
Estimation of object class and orientation from multiple viewpoints and
relative camera orientation constraints

Koichi Ogawara1 and Keita Iseki2

Abstract— In this research, we propose a method of estimat-
ing object class and orientation given multiple input images
assuming the relative camera orientations are known. Input
images are transformed to descriptors on 2-D manifolds defined
for each class of object through a CNN, and the object class
and orientation that minimize the distance between input
descriptors and the descriptors associated with the estimated
object class and orientation are selected. The object orientation
is further optimized by interpolating the viewpoints in the
database.

The usefulness of the proposed method is demonstrated
by comparative evaluation with other methods using publicly
available datasets. The usefulness of the proposed method is also
demonstrated by recognizing images taken from the cameras
on our humanoid robot using our own dataset.

I. INTRODUCTION

Recently, robots are expected to handle a variety of tasks
including object manipulation in everyday environments. If
a robot has limited knowledge of the environment, the robot
needs to know the class and orientation of the object before
manipulating it.

In this research, we assume that multiple cameras are
available for object recognition and the relative orientation
between cameras are known. This is typically the case where
a robot has multiple cameras attached to the body such as
the head and arms, and the relative orientation between the
cameras can be calculated by forward kinematics.

So far, various methods of estimating object class and
orientation from a single image or multiple images have
been proposed such as those with image clustering [1], [2],
i.e. support vector machine, random forest, etc., and those
with approximate nearest neighbor search [3], [4]. However,
they rely on manually designed image features such as HOG
[5] and SURF [6] that are not optimal compared with the
statistically learned image features.

Recently, end-to-end learning with deep convolutional
neural networks (CNN), especially those using metric learn-
ing [7], [8], has received great attention in modeling the
relationship between input images and the object class and
orientation [9], [10], [11], [12], [13]. Wohlhart et al. proposed
a method of estimating object class and orientation by
training a CNN with a triplet loss function [14] to output
descriptors where descriptors of different classes are mapped
apart and descriptors of the same class and similar orientation

1Koichi Ogawara is with Faculty of Systems Engineering,
Wakayama University, 930, Sakaedani, Wakayama-shi, Wakayama,
Japan ogawara@wakayama-u.ac.jp

2Keita Iseki is with Graduate School of Systems Engineering,
Wakayama University, 930, Sakaedani, Wakayama-shi, Wakayama, Japan
s192008@wakayama-u.ac.jp

Database

Search

Descriptor

𝑹𝑹1∗

𝑹𝑹2∗

𝑹𝑹𝑁𝑁∗

𝒅𝒅1∗

𝒅𝒅2∗

𝒅𝒅𝑁𝑁∗

CNN

⋯ ⋯

CNN

CNN

Relative
orientation

𝑹𝑹1,2
∗

𝑹𝑹1,𝑁𝑁
∗

⋯

Fig. 1. Overview of object recognition.

are mapped nearby [13]. However, this method assumes
a single input image and does not support multiple input
images. Kanezaki et al. proposed a method of estimating
object class and orientation by training a CNN to directly
generate the likelihood of the object class and orientation
given multiple input images [11]. However, this method does
not take advantage of the known relative orientation between
cameras. Furthermore, these methods select the estimated
orientation from the orientations stored in the training data,
however the true orientation is not necessarily included in
the training data, and errors will occur.

In this research, we propose a method of estimating object
class and orientation given multiple input images assuming
the relative camera orientations are known as shown in Fig. 1.

The contributions of the proposed method are twofold:
(1) the accuracy of object class and orientation estimation is
improved by adding relative camera orientation constraints,
(2) the accuracy of object orientation estimation is further
improved by interpolating the training data.

The usefulness of the proposed method is demonstrated
using several publicly available datasets and our own dataset.

II. ESTIMATION OF OBJECT CLASS AND ORIENTATION

Given N input images and their camera orientations, the
proposed method estimates the class and orientation of the
object in these images. At the training step, we train the
CNN so that an input image is transformed to a descriptor
on 2-D manifolds defined for each class of object. Then, we
build a database whose elements consist of object classes, a
camera orientation, and a descriptor. At the evaluation step,

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 10588

C
onvolution

M
ax pooling

C
onvolution

M
ax pooling

16×8×8×4 7×5×5×16

ReLU ReLU

filter filter

D
escriptor

RGBD

Fig. 2. Structure of CNN.

the database is searched for the set of elements that are most
similar to the input descriptors and satisfy the relative camera
orientation constraints. The class and camera orientations
associated with the obtained set of elements are the estimated
result.

A. Training the CNN

The CNN is trained to output descriptors that form 2-
D manifolds where the Euclidean distance between descrip-
tors of different classes becomes longer and the Euclidean
distance between descriptors of the same class and similar
orientation becomes shorter.

We use the CNN proposed in [13]. The CNN consists of
two sets of a convolution layer and a max-pooling layer,
followed by two fully connected layers as shown in Fig. 2.
The convolution layers and the first fully connected layer
employ a rectified linear (ReLU) activation function. The
output of the second fully connected layer forms the 3-d
descriptor of an input image.

The CNN is trained with a loss function L similar to one
in [13] that consists of the following three terms:

L = Ltriplets + Lpairs + λ∥ω′∥22. (1)

The first term Ltriplets is called a triplet loss and is defined
as in Eq. (2) by xi, xj , xk that satisfy either of the conditions:
(1) xi, xj belong to the same class and xi, xk belong to
different classes, (2) xi, xj , xk belong to the same class but
the orientations of xi, xj are more similar than those of
xi, xk.

Ltriplets

=
∑

(xi,xj ,xk)∈T

max

(
0, 1− ∥fw(xi)− fw(xk)∥2

∥fw(xi)− fw(xj)∥2 + β

)
(2)

where fw(x) is the output of the CNN given x.
The second term Lpairs is defined as in Eq. (3) by xi, xj

that belong to the same class and their orientations are
similar.

Lpairs =
∑

(xi,xj)∈P

∥fw(xi)− fw(xj)∥22 (3)

The third term is for normalizing all the parameters ω′ of
the CNN except the bias.

Database D

(𝑐𝑐𝑖𝑖 ,𝒅𝒅𝑖𝑖 ,𝑹𝑹𝑖𝑖)
𝒅𝒅𝑖𝑖

𝑐𝑐𝑗𝑗 ,𝑹𝑹𝑗𝑗

Descriptor space

CNN

𝒙𝒙𝑗𝑗

𝑐𝑐𝑖𝑖 ,𝑹𝑹𝑖𝑖

𝒙𝒙𝑖𝑖

𝒅𝒅𝑗𝑗

𝑐𝑐𝑖𝑖 class
𝑹𝑹𝑖𝑖 orientation
𝒅𝒅𝑖𝑖 descriptor

class A class B

Fig. 3. Database of viewpoints.

B. Building the database

Fig. 3 shows the structure of the database used for object
recognition. The database consists of triplets (ci,Ri,di)
where ci is the class of the object in the training image xi,
Ri is the camera orientation of xi, and di is the descriptor
obtained from fw(xi).

C. Object recognition

The previous method [13] searches the database for the
element whose descriptor is most similar to the input de-
scriptor, and returns the class and orientation associated with
the descriptor.

In this research, we assume that the relative camera
orientations between N cameras are known. Each input
image xi is provided to the learned CNN separately and the
corresponding descriptor di is obtained. Then, the proposed
method searches the database for the set of elements where
their descriptors are most similar to the input descriptors
and their orientations satisfy the relative camera orientation
constraints, and returns the class and orientations associated
with the elements.

To ensure that the obtained set of elements satisfies
the relative camera orientation constraints, we enumerate
combinations of viewpoints in the database that satisfy the
relative camera orientation constraints and then select the
most appropriate combination among them.

If the orientation of each camera is known, we can
calculate the relative orientation between cameras as:

Ri,i+1 = R−1
i+1Ri (4)

where Ri is the rotation matrix from the i-th camera coor-
dinate system to the world coordinate system.

To enumerate combinations of viewpoints that satisfy the
relative camera orientation constraints, we select the m-th
element in the database as the first viewpoint of the m-th
combination. The camera orientation of the j-th (j ≥ 2)
viewpoint can be calculated from the camera orientation of
the first viewpoint as:

R̂j = RmR−1
m,j . (5)

Since the same rotation matrix as R̂j is not always stored
in the database, the j-th viewpoint is selected as the kj,m-th
element whose rotation matrix is closest to R̂j and whose
class is equal to that of the first viewpoint as shown in Fig. 4.
kj,m is calculated as:

10589

𝑹𝑹𝑚𝑚

𝑹𝑹𝑚𝑚,𝑗𝑗�𝑹𝑹𝑗𝑗 𝑹𝑹𝑘𝑘𝑗𝑗,𝒎𝒎

�𝑹𝑹𝑗𝑗

Fig. 4. Determination of viewpoints.

𝐴𝐴

𝐵𝐵

𝐴𝐴

𝐵𝐵

𝒅𝒅1∗

𝒅𝒅2∗

𝒅𝒅𝑁𝑁∗

𝒅𝒅1∗

𝒅𝒅2∗

𝒅𝒅𝑁𝑁∗

Fig. 5. Correspondences of descriptors.

kj,m = argmin
i≤M,ci=cm

cos−1

(
Tr(R−1

i R̂j)− 1

2

)
(6)

where M is the number of elements in the database.
Then, the m-th combination of viewpoints is defined by

the object class and a set of element indices as:

vm = (cm, k1,m, k2,m, . . . , kN,m) (7)

where k1,m = m.
We repeat this process and obtain a set of combinations

V = {v1, . . . , vM}.
The evaluation function of vm is defined as:

E1(vm) =

N∑
i=1

min(∥dki,m
− d∗

i ∥22, λ) (8)

where d∗
i is the i-th input descriptor. The combination

vm∗ that minimizes the Euclidean distance between corre-
sponding descriptors is selected as shown in Fig. 5. m∗ is
calculated as:

m∗ = argmin
m≤M

E1(vm). (9)

The class and camera orientations associated with the
obtained combination are the estimated results.

When the object is occluded by obstacles in some of the
input images, the Euclidean distance between descriptors
is not the correct measure to evaluate a combination. To
suppress the effect of outliers, we set the threshold λ in
Eq. (8).

𝒅𝒅𝑖𝑖∗

�𝒅𝒅𝑖𝑖

�𝒅𝒅𝑖𝑖𝑡𝑡

�𝒅𝒅𝑖𝑖𝑠𝑠

𝑠𝑠𝑖𝑖

𝑡𝑡𝑖𝑖
�𝒅𝒅𝑖𝑖∗

Fig. 6. Interpolation of descriptors.

III. OPTIMIZATION OF OBJECT ORIENTATION

The method described in Section II searches the database
for the set of descriptors that are similar to the input
descriptors, and returns the class and camera orientations
associated with the obtained descriptors. This means the
estimated object orientation contains an error if none of the
training images has exactly the same orientation as that of
the input image. To reduce the estimation error, we optimize
the object orientation by interpolating the viewpoints in the
database.

The proposed method searches the database for the cor-
responding descriptor to an input descriptor as described in
Section II and interpolates the descriptor with the descriptor
itself and its nearby two descriptors.

Let the i-th input descriptor be d∗
i and the corresponding

descriptor found in the database be d̂i, the distance between
the j-the descriptor in the database and d̂i can be defined
as:

lij = ∥d̂i − dj∥2. (10)

K candidates for nearby descriptors to d̂i are selected in
ascending order of distance lij . Note that d̂i is excluded
from these candidates. Then, two descriptors d̂

s

i , d̂
t

i with the
shortest and the second shortest distance to d∗

i are selected
from these candidates.

As shown in Fig. 6, the descriptor d̂
∗
i corresponding to

the i-th input descriptor is interpolated by d̂i, d̂
s

i , d̂
t

i as:

d̂
∗
i = d̂i + si(d̂

s

i − d̂i) + ti(d̂
t

i − d̂i) (11)

where si, ti are the parameters.
Similarly, as shown in Fig. 7, the object orientation q̂∗

i

corresponding to the i-th input camera orientation is inter-
polated using the same parameters as:

q̂∗
i ∝ q̂i + si(q̂

s
i − q̂i) + ti(q̂

t
i − q̂i) (12)

where q̂i, q̂
s
i , q̂

t
i are the camera orientations associated with

d̂i, d̂
s

i , d̂
t

i and q̂∗
i , q̂i, q̂

s
i , q̂

t
i are represented by unit quater-

nions.
The evaluation function of s, t is defined as:

10590

�𝒒𝒒1∗ 𝑠𝑠𝑖𝑖

𝑡𝑡𝑖𝑖

�𝒒𝒒𝑖𝑖∗

�𝒒𝒒𝑖𝑖+1∗

𝒒𝒒1,𝑖𝑖
∗

𝒒𝒒1∗
𝒒𝒒𝑖𝑖∗ 𝒒𝒒𝑖𝑖+1∗

𝒒𝒒1,𝑖𝑖+1
∗

Fig. 7. Interpolation of object orientations.

E2(s, t) =

N∑
i=1

min(∥d̂
∗
i − d∗

i ∥22, λ)

+ α

N∑
i=2

∥(q̂∗
i)

−1q̂∗
1 − q∗

1,i∥22

(13)

where s = {si}, t = {ti}, and q∗
1,i is the relative orientation

between the first input camera orientation q∗
1 and the i-th

input camera orientation q∗
i that is calculated as:

q∗
1,i = (q∗

i)
−1q∗

1. (14)

The first term of Eq. (13) is a constraint term for pre-
venting the interpolated descriptors from being away from
the input descriptors. The second term of Eq. (13) is for
satisfying the relative camera orientation constraints. By
setting the parameters in this way, the interpolated descriptors
are constrained to lie on the 2-D manifolds defined for each
class of object.

We find s, t that minimizes the evaluation function with
a non-linear optimization method as:

s, t = argmin
s,t

E2(s, t). (15)

IV. EXPERIMENTS

The following experiments are performed to show the
usefulness of the proposed method.

1) Evaluation with different number of input images.
2) Comparison with a method using multiple images.
3) Evaluation of object orientation optimization.
4) Evaluation with multiple images from our own dataset.

A. Evaluation with different number of input images

To demonstrate the usefulness of using multi-view images
and known relative camera orientations, we perform the
proposed method with different number of input images
and evaluate the accuracy of object class and orientation
estimation.

We use LineMOD dataset [4] to train the CNN and
evaluate the methods. LineMOD dataset consists of real
images of objects, rendered images of their 3D models, and
their camera orientations. Each object is imaged from 301
viewpoints located on an upper hemisphere. We select 10
objects from the dataset and divide their images into 72000

 65

 70

 75

 80

 85

 90

 95

 100

 0 2 4 6 8 10

A
cc

u
ra

cy
 [

%
]

Amount of occlusion [%]

N=1
N=2
N=3
N=4
N=5

Fig. 8. Average accuracy of object class estimation.

TABLE I
AVERAGE ACCURACY OF OBJECT CLASS ESTIMATION [%].

Amount of occlusion [%]
N 0 2 4 6 8 10
1 [13] 99.03 90.01 84.61 79.65 73.34 68.00
2 100.00 90.83 85.56 82.22 77.22 69.44
3 100.00 93.61 88.89 83.89 80.83 76.39
4 100.00 94.17 91.11 85.00 82.22 76.11
5 100.00 95.00 93.61 87.22 86.67 80.28

images for training and N×300 images for evaluation where
N is the number of viewpoints. The CNN is trained for
10000 epochs with Adam, the learning rate of 0.001, and
the batch size of 300.

To evaluate the performance of the methods when the
object is partially occluded by obstacles, a rectangular area in
each input image is filled with uniform noise whose location
is randomly selected to overlap the object. The error of object
orientation estimation is represented by the angle between the
true value of the camera orientation Rgt and the estimated
object orientation R̂ defined as:

θ = cos−1

(
Tr(R−1

gt R̂)− 1

2

)
. (16)

Fig. 8 and Table I show the average accuracy of object
class estimation. Fig. 9 and Table II show the average error
of camera orientation estimation. N ≥ 2 indicates the results
of the proposed method using multi-view images and known
relative camera orientations. N = 1 is equivalent to the
results of the method using a single image [13] where relative
camera orientation constraints are not used. We can see
that the accuracy of object class and orientation estimation
improves as the number of images increases at different
amounts of occlusion. This demonstrates the usefulness of
the proposed algorithm.

B. Comparison with a method using multiple images

We compare the proposed method with RotationNet [11]
that uses multiple input images, and evaluate the accuracy
of object class estimation.

In this experiment, we use MIRO dataset [11] to train
the CNN and evaluate the methods. MIRO dataset consists
of rendered images where 3D object models are imaged

10591

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 2 4 6 8 10

E
rr

o
r

[r
a
d

]

Amount of occlusion [%]

N=1
N=2
N=3
N=4
N=5

Fig. 9. Average error of object orientation estimation.

TABLE II
AVERAGE ERROR OF OBJECT ORIENTATION ESTIMATION [RAD].

Amount of occlusion [%]
N 0 2 4 6 8 10
1 0.365 0.745 0.876 1.008 1.141 1.219
2 0.386 0.688 0.788 0.887 0.977 1.064
3 0.327 0.580 0.747 0.846 0.989 1.067
4 0.314 0.551 0.691 0.837 0.897 1.015
5 0.305 0.519 0.704 0.793 0.907 0.976

from 160 viewpoints determined by dividing a sphere into
16 sections in the azimuth direction and 10 sections in the
elevation direction. We select 10 objects from the dataset
and divide their images into 14400 images for training and
1600 images for evaluation. The number of input images N
is fixed to 4. The other experimental conditions are the same
as those in the experiment in Section IV-A.

Fig. 10 and Table III show the average accuracy of object
class estimation. We can see that the accuracy of object class
estimation of the proposed method is superior to RotationNet
at different amounts of occlusion. This demonstrates the
usefulness of the proposed method.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 2 4 6 8 10

A
cc

u
ra

cy
 [

%
]

Amount of occlusion [%]

RotationNet
Ours

Fig. 10. Average accuracy of object class estimation.

TABLE III
AVERAGE ACCURACY OF OBJECT CLASS ESTIMATION [%].

Amount of occlusion [%]
0 2 4 6 8 10

RotationNet 100.00 95.25 92.00 83.00 78.25 68.25
Ours 100.00 98.75 95.00 89.75 80.37 70.25

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10

Im
p

ro
ve

m
e
n

t
ra

ti
o
 [

%
]

alpha

Fig. 11. Improvement ratio of object orientation estimation.

Fig. 12. Objects used in our own dataset.

C. Evaluation of object orientation optimization

To demonstrate the usefulness of object orientation opti-
mization, we perform the proposed method with different α
in Eq. (13) and evaluate the improvement ratio of object ori-
entation estimation. Note that α = 0 means no optimization.

The error of object orientation estimation is defined by
Eq. (16). The improvement ratio is defined as the ratio of
the number of images where the error is reduced after opti-
mization to the total number of images used for evaluation.

We use LineMOD dataset and the experimental conditions
are the same as those in the experiment in Section IV-A.

Fig. 11 shows the improvement ratio for different α. We
can see that the improvement ratio increases as α increases
and saturates at around 60% after a while that means more
than half of the estimates are improved. This demonstrates
the usefulness of the object orientation optimization.

D. Evaluation with multiple images from our own dataset

To demonstrate the usefulness of the proposed method for
images taken from the cameras on our humanoid robot, we
evaluate the accuracy of object class and object orientation
estimation using our own dataset.

Our dataset consists of images of 10 objects as shown in
Fig. 12 that are captured from 128 viewpoints determined by
dividing a sphere into 16 sections in the azimuth direction
and 8 sections in the elevation direction. Several images are
taken from each viewpoint by slightly moving the camera
and the background region is removed from each captured
image by background subtraction. The dataset is divided into
115200 images for training and 1280 images for evaluation.

The CNN is trained for 1000 epochs. The other experi-
mental conditions are the same as those in the experiment in
Section IV-A.

10592

Kinect v2

FLIR Frea3

Fig. 13. Multiple cameras on our humanoid robot.

(a) Before background
removal.

(b) After background
removal.

Fig. 14. Images where the object is partially occluded by obstacles.

To evaluate the accuracy of object class and orientation
estimation, the proposed method is applied to three sets
of images. The first set consists of 1280 images described
above. The second set consists of 30 images taken from the
three cameras on our humanoid robot as shown in Fig. 13. A
rectangular area of each image in the first and second sets is
filled with uniform noise as described in Section IV-A. The
third set consists of 30 images taken from the three cameras
on our humanoid robot where the object is partially occluded
by obstacles as shown in Fig. 14.

For the first and second set of images, Fig. 15 and Table IV
show the average accuracy of object class estimation, and

 40

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10

A
cc

u
ra

cy
 [

%
]

Amount of occlusion [%]

Conventional (dataset)
Ours (dataset)

Conventional (robot)
Ours (robot)

Fig. 15. Average accuracy of object class estimation.

TABLE IV
AVERAGE ACCURACY OF OBJECT CLASS ESTIMATION [%].

Amount of occlusion [%]
Method 0 2 4 6 8 10

Conv. [13] a 92.42 69.38 56.48 51.51 46.90 42.73
Ours a 98.89 76.11 58.61 54.41 48.83 44.00
Conv. [13] b 80.00 70.00 66.67 66.67 53.33 46.67
Ours b 90.00 90.00 70.00 70.00 60.00 50.00
a Using the first set of images.
b Using the second set of images.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10

E
rr

o
r

[r
a
d

]

Amount of occlusion [%]

Conventional (dataset)
Ours (dataset)

Conventional (robot)
Ours (robot)

Fig. 16. Average error of object orientation estimation.

Fig. 16 and Table V show the average error of object
orientation estimation. We can see that the accuracy of object
class and orientation estimation of the proposed method is
superior to the conventional method [13] at different amounts
of occlusion.

For the third set of images, Table VI show the average
accuracy of object class estimation and Table VII show the
average error of object orientation estimation. We can also
see that the accuracy of object class and orientation estima-
tion of the proposed method is superior to the conventional
method [13] at different amounts of occlusion.

This demonstrates the usefulness of the proposed method
for images taken from the cameras on our humanoid robot.

TABLE V
AVERAGE ERROR OF OBJECT ORIENTATION ESTIMATION

[RAD].
Amount of occlusion [%]

Method 0 2 4 6 8 10
Conv. [13] a 0.98 1.32 1.45 1.41 1.50 1.51
Ours a 0.36 1.04 1.12 1.22 1.24 1.34
Conv. [13] b 1.27 1.35 1.45 1.47 1.58 1.56
Ours b 0.99 1.04 1.11 1.12 1.13 1.35
a Using the first set of images.
b Using the second set of images.

TABLE VI
AVERAGE ACCURACY OF OBJECT CLASS ESTIMATION [%].
Method No obstacle Small obstacle Large obstacle

Conv. [13] a 80.00 76.76 26.27
Ours a 90.00 80.00 30.00
a Using the third set of images.

10593

TABLE VII
AVERAGE ERROR OF OBJECT ORIENTATION ESTIMATION [RAD].

Method No obstacle Small obstacle Large obstacle
Conv. [13] a 1.27 1.45 1.64
Ours a 0.73 0.99 1.47
a Using the third set of images.

V. CONCLUSIONS

In this research, we propose a method of estimating object
class and orientation given multiple input images assuming
the relative camera orientations are known. Input images are
transformed to descriptors on 2-D manifolds defined for each
class of object through a CNN, and the object class and ori-
entation that minimize the distance between input descriptors
and the descriptors associated with the estimated object class
and orientation are selected. The object orientation is further
optimized by interpolating the viewpoints in the database.

The usefulness of the proposed method has been demon-
strated by comparative evaluation with other methods using
publicly available datasets. The usefulness of the proposed
method has also been demonstrated by recognizing images
taken from the cameras on our humanoid robot using our
own dataset.

The accuracy of object class and orientation estimation
using our own dataset is worse than those using publicly
available datasets. This is probably due to differences in
cameras and lighting conditions between at the time of
building the datasets and at the time of capturing images
from the cameras on our humanoid robot. Future works
include increasing the variety of the dataset and reviewing
the structure of the CNN to improve the accuracy of object
class and orientation estimation.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant
Number JP19K12170.

REFERENCES

[1] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and
C. Rother, “Learning 6d object pose estimation using 3d object
coordinates,” in Proc. of European Conference on Computer Vision,
2014, pp. 536–551.

[2] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-
view rgb-d object dataset,” in Proc. of International Conference on
Robotics and Automation, 2011, pp. 1817–1824.

[3] C.-Y. Tsai and S.-H. Tsai, “Simultaneous 3d object recognition and
pose estimation based on rgb-d images,” IEEE Access, vol. 6, pp.
28 859–28 869, 2018.

[4] S. Hinterstoisser, V. Lepetit, S. Ilic, S. Holzer, G. Bradski, K. Konolige,
and N. Navab, “Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes,” in Proc. of Asian
Conference on Computer Vision, 2012, pp. 548–562.

[5] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in Proc. of Computer Vision and Pattern Recognition, 2005,
pp. 886–893.

[6] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up robust
features,” Computer Vision and Image Understanding, vol. 110, no. 3,
pp. 346–359, 2008.

[7] R. Ranjan, C. D. Castillo, and R. Chellappa, “L2-constrained softmax
loss for discriminative face verification,” ArXiv, vol. abs/1703.09507,
2017.

[8] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular
margin loss for deep face recognition,” in Proc. of Computer Vision
and Pattern Recognition, 2019, pp. 4685–4694.

[9] J. M. Wong, V. Kee, T. Le, S. Wagner, G.-L. Mariottini, A. Schneider,
L. Hamilton, R. Chipalkatty, M. Hebert, D. M. Johnson, J. Wu,
B. Zhou, and A. Torralba, “Segicp: Integrated deep semantic segmen-
tation and pose estimation,” in Proc. of International Conference on
Intelligent Robots and Systems, 2017, pp. 5784–5789.

[10] H. Su, S. Maji, E. Kalogerakis, and E. Learned-Miller, “Multi-view
convolutional neural networks for 3d shape recognition,” in Proc. of
International Conference on Computer Vision, 2015, pp. 945–953.

[11] A. Kanezaki, Y. Matsushita, and Y. Nishida, “Rotationnet: Joint
object categorization and pose estimation using multiviews from
unsupervised viewpoints,” in Proc. of Computer Vision and Pattern
Recognition, 2018, pp. 5010–5019.

[12] Y. Nakajima and H. Saito, “Robust camera pose estimation by view-
point classification using deep learning,” Computational Visual Media,
vol. 3, no. 2, pp. 189–198, 2017.

[13] P. Wohlhart and V. Lepetit, “Learning descriptors for object recogni-
tion and 3d pose estimation,” in Proc. of Computer Vision and Pattern
Recognition, 2015, pp. 3109–3118.

[14] J. Wang, Y. Song, T. Leung, C. Rosenberg, J. Wang, J. Philbin,
B. Chen, and Y. Wu, “Learning fine-grained image similarity with
deep ranking,” in Proc. of Computer Vision and Pattern Recognition,
2014, pp. 1386–1393.

10594

