ]∧ =

ω1

ω2

ω3

∧ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 . (6)

The IMU measurements are directly predicted from the
continuous trajectory given the system’s data simulator. In
addition to the IMU measurements, the lidar data is also
simulated based on the data simulator with the current
knowledge of the environment. Depending on the context
of the application, several options are possible to define the
current knowledge of the environment: an accurate prior
knowledge in the form calibration targets; a simple map
made out of plane equations obtained from a static initial
lidar scans as in [4]; or the current point cloud representation
estimated by IN2LAAMA acquired by the initial exploration
stage using a pre-defined path.

D. Propagating Uncertainty and Information Metric

To estimate the posterior covariance matrix for a new
belief node, Pk+1|k+1 we use the covariance prediction
and update steps of EKF, since IN2LAAMA’s full batch-
optimization is computationally expensive. We propagate the
covariance Pk into Pk+1 using computed measurements and
Jacobians from adding a new node in the IN2LAAMA graph
(grey factors in Fig. 3)

Pk+1|k+1 = (I6×6 −KJk+1)Pk+1|k

where, Pk+1|k+1 is the posterior covariance matrix, Pk+1|k
is prediction covariance matrix, and K is the Kalman gain
given by;

K = Pk+1|kJk+1S
−1.

IN2LAAMA’s estimation is not based on a standard
explicit measurement model, h(Rc,pc) with measurement
residuals of the form rf = z − h(Rc,pc) where z are
sensors measurements. Instead the measurement residual is
an implicit function of the form rf (Rc,pc, z) with,

rf =

[
rfk
rfdti

]
and Σ =

[
Σrfk

Σrfdtk

]
. (7)

Consequently, the derivative of rf with respect to Rc and pc
is Jk+1 and Hk+1 is the partial derivative with respect the
measurements. Thus, the innovation matrix is then given by;

S = Jk+1Pk+1|kJ
>
k+1 + Hk+1ΣfkH>k+1
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Fig. 4: Two different viewpoints of a map created by IN2LAAMA
and plane-fitting based on data generated in our seven-plane simu-
lated environment.

where Σfk is the covariance matrix from the least squares
formulation of the batch-optimization.

Using the EKF prediction equation

Pk+1|k = FPk|kF
> + Qk+1.

Note, the state transition matrix F is constant, and does not
need to be recomputed each time step because the calibration
parameters do not change with the state. This is also the
reason why the current linearization point remains fixed
since only the future approximation for future poses are
changed by the new expected measurements. We assume the
calibration parameters are driven by a zero mean Gaussian
noise of covariance Qk+1.

As mentioned above, our goal is to determine the optimal
path which maximises the information gain for recovering
the extrinsic calibration parameters. We use A-optimality
criterion as the metric to quantify the information content in
a given trajectory. We recover the best admissible calibration
trajectory by minimizing the trace of the posterior covariance
matrix (1). To do this, we search through the graph to find
the belief node whose posterior covariance matrix has the
smallest trace. By tracking the history of propagation stored
in the belief node, we can extract and add to our calibration
trajectory the set of vertices which minimize the uncertainty
in our calibration parameters.

IV. EXPERIMENTAL EVALUATION

In this section, we carry out simulation experiments to
allow comparison with the ground truth. The simulated
environment used is shown in Fig. 4, and is constituted
of seven planes with a 10-meter distance to the origin.
Realistic sensor noise is added to the theoretical sensor
measurements. A standard deviation of 0.0196 m.s−2 is used
for the accelerometer, 0.0017 rad.s−1 for the gyroscope, and
0.02 m for the lidar range.

A. Approximation

We carry out 3 separate experiments to validate the
proposed algorithm in the simulated environment. The first
set of tests involve running the EKF-based approximation
algorithm on 8 independent trajectories. For each of these tra-
jectories we do a full batch-optimization using IN2LAAMA
to compare how the trend of the trace of the posterior
covariance matrix of each of these trajectories varies between
the 2 methods. Fig. 5 shows that the trend of traces of the
posterior covariance matrix from the approximation is very
similar to the trend of traces of the posterior covariance
obtained through IN2LAAMA batch-optimization process.
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Fig. 5: Empirical results showing that the EKF-based covariance
approximation follows a similar trend as the covariance from the
full batch-optimization.

The posterior covariance matrix takes on average 30 mins per
trajectory to compute, using IN2LAAMA batch-processing
and 2.5 mins with the EKF-based approximation. The con-
siderably lower computational time makes the approximation
method more appealing for estimating the information con-
tent in a particular trajectory.

B. Validation on Observable Paths

Comprehensive observability-analysis tests and proofs by
[5] reveal degenerate motion types under which spatial
calibration parameters of an aided inertial system can not
be recovered. Based on this analysis, we test the validity of
our EKF-based covariance approximation framework on 5
different trajectories from RRBT. Three different cases are
tested: (i) trajectories with 3 global axis translation and no
rotation (ii) trajectories with 3 axis rotations and translations
(iii) trajectories with 3 global axis translation and 2 axis
rotations. In the case with no rotations (i), it is impossible to
recover spatial calibration parameters but for (ii) and (iii), the
calibration parameters can be recovered. For each of these
three cases, we run five independent trajectories with the
same number of nodes. Fig. 6 shows the results from these
tests.

In the first subplot, which corresponds to case (i), the
trace of the posterior covariance matrix of 5 trajectories is
shown labelled as “A-Opt cov EKF” as it refers to the A-
optimality criterion. The trace of the posterior covariance
matrix grows bigger as more nodes are added to the trajec-
tory. This shows an increase in the uncertainty on estimated
calibration parameters. These results were expected as the
measurements acquired from trajectories with no rotations
are not informative for the purpose of recovering calibration
parameter estimates.

The second subplot corresponds to case (ii),with 3 axis
rotations and translation. As more nodes are added to the
trajectory, the trace of the posterior covariance becomes
smaller showing that the measurements collected here are
informative. The calibration parameters can be recovered by
using measurements from this trajectory. The third subplot
corresponds to case (iii) with 3 global axis translation and
2 axis rotations. Similarly to the case (ii), the trace of the
posterior covariance matrix decreases as more nodes are
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Fig. 6: Comparison of the A-optimality criterion for different
trajectory types over 5-run simulated data. Note that the first motion
type, left graph, results in unobservable calibration parameters.

added to the trajectory showing that informative measure-
ments are gathered along the trajectory. The key difference
between cases (ii) and (iii) is that after 10 nodes, the trace
of the posterior covariance in (ii) is smaller than that in (iii)
showing that additional nodes will be needed to get to the
same level of accuracy as the case with 3 axis rotations.
The results from these experiments support the observability
analysis from [5] and therefore validate our approximation
algorithm

C. Benchmarking

In this set of experiments, we benchmark our RRBT-based
motion planner against 3 commonly used calibration motion
heuristics which are circular paths, straight line paths and
greedy algorithm paths shown in Fig. 7. The straight line
paths used are comprised of sinusoidal functions of time
in each axis, with the frequency and amplitude randomly
selected. The greedy algorithm randomly searches the space
with with a horizon of one, and picks the best node out
of 3 based on their A-Opt cov EKF metric. Since our
framework requires a prior trajectory that is used to obtain
the prior covariance matrix, we fix the same prior trajectory
for all the test cases considered. The initial trajectory runs
for the first 10s and an RRBT graph with 1000 nodes is
grown. The optimal path from the planner is used to generate
measurements which are used to calculate the calibration
parameters in the batch optimizer. Note, in the case of the
circular trajectories, 2 extra frames were added to allow
for an interpolation of the acceleration and velocity where
the predefined path joins the circular trajectory. All the
trajectories used are given the same time budget of 14s, and
all experiments include lidar and IMU sensor noises. We
carry out a 15-run Monte Carlo simulation for each of the
trajectory types we are comparing. The averaged statistics
from these experiments are shown in Table I.

By comparing the A-optimality covariance IN2LAAMA
(traces of the posterior covariance matrices), averaged over
15 independent experiments for each of the cases con-
sidered, (column 2 of Table I) we can see that both the
greedy algorithm and the optimal path from RRBT results

TABLE I: Comparison of the calibration parameter accuracy by
comparing the trace, translational and rotational RMSE of the
calibration parameters for the different trajectories types averaged
over a 15-run Monte Carlo simulation

Path Average A-OPT
cov IN2LAAMA

Translation
RMSE [cm]

Rotation
RMSE [rad]

RRBT path 0.031 0.181 0.013
greedy 0.074 0.420±0.221 0.025±0.011
circular 0.105 1.089±0.191 0.027±0.009

straight line 1.053 1.322±0.268 0.030±0.097
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Fig. 7: Example of calibration trajectories used in the bench-
marking. Results on the comparison of A-Opt cov IN2LAAMA,
Rotational and Translational RMSE for these trajectories are shown
in Table I.

in calibration parameter estimates that are more accurate
compared to circular and straight line paths. This shows
that planning is important in self-calibration. RRBT has
the best performance overall showing that a global planing
method which is more exploratory in nature is a better
choice since there is a need for exploring the entire search
space to get the most informative path in this problem.
This justifies our choice of incorporating a global planner
with our approximation method, even though this is a more
computationally expensive option.

The resulting RMSE between the estimated calibration
parameters and the ground truth for all 4 motions considered
can be seen in Table I. The rotational RMSE is very small
for all trajectories and this is in line with the analysis in
[5] which shows that rotational calibration parameters can
be easily recovered as long as there is motion. However,
the translation calibration parameters are affected by the
quality of the trajectory more for the different motion types.
The optimal trajectory from RRBT has the least translation
RMSE further reinforcing the results we found by comparing
the traces of calibration parameters posterior covariance
matrix, Pk+1|k+1. Circular and straight line paths have larger
translation RMSE showing that heuristic motions are inferior
for solving our lidar-IMU calibration problem.

D. Experiments with real data

We applied our proposed method for calibrating a lidar-
IMU coupled system in a real world example. The real-world
platform is a self-contained sensor suite with a Velodyne
VLP-16 and a Xsens MTi-3, which is moved within a room
with plenty of planes (Fig. 1). An initial manual path of 20s is
used to generate a point cloud map of the environment using
IN2LAAMA. The 3D map generated is then used to simulate
measurements for belief propagation to find the optimal
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Fig. 8: Most informative trajectory (7s), with the initial exploration
trajectory.

path. The resulting optimal trajectory shown in Fig. 8, gives
calibration parameter estimates with an A-opt cov EKF of
0.042 and an A-opt cov IN2LAAMA of 0.039 which are
both smaller than that from the original trajectory 0.1358.
The resulting posterior covariance traces show that the path
from our method gives a more informative path. However, the
absence of ground truth values make it impractical to com-
ment on the accuracy of the resulting extrinsic calibration
parameters in a more quantitative manner (e.g with RMSE
values as was done in the case for simulation experiments
in Table 1). Fig. 1 shows the map of the environment with
the optimal trajectory. The exploratory nature of the planner,
compared to the trajectory of the manual operator allows it
to find the most informative path for the extrinsic calibration
parameters, resulting in lower values of A-opt cov EKF and
A-opt cov IN2LAAMA.

V. CONCLUSIONS

This paper presents a self-calibration framework for lidar-
inertial systems. The proposed approach is used as part of a
probabilistic batch-optimization framework for localization,
mapping and extrinsic calibration. In this work, a sampling-
based motion planner with continuous and twice differen-
tiable trajectories is used to guide the search of the most
informative calibration path. Following an initial exploration
stage using a pre-defined path, the most informative path
is then obtained based on the evaluation of the trace of
the expected calibration parameter covariance. To tackle
the computational burden of the estimation framework, the
expected calibration parameter covariance is predicted over
future poses of the system using an EKF approximation from
the current linearization point. The results show that the
trend of the covariance estimated by the EKF approximation
follows that of the full-batch optimization system. The ob-
servability of paths can be easily depicted using our metric.
Finally, we showed that the proposed approach outperforms
common trajectories used for calibration.
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