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Abstract— In this paper, we propose a novel sim-to-real
framework to solve bolting tasks with tight tolerance and
complex contact geometry which are hard to be modeled. The
sim-to-real has desirable features in terms of cost and safety,
however, that of the assembly task is rare due to the lack of
simulator, which can robustly render multi-contact assembly.
We implement the sim-to-real transfer of nut tightening policy
which is adaptive to uncertain bolt positions. This can be
realized through developing a novel contact model, which is
fast and robust to complex assembly geometry, and novel
hierarchical controller with reinforcement learning (RL), which
can perform the tasks with a narrow and complicated path.
The fast and robust contact model is achieved by utilizing
configuration space abstraction and passive midpoint integrator
(PMI), which render the simulator robust even in a high
stiffness contact condition. And we use sampling-based motion
planning to construct a path library and design linear quadratic
tracking controller as a low-level controller to be compliant
and avoid local optima. Additionally, we use the RL agent as
a high-level controller to make it possible to adapt to the bolt
position uncertainty, thereby realizing sim-to-real. Experiments
are performed to verify our proposed sim-to-real framework.

I. INTRODUCTION

In general, reinforcement learning (RL) requires lots of
data. Therefore, using simulation is safer and more cost-
efficient than using many of expensive hardware. Also, if
RL is in the simulation environment, we can access various
sensing data which is used for result analysis or evaluating
the effectiveness of each sensor. We can generate complex
behavior and control strategy even for new mechanical
designs under development, which is hard to generate real
data.

Despite recent progress on the sim-to-real algorithm with
domain randomization [1]–[3] and successful implementa-
tion including quadruped [4], [5], non-prehensile manip-
ulation [1], [6], in hand manipulation [3], walking [7],
results on assembly with complex motion and tight tolerance
are rare. The main bottleneck of applying the sim-to-real
framework of such a tight assembly task is a lack of simulator
which RL can be applied to [8]. To apply RL to those
tasks, robust multi-contact simulation between strongly non-
convex meshes is necessary, because unreliable multi-contact
solution results in the penetration which can make infeasible
trajectory samples and degenerate RL performance. If we
consider the computational efficiency of the multi-contact
model, there are fewer options. In particular, bullet [9]
and MuJoCo [10] are the widely used simulator for RL,
however, nut tightening is hard to be simulated in real-time
with these simulators, because of limitation on the contact
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Fig. 1: Snapshots of sim-to-real transfer for bolting task

model. Collision detection (CD) of these simulators is the
main bottleneck of the whole simulation process in the case
of assembly between non-convex shapes. It is based on
searching through the mesh, and this makes the algorithms
not to be scalable to the number of faces in the mesh.

In this paper, we propose a novel sim-to-real transfer
framework for bolting tasks, which has tight bolt-nut geo-
metric tolerance (e.g., 0.3mm) and requires a complicated
strategy to adapt geometric uncertainty in practice. More
precisely, we propose a novel contact model, which, utilizing
the configuration space (C-space) formulation, can substan-
tially improve the robustness of contact enforcement (e.g.,
mitigated penetration) while providing the CD efficiency of
the C-space. Furthermore, we devise a hierarchical controller,
which consist of nominal low-level linear quadratic tracking
(LQT) and high-level RL to adapt the geometric variability,
rendering the control strategy robust against the issue of local
optima [11] as well as the bolt-nut positioning uncertainty
in practice (see Fig. 2). The proposed sim-to-real framework
has also been experimentally verified with the real Franka
Emika PANDA robot for the M48 bolt-nut assembly task.
To our knowledge, our proposed framework is the very first
sim-to-real result for bolting tasks with tight tolerance.

The main idea of the proposed contact model is utilizing
C-space formulation and it has been studied in various areas.
In [12], CD is accelerated by constructing C-space collision
boundary with a data-driven model and labels from standard
CD library, to be used in motion planning. On the other hand,
our study not only focuses on CD but also extends C-space
formulation to the calculation of the interaction force. In [13],
they also calculate interaction force with C-space formulation
to render realistic joint limits of the human, however, this
approach cannot render robust multi-contact simulation in the
case of tight assembly with complicated geometry because of
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Fig. 2: Structure of the proposed hierarchical controller.
Hierarchical controller receives state q, velocity q̇ in C-space
and interaction force Fint and calculates input u and feed-
forward force FF to system. High-level controller decide
parameter of LQT (Q,T, ¯̇q) and FF, where Q is scale of
quadratic metric in the cost of L,Lf . The low-level controller
calculates emulated input u in W-space, generating reference
trajectory q̄ from the SMP path library. The proposed hier-
archical controller is trained in the simulator and transferred
to the real robot as a sim-to-real manner.

numerical instability induced by discretization. We develop
a novel volumetric state representation method in C-space
which substantially improves robustness. Additionally, we
introduce friction in C-space formulation, which is absent
in previous works despite its importance in assembly.

The rest of the paper is organized as follow. Sec. II
explains system modeling and background. In Sec. III, a
novel multi-contact simulation framework is proposed. In
Sec. IV, the idea of hierarchical controller is presented
and Sec. V explains the experimental results and details on
implementation in simulation and real robots. Finally, Sec.
VI highlights our conclusion and future works.

II. PRELIMINARY

A. System Description

In this paper, we utilize Franka Emika Panda, a 7-DoF
robot arm. A specification of the bolt is M48 following KS-
B-0201 [14]. We use an additional actuator, X-series of HEBI
robotics, to rotate nut infinitely regardless of the joint limit
of the last joint. A nut is rigidly attached to the additional
actuator with a manufactured mounting part. The robot
arm provides measurements of joint position and velocity.
Force and torque values are measured by force-torque (F/T)
sensor attached between end-effector and additional actuator.
Regarding measurement, the objective task requires delicacy
and we found that there is sensing uncertainty, which is
turned out to induce jamming of the nominal controller
without incorporating this uncertainty tolerance (see Sec. IV-
A). Uncertainty issue can be resolved by RL (see Sec. IV-B).

Dynamics of the robot arm with nr degree-of-freedom
(dof) can be represented by Euler-Lagrange dynamics as

follow

M(qr)q̈r + C (qr, q̇r) q̇r + g(qr) = τr +
∑
i

JTi Fint,i

where M(qr) ∈ <nr×nr is the inertia matrix, C(qr, q̇r) ∈
<nr×nr is Coriolis matrix, g(qr) ∈ <nr is gravity vector,
qr ∈ <nr is the joint angle of the robot arm, τr ∈ <nr is joint
torque, Fint,i ∈ <3 is contact forces expressed in Cartesian
contact frame, Ji ∈ <3×nr is jacobian matrix from robot
joint space to Cartesian contact space. Note that the contact
force at a contact point only includes force components
without torque.

Since assembly tasks can be expressed more directly in
the workspace (W-space), we shape robot dynamics to nut
dynamics in W-space with an adequate controller. In this
paper, we utilize the admittance control with the F/T sensor
on the robot arm. We choose this admittance control over the
impedance control, since Franka Emika robot arm has non-
negligible friction and backlash for bolting tasks with tight
tolerance, while the robot motion rather slow compared to
sensing and actuation delays. The frequency of admittance
control is 1kHz. We assume that the nut dynamics in SE(3)
is shaped from the dynamics of the robot arm to be

Mdξ̇ + Cd(ξ)ξ = u+
∑
i

Jd,i
TFint,i (1)

where Md ∈ <6×6 is desired inertia matrix, Cd(ξ) ∈ <6×6

is desired Coriolis matrix, ξ = (v;ω) ∈ se(3) is twist with
velocity v ∈ <3 and angular velocity ω ∈ <3, u ∈ <6 is
emulated desired input and Jd,i ∈ <3×6 is jacobian matrix
to nut frame. We use SE(3) space of (1) as W-space.

For the nut C-space representation, we adopt q = (p;φ) ∈
<6 where p ∈ <3 is center position of the nut and φ ∈ <3

is Euler angle parameterization. Thus, conversion from the
twist in the W-space to the velocity in the C-space is achieved
by jacobian matrix with the relation of q̇ = Jcwξ, where
Jcw ∈ <6×6.

B. Multi-Contact Simulation
Typically, contact solver is formulated in W-space and it

requires contact points and geometric information of objects.
Yet, for bolting, contact geometry is complex because the
shape of the bolt and nut is complicated, thus the elaborate
mesh which has a large number of faces should be needed
to describe its geometry. Then mesh-mesh CD should be
applied, but it is rather slow with the large size of the
mesh. Furthermore too many contact points prone to generate
unreliable normal vectors, and if contact clustering is applied
to reduce the number of the contact point, it possibly ill-
conditioned and physically inaccurate [8]. To avoid this, we
will formulate the contact in the C-space with q ∈ <6 as
defined in Sec. II-A, then, the object is represented by a
point with constraints boundary in this C-space, thus, the
CD is achieved efficiently by evaluating h(q) value (i.e.,
contact-off if interior, contact-on if exterior). Yet, friction
is not straightforward to formulate in this C-space. Thus, we
convert this contact information in C-space to contact points
in W-space and apply contact solver which has been studied
well [10], [15], [16]. We further integrate this novel contact
model into passive midpoint integrator (PMI) [17], which
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Algorithm 1: Training algorithm for implicit function
Result: h(q)

1 S = ∅
2 Get set of path nodes SSMP from SMP
3 while not converged do
4 S = S ∪ {set of uniformly distributed samples}
5 S = S ∪ {set of normally distributed samples

from SSMP }
6 S = RejectionSampling(S)
7 Siv, Sv =Evaluation(S)
8 Siv, Sv = Balancing(Siv, Sv)
9 h(q) = Training(Siv, Sv)

10 end

can allow us to simulate stiff and light objects with short
computation time. Thus PMI not only allows us to collect a
large amount of data within short wall time (see Sec. V-A)
but also ensure the stability of the high-stiffness multi-contact
simulations for the bolting operations.

III. MULTI-CONTACT SIMULATION IN C-SPACE

A. Pfaffian Constraint Learning
To explain the proposed contact model, we first construct

the surface of the contact volume in the 6D C-space. More
precisely, we build a smooth function h(q) ∈ < which is
positive for contact-off state (i.e., interior of volume) or
negative for contact-on state (i.e., exterior of volume). In
other words, for all interior and exterior configuration states
qin and qex, h(q) should satisfy h(qin) > 0, h(qex) < 0
respectively. Then, h(q) = 0 functions as a boundary surface
that determines collision of states in the C-space. Once we
construct this h(q), its gradient ∂h/∂q can be calculated,
which encodes the normal direction of this surface and
also is often used as the vector of Pfaffian constraint A(q)
for constrained dynamics to compute constraint force. To
construct this h(q), in particular, we apply a neural network
(NN) approximation, which ensures the smoothness of h(q).

NN is trained with labeled data from standard CD library
such as bullet [9] and FCL [18]. To obtain labeled data
set, the simplest approach is to generate uniform samples in
bounded state space, and evaluate each point using the CD
library. However, with this uniform distribution alone, it is
difficult to learn the narrow and complex shape h(q), which
is important for bolting simulation. To construct accurate
h(q), samples that are densely distributed in adequate area
play an important role, and it is difficult to sufficiently
express this distribution with a uniform distribution. To solve
this problem, we utilize the sampling-based motion planning
(SMP) and the rejection sampling method. SMP generates
trees of the path from a random initial state to the goal
state. All these paths include the states that the nut undergoes
during performing the assembly task, thus the samples along
this path help to improve the preciseness of h(q).

The procedure is summarized in algorithm 1 and details
are as follows. First, we generate reference path nodes from
goal state to bounded space in C-space through SMP algo-
rithm (line 2). After that, we generate uniformly distributed
samples from the bounded range (line 4), and add samples

Fig. 3: Illustration of multi-Pfaffian constraints in 2D box
example. Left shows constraints in W-space and right shows
converted constraints in C-space and implicit surface by
combining two constraints.

which are located near the generated SMP nodes (line 5).
This can be realized by generating samples from normal
distributions whose mean is each SMP node state. From this
additional data set, we can get dense samples near the narrow
assembled area. To improve the precision of the NN, we
introduce a rejection sampling technique [19], that removes
the sample if the value evaluated by the previously trained
model h(q) is far from zero (line 6). Note that the value
evaluated by h(q) close to 0 means that the sample is close
to the boundary between interior and exterior. In this way,
we can filter the samples, leaving only data that helps to
improve accuracy of h(q).

For training, we assign a value of 0.5 for the interior
data and -0.5 for the exterior data (line 7). Labeled data
is balanced from removing randomly chosen samples in a
class that has more samples than another (line 8). Then, NN
is trained with L1 loss (line 9). We repeat these procedures
until convergence.

Thanks to the trained function h(q), we can efficiently
determine the contact condition with states expressed in C-
space, and this idea is similar to the work in [12], which uses
constructed h(q) as CD for motion planning. However, we
use the implicit function for not only CD but also calculating
Pfaffian constraint direction AT and interaction force. The
details on how we calculate interaction force are explained
in the following section.

B. Robust Contact Model in C-space
To understand the main idea of this section, let us explain

with an example of a 2D box on the floor as described in
Fig. 3. First, we explain how the contact constraints in W-
space can be converted to Pfaffian constraints in C-space,
and how the ideal implicit surface looks like in C-space.
To express the condition of contact without penetration in
this example, we need at least 2 contact points as illustrated
in the left of Fig. 3. If the constraint consists of one contact
point, we always find the direction of motion which can make
penetration. These two contact constraints in W-space can
be converted to normal vector in C-space, ATi := (ni;A

τ
i ) ∈

<3, where ni ∈ <2 is normal vector of i-th contact points
and Aτi ∈ < is converted moment of i-th constraint. Each
constraint has corresponding plane as illustrated in the right
of Fig. 3. The combination of two surfaces consists of the
ideal implicit surface h(q) = 0.

Returning to our problem, the nut appears as a point
in C-space and surface h(q) = 0 can have a complicated
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Fig. 4: Illustration of relation between motion, constraints
and implicit surface in ideal C-space (left), in approximated
constraint with each representation method (middle) in 2d
box case. Constraints and motion in C-space can be realized
as box motion with the floor constraint (right).

shape, which is a combination of constraint surfaces, since
each contact surfaces is constructed from complex contact
points in W-space. With h(q) constructed in Sec. III-A and
friction-less condition, contact force can be computed with
following procedures. With Pfaffian constraint matrix in C-
space A which is gradient of h(q), discretized dynamics of
(1) satisfies following equation in the notion of PMI [17],

ξ+ = M̂−1(Md −
1

2
C(w−))ξ− + ∆tM̂−1u

+ ∆tM̂−1JTcwA
Tλ (2)

where ξ+ ∈ <6 is twist of the next time step, ξ− ∈ <6 is
twist of the current time step which consists of linear velocity
v− ∈ <3 and angular velocity w− ∈ <3, C(w−) ∈ <6×6 is
Coriolis matrix, ∆t is the time interval, M̂ = Md+ 1

2C(w−),
λ is Lagrange multiplier of constraint force. Then, we can
obtain projected dynamics along the constraint direction AT
as

v+A = b̄+ Āλ (3)

where v+A = AJcwξ
+ ∈ < represents velocity of next time

step along AT , Ā = ∆tAJcwM̂
−1JTcwA

T ∈ < and b̄ =
AJcwM̂

−1(Md − 1
2C(w−))ξ− + ∆tAJcwM̂

−1u ∈ <. As
mentioned above, we assume zero friction in this section,
therefore interaction force Fint can be obtained from the
complementary condition [20] 0 ≤ v+A ⊥ λ ≥ 0 and relation
Fint = ATλ.

Note that, ideally, it is possible to have multiple constraints
with one point state on the implicit surface in C-space as
(a) of Fig. 4. However, in our case, the implicit function is
approximated to smooth NN as (b.1) in Fig. 4, so that the
interaction force can be calculated with only one constraint
in the case of a point representation as derived above. In
the study of [13], this formulation is used for calculating the
interaction force. However, multi-contact simulation cannot
be properly rendered with a point representation in terms of
robustness.

The problem is that the discretization is necessary for this
time stepping formulation with ∆t, and the state of the next

Fig. 5: Sphere approximation in 3D case.

time step with the constraint of the current state can enter
into the exterior area (i.e., h(q) < 0) after ∆t. It results
in constraint violation and penetration (see (b.1) and (c) in
Fig. 4). Penetration is critical to tight bolting tasks because
it can result in an infeasible trajectory. For example, if there
is severe penetration in nut tightening simulation, the nut
can pass through the thread of bolt without rotation. Also,
the penetration provides inaccurate interaction force which is
one of the important inputs that determines RL performance.
Thus we should resolve the penetration issue to apply the
sim-to-real framework.

To solve this issue, we formulate multi-Pfaffian constraints
by introducing a volumetric sphere approximation. In other
words, a state is represented by a center of a sphere in
C-space and multiple contacts are represented by contacts
between the sphere and the surfaces. The sphere is defined
as

Sq = { q′ ∈ <6 | ‖q′ − q‖ = ε, q ∈ <6},

where q is the center of the sphere which is given state
in C-space. If only one point at q in C-space is used in
simulation, it can chatter and violate constraints ((c) in Fig
4). Yet, with the sphere model, it has more contact points at
the same time, among which some of these contact points are
possible to be redundant with each other (i.e., representing
the same constraint). Thus, if one is temporarily violated
during simulation, other points will still active, thus, overall,
contact can be more stably enforced. In other words, by
increasing the redundancy of contact points in C-space, we
enhance the robustness of the contact enforcement. The com-
parison experiment between point and sphere representation
is presented in Sec. V-B. In practice, the sphere can be
approximated to a set of points on each axis. That is, the
sphere in C-space can be approximated by 12 points since
C-space is 6D and each dimension axis represented by 2
points (see Fig 5 for approximation in 3D case).

Even with this robustly enforced contacts, the issue of
friction generation in the C-space remains. This issue is
resolved by converting the contact points in the C-space
to contact points in W-space, and using standard constraint-
based contact solver [10], [15], [16], which generates contact
force with friction. This process is discussed in Sec. III-C.

C. Space Conversion to W-space and Friction Model

To generate friction, we first convert C-space Pfaffian
constraints Ai to W-space constraints Âi, and find contact
points ri and normal ni, which can produce Âi. To convert
the contact normal Ai in the C-space (between the C-space
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Fig. 6: Illustration of conversion from the constraint of W-
space Ai to the contact point ri, ni. In (a) relation between
components of constraint in W-space and those in contact
space is described. In (b) method of finding candidate points
is described. In (c) identified ri and ni are described.

contact sphere and the contact surface h(q) = 0) into the
contact points on the W-space nut object, we notice the
fact that, for friction-less contact, the Cartesian contact force
direction for the bolt object with the i-th contact point is
given by ni = Afi /‖A

f
i ‖ where (Afi , A

τ
i ) := (∂h/∂q)T ,

with Afi , A
τ
i ∈ <3. This Cartesian contact force should be

exerted to the point on the nut object. Furthermore, since
the W-space contact is based on the point contact model, this
point on the nut object should be able to produce not only this
Cartesian contact force, but also the contact moment, whose
direction is given by Jwcw

TAτi := Âτi , where Jwcw ∈ <3×3 is
bottom right corner matrix of Jcw.

Now, the remaining process to convert Ai to contact points
is to find such a point on a mesh of the bolt object, that
can produce both the contact normal ni and the contact
moment Âτi . We can decompose ri to r̄i + αni, where r̄i
is a component perpendicular to ni with α ∈ < as illustrated
in Fig. 6. And then, with the relation of Âτi = ri × ni, we
can find general solution of ri as follow,

ri =
ni × Âτi
‖ni‖2

+ αni. (4)

Next, we should identify α of each constraint to decide
contact points. Identifying α means finding contact points,
which are on both the object mesh and the line vector defined
from (4). This process is illustrated through (b) to (c) in
Fig. 6. First, we can find faces on the object mesh with
which the line intersects, and calculate candidate points as
Fig. 6 (b). After finding candidates, we should filter them out
using adequate conditions. In particular, we already know the
normal direction ni and it should point toward inside of the
mesh. So among candidates, we can rule out that with the
sign of inner product between the normal vector of faces
and ni as shown in the green point in Fig. 6 (c). We then
use these W-space contact points into the contact solver (e.g.
[10], [15], [16]). In particular, we use [15] in the experiments.

We found that some of these W-space contact points are
located outside the bolt object. We inject still these points
into the contact solver as well, since, even though they
are not on the object, their usage is found to substantially
improve the contact robustness and mitigate the penetration.
We conjecture that this outside point may play a role similar
to “instantaneous center of rotation”, which is virtual and not
real, yet, can be compatibly incorporated (or exploited) into

Fig. 7: Illustration of making SMP tree (left) and finding
reference path (right).

the physics of the real objects. Further investigation on the
interpretation and implementation ramifications of utilizing
these “outside” contact points is a topic for future research.

IV. HIERARCHICAL CONTROLLER

After constructing the fast and robust multi-contact simu-
lator, we need to design a proper controller for tight assembly
tasks. These tasks are hard to be automated because path to
the goal is narrow and there is sensing uncertainty in real
robot, so sticking and jamming can be raised often. We solve
these issues using a hierarchical control: 1) SMP based low-
level controller, and 2) high-level controller trained by RL.
The low-level controller contributes to being compliant and
avoiding local optima, and the high-level controller makes it
more robust to the bolt position and orientation uncertainty.
In this section, two controllers are explained sequentially.

A. Low-Level Controller

To understand the low-level controller proposed in this
paper, a path library strategy from SMP needs to be under-
stood first. The key idea is that, in most of the assembly
tasks, the goal position is fixed and the success of the task
is determined by whether the goal position is reached. Thus,
with SMP whose root is the goal, we can obtain the various
path toward the open space and this tree structure can be used
as a path library. Furthermore, the probabilistic completeness
property of SMP is suited to the bolting task since a path
to the goal is narrow and complex in C-space. Specifically,
we spread tree from goal to bounded C-space, then we can
get a path library that can connect any nodes n{T } in the
SMP tree T to goal. Let us define the realized reference path
starting from n{T } as RP (n{T }). However, in most cases,
the initial state does not coincide with one of the nodes in
the SMP tree T . To address this generalization problem, we
find the nearest node n{T }nn from given initial position ninit
and add additional nodes to RP (n

{T }
nn ) to connect between

ninit and n
{T }
nn . These processes are illustrated in Fig. 7.

Note that SMP tree T used in this section can be shared
with the one used in Pfaffian constraint learning in Sec. III-A.
After finding a reference path, we can design a path tracking
controller.

We design a tracking controller using discrete time finite
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Fig. 8: Visualization of success rate change with increasing
iteration number. Green robots represent success of the task
and red robots represent failure.

horizon LQT. This control problem can be formulated as

min
u0:T−1

T−1∑
i=0

L(si, q̄i, ¯̇qi, ui) + Lf (sT , q̄T )

subject to. si+1 = A′isi +B′iui, s0 = sinit,

∀i ∈ {0, 1, · · · , T − 1}

(5)

where s = [q; q̇] ∈ <12, q ∈ <6 is state in C-space, q̇ ∈ <6

is velocity in C-space, qinit ∈ <6 is a given initial state,
q̄ ∈ <6 is reference state from the path library, ¯̇q ∈ <6

is reference velocity from high-level controller, u ∈ <6 is
emulated desired input in (1), T is length of horizon, A′ ∈
<12×12, B′ ∈ <12×6 are system matrix from linearization of
admittance dynamics along reference state, L is intermediate
cost, Lf is final cost. Note that admittance dynamics is
projected from W-space to C-space, then linearized. The
algorithm for solving LQT problem is explained in [21] and
we can get a solution of input trajectory u0:T−1 from the
solver.

So far we have discussed how to obtain a reference path
and the path tracking controller. These procedures are fast
enough to respond to external perturbation in real-time. It
means that if the state is perturbed by an external interaction,
the low-level controller can replan a reference path starting
from a perturbed state and calculate input to follow it in every
time step. This is thanks to efficient algorithms of finding a
reference path using SMP tree and computationally efficient
formulation of LQT.

Although the low-level controller can respond to the
disturbances in real-time, it cannot address the uncertainty of
the environmental geometry. For the case of nut tightening,
if the bolt position is shifted to 3mm, then tightening fails
because the low-level controller incorporates only kinematics
while the impedance of the controller is fixed. This limitation
of the low-level controller motivates to design a high-level
controller.

B. High-Level Controller

We can solve geometric uncertainty problem by intro-
ducing the high-level controller. The idea is that if we can

Fig. 9: Learning curve of training high-level controller

find the proper compliance at every time step considering
progress of the task and sensing feedback, the controller can
adapt an uncertain bolt position. However, this high-level
controller is hard to be achieved by the analytical method.
Thus, we use RL with domain randomization [1].

The outputs of the RL agent are parameters for LQT
controller and feedforward force given inputs as the state,
interaction force, and reference path. The feedforward force
is necessary for adopting behavior like pushing the nut to
the bolt. It is notable that we can set sparse costs such as
+1 only in case of success, because the low-level controller
is already well-functioning. In our experiment, the RL agent
successes a few trials even in the first iteration of training.

It is also worth mentioning that, although the proposed
contact model is obtained by NN approximation, it is only the
abstraction of contact geometry, thus we can easily modify
simulation parameters including friction, mass, and offset of
environment. On the other hand, with the methods which
approximate whole transition model such as [22], [23], NN
should be trained again when modifying dynamics proper-
ties. This enables us to apply domain randomization eaisly. In
our experiment, a naive uniformly distributed randomization
of bolt position and orientation is enough to address sensing
uncertainty during the sim-to-real transfer.

V. EXPERIMENTS

A. Implementation Details

In this section, the implementation details of the proposed
contact model and the hierarchical controller are explained
sequentially. Regarding Paffian constraint learning in Sec.
III-A, we use FCL [18] as ground truth of CD between
the nut and bolt mesh because it provides mesh-mesh CD.
Note that FCL is used only for learning h(q), not in the nut
tightening simulation. It means that h(q) can be regarded as
an abstraction of FCL result in W-space into C-space.

To implement the low-level controller, we need an SMP
tree, and RRT* implemented in OMPL [24] is used to
generate it. SMP is carried out in C-space. 46,000 nodes
are generated and saved as a tree structure whose root is
the goal of the task. Finding a reference path to the goal
is trivial thanks to this directed tree structure. After finding
the reference path, admittance dynamics (1) is converted to
C-space, and linearized and discretized along with reference
nodes, then we can get the dynamics form in (5), and input
u is calculated from LQT formulation. Total execution time
including searching the nearest node, finding the path to root,
and solving the LQT problem is about 0.2ms.
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Fig. 10: Result of comparison experiment between a point
representation (left) and sphere representation (right) to eval-
uate performance of robustness.

method FCL proposed FCL proposed
(CD) (CD) (CD+normal) (CD+normal)

average 2.81 0.006 12.1 0.132
max 21.3 0.017 21.6 0.328
min 0.016 0.004 4.05 0.102

TABLE I: Calculation time taken to conduct CD and to
obtain normal vectors in milliseconds for each method.

Next, the implementation of RL policy as a high-level
controller is explained. The inputs of the high-level controller
are current configuration q, velocity q̇, a stack of 3 nearest
states in reference path, interaction force Fint, and vector
from the current state to the goal (total 42 dimensions).
Actions are a scale of quadratic metric for an error of trans-
lational state from reference path (Qpos,tran), that of Euler
angle error (Qpos,euler), that of linear velocity (Qvel,linear),
that of angular velocity (Qvel,angular), LQT time horizon
(T ), number of reference node skipping in reference path,
LQT reference tracking velocity, feedforward force and
torque (FF ) (total 13 dimensions). To train the high-level
controller, we use PPO [25] which is a state-of-the-art on-
policy algorithm suitable with our efficient simulator. We
also apply the domain randomization technique to adapt
geometric uncertainty. The bolt position is changed with
uniform distribution with a fixed range, and the position
is maintained in each episode. We train policy during 270
iterations with about 3.2×106 time-steps as Fig. 8 and 9. It
takes about 3 hours in wall time which is comparably short
thanks to the proposed fast simulation and parallel rollout.

B. Experiments of Contact Model
We conduct a comparison experiment to evaluate the

robustness of each contact representation (point and sphere in
III-B). The evaluation is conducted by visualizing the simu-
lation environment in which random disturbances are applied
with the nut in each representation, and then comparing how
severe the penetration is. The result of visualization is that,
as seen in Fig. 10, the nut severely penetrates the bolt in the
point representation (left in Fig. 10), however, the penetration
is hardly shown in the sphere representation (right in Fig.
10). This result shows that introducing sphere representation
improves the robustness of multi-contact simulation.

Additionally, we compare the efficiency of CD with pop-
ular off-the-selves CD library to evaluate the calculation
efficiency of the proposed contact model. We compare the
CD performance of the proposed algorithm with FCL, which
can be representative CD library, because FCL uses libccd
[26] in case of CD between non-convex mesh, and libccd
is also widely used in other libraries such as MuJoCo

Fig. 11: Snapshots of showing reactiveness of low-level
controller. The controller enable the nut to recover from a
disturbed state and resume bolting operations.

and Bullet. The evaluation was carried out by calculating
the average, maximum, minimum time during the 13,000
step calculation at the condition that the bolt and nut are
fastened and perturbed. The number of faces in the bolt
and nut mesh is 5,020 and 5,972 respectively. 4 methods
are compared: 1) CD using FCL, 2) CD and calculation of
contact information such as penetration depth and normal
vectors using FCL, 3) CD using the proposed method, 4) CD
and calculation of Pfaffian constraints A using the proposed
method. Comparison between 2) and 4) is meaningful in
terms of that both calculated information is necessary for
the contact solver. The computation environment is AMD®

Ryzen 7 3700x of which the base clock is 3.6GHz with 8
cores.

The results are shown in table I. CD through our algorithm
is about 460 times faster than the CD of FCL, and if
including calculation of contact information, ours is 90 times
faster than that of FCL. This result is because CD is done
by one calculation of h(q) on the proposed model and the
calculation is independent of the size of the mesh, while
FCL is based on searching through the mesh, then it gets
slow down as larger the size of the mesh.

C. Experiments of Hierarchical Controller
We qualitatively evaluate the reactiveness of the low-level

controller by adding disturbances as it performs its task. As
seen in Fig. 11, the controller can replan the path with a
perturbed state in real-time and follow back to the replanned
reference path. Reactiveness is also verified in the experiment
of the real robot. This test also can be seen in the attached
video.

We also conduct an experiment to evaluate the limitations
of bolt position uncertainty in which the controller can
succeed, first in a simulation environment as a sim-to-sim
manner. We compare two controllers, low-level controller
and hierarchical controller. Offsets from 0.0mm to 4.0mm
with 1.0mm interval are applied to bolt position, and both
controllers carry out the task 10 times, and the success
of the task is evaluated. The results are listed in table II.
Proposed low-level controller successes tasks until 2.0mm
shifting, but fails after 3.0mm shifting. On the other hand,
the hierarchical controller succeeds tasks even with an offset
larger than 3.0mm. This result verifies that the proposed
hierarchical controller improves adaptiveness against the
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Offset Sim-to-sim Sim-to-real
d (mm) θ (deg) LL HC LL HC

0.0 0 10/10 10/10 4/4 4/4
1.0 0 10/10 10/10 - -
2.0 0 10/10 10/10 - -
3.0 0 0/10 9/10 0/4 4/4
4.0 0 0/10 5/10 0/4 3/4
3.0 2 0/10 9/10 0/4 4/4

TABLE II: Counts of executions of low-level (LL) and
hierarchical (HC) controller in each offset condition for
simulation and real robot. d is linear offset along y-axis and
θ is angular offset along x-axis.

geometric uncertainty of the environment. Next, we explain
details about the sim-to-real.

Finally, the experiment in the real robot is conducted in a
sim-to-real manner. We execute the hierarchical controller
4 times to the misaligned bolt and the results are listed
in the table II. The hierarchical controller successes with
all offset cases containing 4 mm translational offset and 2
degrees angular offset. These results show that the trained
hierarchical controller is robust to uncertainty even in the
real world, and this improvement of adaptiveness renders
the sim-to-real transfer.

There are two major reasons for the improvement of the
adaptiveness compared with the low-level controller. The
first reason is incorporating the F/T sensor data. In the
execution to shifted bolt, trained policy tends to slow down
and explores the area near the entrance of insertion. In the
simulation, if we remove contact force in the dynamics of
the simulator, then the policy tends not to turn the nut. It
means that F/T sensor data is important to decide the end
of insertion and the start of turning. The second reason is
the feedforward input in the high-level controller. The policy
can guide nut to states which are not in the SMP tree due
to this additional force term. Especially, a downward force
is generated near the entrance of insertion which improves
adaptiveness.

VI. CONCLUSION

We develop a novel sim-to-real framework to solve bolting
tasks with tight tolerance and complex contact geometry
with a robust and fast simulator and novel hierarchical
controller structure. Robustness and calculation efficiency of
the simulator is improved by utilizing C-space abstraction
and applying the volumetric representation of the state. As
a result, the developed simulator can run four times faster
than in real-time with 1ms integration interval. Additionally,
we develop a novel reactive SMP-based controller which
can avoid local optima. Using this efficient simulation and
reactive controller, we can efficiently train policy for bolting
task with an on-policy RL algorithm. This policy is robust to
the uncertainty of bolt position and orientation due to being
trained with domain randomization. Furthermore, we verify
our sim-to-real framework by zero-shot transfer to real robot
and it is the very first result, to our knowledge.

The possible direction of future works includes: 1) rigor-
ous analysis on contact model; 2) extension of the sim-to-
real framework to multi-modal sensing; and 3) extension to
general assembly tasks.
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