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Abstract— Detecting small obstacles on the road is critical
for autonomous driving. In this paper, we present a method to
reliably detect such obstacles through a multi-modal framework
of sparse LiDAR(VLP-16) and Monocular vision. LiDAR is
employed to provide additional context in the form of confidence
maps to monocular segmentation networks. We show significant
performance gains when the context is fed as an additional
input to monocular semantic segmentation frameworks. We
further present a new semantic segmentation dataset to the
community, comprising of over 3000 image frames with corre-
sponding LiDAR observations. The images come with pixel-wise
annotations of three classes off-road, road, and small obstacle.
We stress that precise calibration between LiDAR and camera is
crucial for this task and thus propose a novel Hausdorff distance
based calibration refinement method over extrinsic parameters.
As a first benchmark over this dataset, we report our results
with 73 % instance detection up to a distance of 50 meters
on challenging scenarios. Qualitatively by showcasing accurate
segmentation of obstacles less than 15 cms at 50m depth and
quantitatively through favourable comparisons vis a vis prior
art, we vindicate the method’s efficacy. Our project and dataset
is hosted at https://small-obstacle-dataset.github.io/

I. INTRODUCTION

Within the realm of perception for autonomous cars, small
obstacle detection is a critical problem. Small obstacles fall
precariously on the border of being classified as drivable
space or obstacles. It is prudent for the planning module of
an autonomous car to be informed of the small obstacles in
its environment.

A straightforward extension of semantic segmentation
methods that label semantically contiguous regions accu-
rately, while occupying a relatively smaller portion of the
overall image has proven difficult to the specific problem
of small obstacle detection. [1]. Since such low frequency
classes occupy an insignificant portion in the predicted label
space, they accrue meager error costs that result in dimin-
ished gradient magnitudes, providing negligible updates to
the model parameters. To overcome this, methods such as
[2], [3] propose cost terms sensitive to small area class
labels (median frequency balancing), which enjoy limited
success. However, such methods have showcased their results
on obstacle class types that can be seen from afar, such as
poles, traffic signs and pedestrians, and do not necessarily
lie on the road. Obstacles lying on the road pose a greater
challenge because such instances are rare in carefully curated
autonomous driving datasets. Additionally, they may not be
easy to spot if the appearance is similar to the road (an
example is shown in Figure 1). In this paper, we develop
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Fig. 1: Example detections: (a) Original image with two
small obstacles (green rectangles). (b) Monocular RGB
baseline fails to detect both the obstacles. (c) The context
(confidence map) generated using LiDAR point cloud. (d)
The proposed method (combining monocular image with
LiDAR context) successfully detects both the obstacles.

an alternate paradigm - one that fuses LiDAR and Image
inputs effectively for on-road small obstacle detection.

In our method, LiDAR scans, available from the sparse
Velodyne Puck 16, are used to detect probable obstacle
regions in a scan through a discontinuity detector. A con-
tiguous set of 3D points between two discontinuities form
a candidate small obstacle region. These candidate regions
are projected onto the image plane through LiDAR-Camera
extrinsics and are further blurred through the Gaussian blur
operator. The resultant blurred candidate regions are assigned
probability scores, generating a small obstacle confidence
map for the image. The confidence map generated is then
concatenated with image features, forming a four-channel
input to a segmentation network. The network - supervised
on three classes, namely the road class, off-road class,
and small obstacle class, - can accurately detect small
obstacle regions hitherto difficult for a purely image-based
classification framework (a motivating example is shown in
Figure 1). We show significant improvement in detection
and classification accuracy of small obstacle regions by such
fusion of LiDAR and image-based sensing modalities vis a
vis image only classifier architectures. Formally our paper
makes the following contributions:

1) A novel LiDAR-Camera small obstacle segmentation
dataset that comprises over 3000 frames with per
pixel annotation of 3 classes, on-road, off-road, and
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Fig. 2: The proposed small obstacle detection pipeline. The confidence module generates a confidence map based on the
point cloud. The result is concatenated with the current image and used to predict a segmentation mask.

small obstacle along with LiDAR-Camera calibration
extrinsics. This dataset can also be viewed as an
image only or LiDAR only dataset for small obstacle
segmentation. We additionally release a synthetic small
obstacle dataset, consisting of LiDAR and monocular
image data collected from a simulator.

2) A novel pipeline that combines confidence map infor-
mation obtained from LiDAR point clouds with RGB
image features, demonstrating a significant improve-
ment over image-based architectures such as [4], [5].
We anaylse our methods in section V-B. Furthermore,
we provide detailed ablation studies across alternative
methods for various modules that constitute the overall
pipeline. The use of the sparse Puck 16 LiDAR over
its denser 64 scan-line counterpart, which is more
amenable to point cloud segmentation, is yet another
cornerstone of this work.

3) And finally, a novel Haussdorf distance-based marker-
less LiDAR-Camera calibration refinement that signif-
icantly improves training time and accuracy as a result
of improved extrinsics.

II. RELATED WORK

The task of semantic segmentation has seen tremendous
success over the past few years. The success can be at-
tributed to the versatility of CNN based encoder-decoder
architectures [3], [4], [5] and the availability of large datasets
which allow efficient training [6], [7]. However, handling
class imbalance has always remained a challenge as small
objects usually contribute less to the segmentation loss. Many
semantic segmentation works follow a relatively simple cost-
sensitive approach via an inverse frequency rebalancing
scheme, e.g., [8] or median frequency re-weighting [2]. The
small classes, such as pole and signboards, in autonomous
driving datasets like Cityscapes are unable to supervise a
network to detect small-obstacles lying on the road. Apart
from class imbalance (and class mismatch), monocular small
obstacle detection also faces the challenge of weaker ap-
pearance cues (Figure 1). To highlight these concerns,

we use two state of the art image segmentation networks
DeepLab [4]and HRNet [5] as our baselines. Both networks
were pretrained using the Cityscape dataset and were fine-
tuned on the proposed IIIT Small obstacle detection dataset.

Specific efforts have been made in the area of on-road
small obstacle detection. The carefully curated Lost and
Found dataset [9] has been pivotal to progress in this
direction. Existing approaches augment the appearance cues
with a depth map, obtained using a stereo camera. The work
by Pinggera et al. [9] performs statistical hypothesis tests in
disparity space directly on stereo image data, assessing free
space and obstacle hypotheses on independent local patches.
Ramos et al. [10] combines deep learning approaches with
geometric cues. MergeNet [11] proposes a novel architecture
combining local structural cues obtained from a Stripe based
network with a full image output. MergeNet takes inspiration
from Stixel based processing [12] and demonstrates the
ability to be trained from only a few images (as low as 135).
The major limitation of these approaches is the reliance on
inaccurate depth maps, especially in low texture scenarios or
in cases where the obstacle appearance is similar to that of
the road.

In this paper, we employ a LiDAR + RGB pipeline for
segmentation of on-road small obstacles. LiDAR data has
been successfully used for problems like object and road
segmentation [13], curb detection [14] etc. Combining RGB
data has shown to bring improvements in both the tasks
of semantic segmentation [15] and object detection [16] (in
contrast to pure LiDAR methods). The fusion of the two
modalities particularly shows improvements for detecting
objects at a long-range (>40m-70m) over their RGB and
LiDAR only counterparts [15]. Various methods have been
proposed in [17], [18], [19] to fuse LiDAR point cloud
with camera image through spherical range image projec-
tion, bird’s eye view projection and by upsampling sparse
depth maps. However, the performance of these methods
have been demonstrated particularly on large region classes
such as roads, cars, pedestrians etc. and detection of small
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Fig. 3: Break point identification (for point R). The points
P , Q and R are consecutive points that lie on the same
LiDAR ring. O represents the centre of the LiDAR sensor.
OP , OQ, OR and OR′ corresponds to di, di+1, di+2 and
dp respectively.

object classes still remains a challenging problem in fusion
architectures.

The problem is difficult to solve using LiDAR alone
because (a) the small obstacle may not intersect with LiDAR
rings, especially when using sparse LiDAR (as used in our
work) and (b) even if the discontinuities are detected the
overall extent of the object will be unknown in the image
space. We propose a method fusing sparse 16 channel LiDAR
with monocular data and provide pixel-level segmentation in
the image space. To the best of our knowledge, this is the first
such method that combines sparse LiDAR with monocular
image data to segment small obstacles.

Our work is also related to the literature in LiDAR and
RGB calibration [20], [21]. We show that minor calibration
errors can be extremely problematic for the task of small
obstacle detection. Consequently, we propose a method for
fine refinement of extrinsic parameters for LiDAR-RGB cali-
bration. The intuition of the approach is to align the detected
LiDAR discontinuities on the road with nearby ground truth
small obstacle segmentation labels in image space. The
refinement algorithm leverages Hausdorff distance for the
task and is agnostic to the original calibration algorithm.

III. METHODOLOGY
A. Overview

The proposed pipeline is illustrated in Figure 2. At a given
time, the input is an RGB image and the corresponding
LiDAR point cloud. The output is a three-class (road, small
obstacle, and off-road) semantic segmentation map. At first,
the LiDAR point cloud is used to detect discontinuities
(breakpoints) on the road using geometric reasoning (the
detected discontinuities are illustrated with green rectangles
in Figure 2). The detected discontinuities are then projected
onto the image space and are used to generate a pixel level
confidence map. Since the LiDAR used in our experiments
is sparse, it may miss out on some of the small obstacles (in
cases where no LiDAR point falls on them). The confidence
map is further augmented using temporal propagation of
discontinuities detected in previous frames. The confidence
map with the RGB image (4D input) and the corresponding
ground truth maps are then used for training a deep convolu-
tional network for semantic segmentation. We now describe
each of these steps in detail.

Fig. 4: LiDAR points projected onto the image space. Points
within each pair of breakpoints (denoted in Red) represent a
small obstacle segment (AB).

B. Obstacle Confidence Maps from LiDAR
Breakpoint Detection: We identify geometric break

points within each ring of the Point Cloud, where a ring
is defined as one complete 360◦ scan for a given channel of
the LiDAR. Our sensor VLP-16 gives 16 such rings within
a vertical resolution of 30◦ (-15 to 15). We use the approach
discussed in [22] to isolate points of depth discontinuity or
break points within each such ring. As illustrated in Figure 3,
for a given triplet of consecutive points, P = {pi, pi+1, pi+2}
having distances D = {di, di+1, di+2} from the LiDAR
origin, we utilise the LiDAR’s horizontal angular resolution
angle θ, and the measured distances di, di+1 at pi and pi+1

respectively to predict the distance dp at pi+2.

dp =
didi+1

2di cos θ − di+1
(1)

The point pi+2 is categorised as a break point if the dif-
ference between the predicted distance dp and measured
distance di+2 is beyond a certain threshold dth.

|di+2 − dp | ≥ dth (2)

We then filter out the breakpoints detected outside the
road. For sequences where road curbs and pedestrian path-
ways are elevated from the road plane, we use our detected
breakpoints to isolate the road segments, ring wise within the
Point Cloud, in a similar fashion to what has been discussed
in [22]. We use a pre-trained SqueezeSeg [13] for road
segmentation when the curbs are not available. Our method
is agnostic to the choice of road segmentation algorithm, and
any pre-trained algorithm either in image or LiDAR space
can be used for the task.

Small Obstacle Segment Isolation: We define gradient
direction at a breakpoint A as G(A) = sign(di+2 − dp).
A consecutive pair of breakpoints A and B are said to
belong to an obstacle segment if G(A) is negative and G(B)
is positive. Small obstacle segments are then filtered out
based on the horizontal/azimuthal angular resolution between
the breakpoints A and B (example detected small obstacle
segments as a pair of breakpoints are illustrated in Figure 4).
This spread/resolution differentiates big obstacles such as
cars from their smaller counterparts. For this dataset, we
define this threshold as 2◦ and set the value of dth as 0.4.
This allows us to detect an obstacle as small as 15 cms in
height from about 50 meters away.

Confidence Maps: To generate a pixel level confidence
map, we project the detected small obstacle segments onto
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Fig. 5: Temporal Aggregation. (A) Current Confidence Map generated by break point detection and segment isolation. Note
that the two discontinuities in the Point Cloud (depicted within green rectangles) correspond to current Confidence Map. A
third obstacle is missed by the current LiDAR scan. (B) A template of the third small-obstacle is retrieved from contexts
given in the past frames. (C) Using the template extracted and the current image, temporal aggregation is performed to
generate an aggregated temporal confidence mask

the image plane. The projection is performed using the
mapping φ : R3 → R2:

x = φ(X ,K ,T ). (3)

where X is the set of 3-D LIDAR points belonging to a
small obstacle segment and φ is the projection operator. φ is
parametrized by camera intrinsic matrix (K ) and extrinsics
matrix (T ). The set of projected points, x , then serve as
anchors of our confidence regions, where each point in this
set is assigned a confidence value of 1 and the confidence
values in the neighbourhood of this point follow a Gaussian
distribution (with mean centered on the point and variance
parameterized by σ).

C. Temporal Propagation of Confidences

We further augment the confidence maps using the tem-
poral propagation of the previously detected small obstacles.
This step helps to gather context for obstacles which are
missed by the sparse LiDAR in the current frame. The
updated confidence map is then used as the input to the
segmentation network. The propagation is performed in a
two step process: (a) we select a Region of Interest (ROI) in
image space around the projections of the previously LiDAR
detected small obstacle segments and (b) we find the corre-
sponding ROI in the current frame using template matching
in RGB space. We reduce the search space during template
matching using the coarse odometry estimates between the
past and the current frame. An example is illustrated in
Figure 5.

IV. SMALL OBSTACLE DATASET

We introduce the Small Obstacle Dataset to the com-
munity considering the importance of this problem for on-
road navigation. Occurrences of small obstacles like bricks,
granite rocks, stones may not be too uncommon in some
parts of the world. Such objects are often on roads adjacent

to or bordering large scale construction sites. Sometimes
it is possible that sentient beings such as cats and dogs
may be asleep on the roads. To this end, we curate a
novel IIIT Small Obstacle Dataset encompassing significant
variations in terms of obstacles, road types and lighting. We
release both: a real dataset and a synthetic small obstacle
dataset collected in a city environment in Unreal Engine.
The synthetic version can be utilized to evaluate approaches
for domain adaptation and randomization; however, in this
paper we limit our discussion and results on the real dataset.

A. Description

The dataset includes monocular RGB images and
synchronized LiDAR scans with Odometry information.
The details in terms of total images and train/val/test splits
are given in Table I. We used different roads and different
set of obstacles while recording the train, val and test
sequences. Test split is kept to be most challenging in terms
of turns, occlusions and shadows to better evaluate the
generalizability. A small obstacle is defined as an object
whose longest dimension is less than the diameter of a
standard car wheel - which is around 21 inches.

1) Sensor and Software Setup: The Sensor and Software
setup for recording the data is as follows
• ZED Stereo camera (only left feed).
• Velodyne Puck (VLP-16).
• Vehicle - Mahindra E2O electric car.
• ROS Kinetic

Split # seq. # Images with curbs without curbs
Train 9 1937 6 3
Validation 4 530 2 2
Test 2 460 1 1
Total 15 2927 9 6

TABLE I: Description of the Small Obstacle Dataset
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2) Annotations: We provide accurate pixel-level semantic
annotations specific to the task of small obstacle segmen-
tation for a selected set of images for all the sequences
(sampling more densely around small obstacles). The total
number of annotated images is 2927 (Table I). We also
release all the raw sequences. The dataset is segregated into
three classes, namely, Road, Off-Road and Small-Obstacle.
Everything except road and small obstacles is labelled as
off-road class (buildings, cars, pedestrians etc.). The Small-
Obstacle class is further annotated with nine different types
of sub-classes (stones, bricks, plastic, dogs etc.).

B. Improving LiDAR-Camera Calibration

LiDAR and Camera provide complementary streams of in-
formation in depth and colour and have become an indispens-
able part of the perception module for autonomous driving.
To make vital environmental inferences, it is essential that
they must be well calibrated so that their mutual information
can be fused together. The problem hence involves finding
the 6-DoF rigid body transformation matrix which allows for
flexible transformation between their respective co-ordinate
frames. This is done by solving for point-correspondences
either between 2D-3D points i.e pixel co-ordinates in Camera
frame and 3-D points in Point-Cloud or through 3D-3D
associations. In the latter, specific setups like AR based
ArUCo markers are used, which facilitate retrieving the 3-D
coordinates in the camera frame through encoded patterns.
We use this method for our setup utilising ArUco markers
as detailed in [21].

While the method is specifically adapted to work with
sparse 16 channel LiDAR over other methods - which
use a denser 64 channel LIDAR(for eg. used in KITTI
dataset [23]), it still has its limitations. It relies on recognition
of the patterns in ArUco marker to calculate the 3-D corre-
spondences for the Camera frame, therefore the markers are
kept within a few metres of the setup during the optimisation
process. We observed that the calibration matrix obtained
using point correspondences, estimated using this method
(i.e corners of the marker), were not accurate at greater
distances( 50m), posing a significant problem for our task
(an example is illustrated in Figure 6). We therefore propose
a method to do fine refinement over the extrinsics parameters
specifically for tasks where precise calibration is essential for
sensor fusion. Below we explain our methodology and show
Quantitative results in V of improvement over the original
task with this refined calibration method.

2D-3D Point Correspondence: The main intuition of
our approach is that if the calibration is accurate, the small
obstacle segments detected in 3D LiDAR point cloud when
projected onto 2D image space should intersect with ground
truth annotations of the small obstacle class. Formally, let
S1 denote the set of 3D points falling on multiple small
obstacles and P2 denote the set of 2D points belonging
to the corresponding annotated pixel label in Image. We
optimise over the extrinsic calibration parameters such that
the projection set P1 ∈ R2 of S1 obtained through (4),
has the following property: P1 ⊆ P2, i.e. all detected

Fig. 6: (a) Point Cloud projection using calibration matrix
obtained through [21]. (b) Improved calibration using our
method. We can observe how projection error becomes more
significant for farther obstacles.

small obstacle segments in the point cloud lie within their
respective pixel label bounds. The transformation operation
φ : R3 → R2 is defined as:(

x
y

)
= π

R
XY
Z

+ t

 . (4)

where π subsumes the camera intrinsics (fx,fy ,cx,cy) and
R, t are the 3-dimensional rotation and translation matrix in
SO(3) respectively.

Let the 1 x 6 vector ξ = (ν, ω) ∈ se(3) denote our
initial coarse calibration extrinsics where [νx, νy, νz] is the
translation vector and [ωx, ωy, ωz] is the rotational vector
along their respective axis. The rotational vector ω ∈ so(3)
can be converted to R ∈ SO(3) using the exponential map
exp: so(3) → SO(3); ω → eω .

R = I +
w

||w||
sin ||w||+ w2

||w||2
(1− cos ||w||2) (5)

According to our chosen point correspondences stated
above, we now define the projection loss through Hausdorff
distance.

Hausdorff Projection Loss: The directed Hausdorff dis-
tance between two sets P1 and P2 is defined as:

d(P1, P2) = sup
x∈P1

inf
y∈P2

||x− y||. (6)

The loss function thus gives a measure of the distance the
set P1 has to travel in Euclidean image space so as to be
completely contained inside of P2. Gradients with respect to
each of the 6 elements of the se(3) transformation vector ξ
can then be back-propagated while minimising the loss with
any gradient based optimizer. For the experiment, we sample
a few frames from each sequence of the Training split of the

8517



Dataset and use Adam [24] optimizer with a learning rate of
1e-5.

V. EXPERIMENTS AND DISCUSSION

A. Evaluation metrics

We evaluate our model’s performance on both instance-
level and pixel-wise metrics:

Instance Detection Rate (IDR): Instance-level detection
rate (IDR) is defined as the fraction of obstacle instances,
taken across the dataset, which are detected by the network.
For this metric, an instance is marked correctly detected
if more than 20% of the pixels of the predicted obstacle
overlaps with the ground truth of that instance. For extract-
ing instances from pixel-level predictions we use a similar
approach to [11]. The IDR metric is formally calculated as:

IDR =
TPobstacle

TIobstacle
. (7)

Where a true positive, TPobstacle, represents a set of pre-
dicted instances that have an overlap greater than a threshold
of 0.2 with the ground-truth. TIobstacle is the total instances
of the obstacle class, taken across the entire dataset.

instance False Detection Rate (iFDR) This metric is
defined as the fraction of instances that have been incorrectly
detected as small obstacles.

iFDR =
FPobstacle

PREDobstacle
(8)

Where a FPobstacle is defined as any predicted small obstacle
prediction instance that has no overlap with ground truth and
PREDobstacle are the total number of instances predicted as
small obstacles.

Pixel Detection Rate (PDR) PDR is the fraction of small
obstacle pixels that have been correctly predicted.

PDRobstacle =
TPXobstacle

GTXobstacle
(9)

where TPXobstacle denotes the total number of correctly
predicted small obstacle pixels and GTXobstacle is the total
number of small obstacle pixels in the image.

mean Intersection over Union (mIoU) The mean Inter-
section over Union (mIoU) is a commonly used metric for
semantic segmentation. It measures the average Intersection
over Union across all classes.

IoU =
TPX

TPX + FPX + FNX
(10)

Where, TPX , FPX and FNX are pixel level True Pos-
itives, False Positives and False Negatives for the small
obstacle class.

B. Experiments

We compare our method with two monocular semantic
segmentation baselines. We present thorough ablations to
motivate each component of the proposed pipeline. The
evaluations are performed on the test set of the proposed
IIIT Small Obstacle Dataset. Each experiment is trained on
2 Nvidia GTX-1080ti GPUs for 15 epochs. A batch size of
6 is kept during training.

Network Method Instance-level Pixel-level
IDR iFDR PDR mIoU

DeepLab-
V3+[4]

Image 0.39 0.28 0.37 0.73
Image + CM 0.50 0.26 0.45 0.74
Image + CM + TP 0.60 0.18 0.60 0.76

HRNet[5]
Image 0.44 0.25 0.27 0.70
Image + CM 0.47 0.25 0.32 0.70
Image + CM + TP 0.63 0.21 0.51 0.73

TABLE II: Performance comparison between various inputs
to the semantic segmentation architectures.

As to the choice of the segmentation network, we picked
two state of the art networks DeepLabV3+ [4] and HRNet [5]
on CityScapes benchmark. They also made a suitable choice
due to availability of pre-trained model/weights and well
documented reproducible code base. We perform three set
of experiments considering pre-trained DeepLabV3+ and
HRNet as base networks. The pre-training is performed on
the CityScapes dataset.

Image baseline: Our baseline for comparison is the
performance of base network on the Small Obstacle Dataset,
when trained on images only. We fine-tune a pre-trained
base network on the proposed dataset to give a 3 class per
pixel prediction. We supervise the network using the Cross-
Entropy loss with inverse frequency rebalancing.

Image + LiDAR confidence masks: Next, we modify the
base-network by initialising a new channel for the input layer
so as to accept a 4D input tensor. We then train the network
on images concatenated with confidence masks (generated
using LiDAR projections) along the channel dimension. This
experiment only considers the current LiDAR for generating
the confidence maps.

Image + LiDAR confidence masks + TP: This experi-
ment is similar to (Image + LiDAR) in network configura-
tion. However, the temporal context (4 previous frames) is
considered to generate the confidence maps (to compensate
of obstacles missed in the current frame).

C. Results

In Table II we evaluate the performance of our framework.
All metrics are reported for the test set. The DeepLab-V3+
image-only baseline achieves an IDR of 0.39. Our proposed
method of temporally aggregated confidence maps shows
a 53% improvement to an IDR of 0.60, while reducing
the iFDR by 35% to a score of 0.18. Furthermore, this
improvement comes with a 4% increase to 0.76 in the mIoU
metric.

A similar trend is seen when our framework is trained
with the HRNet segmentation network. The HRNet image-
only baseline achieves a higher IDR than DeepLab-V3+ at
0.44. When trained with our proposed temporally aggregated
confidence masks along with images, performance improves
by 43% to a score of 0.63, while the iFDR drops by 16%
to a score of 0.21.

We further note the increase in the IDR metric between
utilising obstacle confidences only from the current frame
(Image + CM), and temporally propagating such confidences
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Method IDR PDR
RANSAC 0.424 0.43
Conv-1D 0.421 0.373
Geometric (ours) 0.50 0.45

TABLE III: A comparison of various small obstacle detection
techniques on Point Cloud.

from previous frames (Image + CM + TP). As can be seen
in Table II, there is a 20% corresponding increase from 0.50
to 0.60 by augmenting the confidence map using temporal
observations. This reinforces the importance of temporal
confidence propagation.

We present a few qualitative results across our test and
validation splits in Fig. 7. It can be observed that even when
there is a high confidence value on legitimate regions within
the image (in Fig. 7, legs of a man, wheel of a car), the
joint representation has learnt to classify these regions as
non-obstacle(road/off-road).

VI. ABLATION STUDY

We show the following ablation experiments across our
three main contributions: (a) Detection of small obstacles
in the LiDAR Point Cloud, (b) Temporal propagation of
confidences and (c) improved extrinsics calibration. All of
the results presented below use DeepLab-V3 as the base
network architecture.

1) Detection of Obstacle Segments: We experiment with
multiple approaches for detecting a small obstacle within a
Point Cloud ring. In Table-III we show our results with three
such methods for the Image + Confidence Map Baseline.
We first experiment with a plane-fitting method where points
falling on small obstacles are classified as outliers through
Random sample consensus [25]. Through this we can suc-
cessfully detect bigger small obstacle instances however
it fails on small instances such as rocks, bricks etc. We
then study a learning based method where a small 1-D
convolutional network is trained to classify each point within
the curb boundaries as a road or an obstacle point. The best
results were obtained using geometric approach (Sec III-B)
and was thus used in our final pipeline.

2) Temporal Propagation of Confidences: We tried two
different methods for temporal propagation and observed
their impact on the final output (Table IV). In Forward
Projection, we directly project obstacle detections in pre-
vious 4 frames onto the current Image frame using Odom-
etry information calculated through LiDAR Odometry and
Mapping[26]. However due to less than desired accuracy in
the Odometry estimate this doesn’t localize the confidence
map to the true small obstacle instance on the Image and
shows minor improvement. The proposed temporal aggrega-
tion (Sec III-C) gives much improved results.

3) Improved Extrinsics Calibration: Here we study the
effect of better calibration on our method comparing the
results on Image + Confidence Map baseline. In Table-V
it can be seen how better calibration significantly affects the

Method IDR iFDR PDR
Forward Projection 0.52 0.23 0.43
Temporal Aggregation 0.60 0.18 0.60

TABLE IV: A comparison of methods for temporal propa-
gation of detected obstacles.

Extrinsics Parameters σ IDR iFDR PDR
Pre-
Hausdorff

5 0.412 0.263 0.363
7 0.426 0.217 0.36

Post-
Hausdorff

5 0.50 0.26 0.45
7 0.49 0.22 0.464

TABLE V: Comparison on the detection performance be-
tween Coarse and Fine calibration obtained using our
method. σ denotes the variance of the Gaussian blur.

detection of small obstacle instances. It is to be noted that
increasing the spatial spread of the Confidence region/map
with coarse extrinsics (Pre-Hausdorff) does not translate to
a comparable performance with a better set of extrinsics
obtained using our method. This highlights the need for
calibration refinement in our pipeline.

VII. CONCLUSIONS

Our work focuses on the problem of detecting small
obstacles lying on road by fusing monocular RGB and
LiDAR data. Our experiments show that IDR increases by
40-50% when a given image only segmentation network
is augmented with Confidence Maps provided by LiDAR.
Thorough experiments using two state of the art base net-
works DeepLABV3+ and HRNet demonstrate the efficacy
of our approach. We also show that small obstacle ground
truth annotations can be exploited to improve the extrinsic
calibration, which in turn improves the IDR (Table- V). We
further present thorough ablation studies to justify the design
choices. Overall, our method is able to detect 73% of the
small obstacles (as small as 15cm high) within the range of
50 meters.
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