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Abstract—Large special-events parking involves various park-
ing scenarios, e.g., temporary parking and on-street parking.
Their occupancy detection is challenging as it is unrealistic to
construct gates/stations for temporary parking areas or build
a sensor-based detection system to cover every single street.
To address this issue, this study develops a quadrotor-enabled
autonomous parking occupancy detection system. A camera-
equipped quadrotor is flying over the parking lot first; then the
images are captured by the on-board camera of the quadrotor
and transferred to the ground station; finally, the ground station
will process and release the occupancy information to the
driver’s mobile devices. The decision tree learning algorithm is
adopted to determine the optimal flying speed for the quadrotor
to balance the trade-off between the detection efficiency and
accuracy. In order to tackle the complex environment in real-life
parking, a convolutional neural network (CNN)-based vehicle
detection model has been trained and implemented, where the
realistic factors, e.g., passing pedestrians and tree blocking,
are considered. Experiments are conducted to illustrate the
effectiveness of the proposed system.

Index Terms—Parking occupancy detection, quadrotor, opti-
mized flying speed, decision tree algorithm, convolutional neural
network (CNN).

I. INTRODUCTION

PARKING occupancy detection makes a meaningful con-
tribution to reducing traffic congestion [1], especially

during large special events, e.g., sports occasions, or music
festivals. However, the large special-events parking usually
involves various parking scenarios, e.g., temporary park-
ing and on-street parking. Therefore, the occupancy detec-
tion becomes challenging: for the temporary parking area,
constructing parking gates/stations are time-consuming and
labor-intensive; for on-street parking, sensor-based vehicle
detection systems [2]–[4] are infeasible to cover every single
street.

Fortunately, the object detection techniques are inves-
tigated extensively in the computer vision fields [5]–[7],
which provides promising solutions to the parking occupancy
detection problem. In [8], a multi-camera system for parking
management is proposed, where vehicle detection and count-
ing are achieved with image occlusions and different weather
conditions considered. In [9], a parking space detection and
tracking approach is developed, where the parking slots are
detected by estimating parallel line pairs and free spaces are
calculated by recognizing the vehicles. A similar system is
built in [10], where an adaptive parking lot background model
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for vehicle detection is established. In [11], a convolutional
neural network (CNN)-based object detection algorithm,
YOLO [12], is adopted to achieve the detection of vehi-
cles and license plates. Compared to the feature detection-
based techniques, YOLO has the outstanding capability to
detect images under poor contrast, adverse lighting, and
partial occlusion conditions. Besides, in comparison with
other CNN-based methods, YOLO offers a much faster real-
time processing speed [13]. Nevertheless, the aforementioned
methods are based on pre-installed surveillance cameras so
that each detection system is binding with only one specific
parking lot. Besides, the fixed surveillance cameras cannot
guarantee full coverage of all the potential parking area.

Recently, the quadrotors are being used in various ap-
plications [14]–[18], and bring new opportunities to evolve
the large special events parking occupancy detection system.
In [19], a vehicle counting approach is presented based
on images taken from a quadrotor. Such a quadrotor-based
system is portable and applicable to various parking sce-
narios with low maintenance costs. To this end, based on
quadrotor images, many results regarding vehicle detection
have been reported [20]–[24]. However, there still exist some
challenges.

Firstly, few existing studies provide real-time service for
drivers who are looking for parking spaces along the road.
Secondly, considering the complex environment in realistic
outdoor parking, e.g., pedestrians and tree blocking, few of
the existing vehicle recognition methods can ensure accuracy.
Therefore, a detection system designed for outdoor parking
is required to deal with the real-life uncertainties. Thirdly,
the trade-off of the quadrotor flying speed and the image
quality remains an open problem. Ideally, a quadrotor should
maneuver as fast as possible to ensure efficiency. However,
image processing is sensitive to image quality, while a fast-
moving camera can potentially cause low-quality images
that might lead to a detection failure [25]. Although many
studies have been conducted to improve the robustness of
image processing [26]–[29], the superior maneuverability of
a quadrotor might still lead to the high occurrence of the
low-quality images and image detection failures. Therefore,
an optimized speed that can balance the trade-off between
the detection efficiency and accuracy would be expected.

To overcome the challenges mentioned above, this study
aims to develop an autonomous parking occupancy detection
system for large special-events parking, in which the occu-
pancy information is accessible to the driver’s mobile devices
and the real-life uncertainties would be considered. The main
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Figure 1. Proposed autonomous parking occupancy detection system. v is the quadrotor speed, vopt is the optimized speed. The communication protocol:
Real time streaming protocol (RTSP), hypertext transfer protocol (HTTP). The mobile device interface indicates that the parking area located on 2510 65th
street has a vacancy of 10.

contributions of this paper are listed as follows:

• A portable parking occupancy detection system for large
special events is developed. The proposed system is
applicable to various parking scenarios, e.g., tempo-
rary parking and on-street parking. On top of that,
the proposed system can release real-time occupancy
information to mobile devices so that drivers along the
road can plan their routes efficiently.

• A CNN-based vehicle detection model has been trained
and implemented, with realistic factors, e.g., parking lots
with pedestrians present, covered parking, parking lots
with tree blocking, and vehicles with opened trunks,
being considered.

• Experiments are conducted to generate a data set that
contains different quadrotor flying speeds and corre-
sponding image detection conditions, e.g., detection
success or detection failure. Based on that, the classi-
fication tree learning algorithm is adopted to determine
the optimal flying speed, which balances the trade-off
between the detection efficiency and accuracy.

II. PROPOSED PARKING OCCUPANCY DETECTION
SYSTEM

As shown in Fig. 1, the proposed parking occupancy
detection system consists of a camera-equipped quadrotor
and a ground station. The images of the parking lot will
be acquired by the on-board camera of the quadrotor, then
processed by the ground station. After that, the occupancy
information will be generated and released to the driver’s
mobile devices.

Theoretically, the parking detection can be achieved by
analyzing a single picture of the entire parking lot, which,
however, suffers from some limitations. Particularly, it nat-
urally requires experienced pilots or advanced technologies
to align the camera view with the parking lot boundary. In
addition, the larger the parking lot is, the higher the quadrotor
needs to be maneuvered, as shown in Fig. 2(a), which
increases the detection difficulty. Furthermore, it cannot be
applied to the covered parking lots, e.g., Fig. 2(b).

(a) (b)

Figure 2. (a) Large parking lot. (b) Covered parking lot.

Therefore, in the proposed system, the quadrotor is flying
over the parking lot from one side to the other side. Mean-
while, instead of transferring a single picture of the entire
parking lot, the complete video stream is transferred to the
ground station. This allows the quadrotor to finish the image
acquisition at a lower altitude, which not only reduces the
requirements for the camera hardware, but also facilitates the
quadrotor to detect vehicles at covered parking lots.

A. Ground Station

The ground station is a desktop computer with Intel Core
i5-8400 CPU, 16GB DDR4 RAM, NVIDIA GeForce GTX
1050 Ti graphics, and Qualcomm Atheros AR8171/8175
PCI-E Gigabit ethernet controller. In the proposed system, the
ground station is in charge of three tasks: (1) processing the
video stream from the quadrotor; (2) releasing the occupancy
information to the driver’s mobile devices; (3) sending the
control command to the quadrotor.

1) Vehicle Detection and Counting: On the ground
station, the CNN-based object detection algorithm, YOLO
[12], is used to train and implement a prediction model that
can recognize vehicles. The adopted YOLO network has 53
convolutional layers with the successive 3× 3 and 1× 1. In
order to improve the robustness for realistic applications, a
training data set is constructed specifically for the parking
lot vehicle detection. Particularly, images of vehicles under
trees, e.g., Figs. 3(a) and (b); images of vehicles blocked
by the passing pedestrians, e.g., Fig. 3(c); images of vehicles
with a driver checking the trunk, e.g., Fig. 3(d), are included.
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Table I
DATA SET FOR OPTIMAL SPEED SELECTION

i speed vi
(m/s)

Test #1 Test #2 Test #3 Test #4 Test #5 Detection
result yi

1 1.0 1 1 1 1 1 1(Success)
2 1.2 1 1 1 1 1 1(Success)
...

...
...

...
...

...
...

...
50 10.8 1 1 1 0 1 0 (Failure)
51 11.0 1 0 0 1 1 0 (Failure)

(a) (b)

(c) (d)

Figure 3. Example images used in the data set for vehicle detection. (a)
(b) Vehicles under trees. (c) Vehicles blocked by passing pedestrians. (d)
Vehicles with a driver checking the trunk.

The total data set contains 2250 images. The training takes
50,000 iterations and results in an average loss of 0.21.

Moreover, a counter is developed to count the detected
vehicles. As shown in Figs. 4(a)-(d), the quadrotor is moving
from the right to the left, and the detected vehicles are
marked with rectangle frames. During the detection, once
the rectangle frame intersects with the defined yellow line, a
summation calculation will add one to the total. The yellow
number on the top-left indicates the total number of counted
vehicles.

2) Occupancy Information Release: A Hypertext Trans-
fer Protocol (HTTP)-based local server is set up on the
ground station to release the occupancy information. A
mobile device-friendly GUI is constructed to display the
parking lot location and vacancy information. As the example
shown in Fig. 1, the parking lot located on 2510 65th street
has a vacancy of 10. Based on this, drivers on the road
can conveniently access the occupancy information on their
mobile devices and plan their routes efficiently.

B. Quadrotor

The quadrotor used in this study is Parrot Anafi [30], which
weights 0.32 kg and spans a dimension of 0.17×0.23×0.06
(m). The maximum flight speed is 14.7 m/s and the maximum
flight time is around 25 minutes. A 3-axis Gimbal is attached
at the bottom to stabilize the camera and the video stream can
be transferred to the ground station via real time streaming

(a) (b)

(c) (d)

Figure 4. Demonstration of the vehicle counting.

protocol (RTSP). During the experiment, a set of waypoints
that cover the parking area will be sent to the Parrot Anafi
for autonomous flight, where the desired velocity between
waypoints can be specified.

III. CLASSIFICATION TREE LEARNING FOR THE
OPTIMAL SPEED SELECTION

In this section, the trade-off between the quadrotor flying
speed and the image quality is investigated to obtain the
optimal flying speed. First, experiments are conducted to
generate the data set that contains the quadrotor speed and
the corresponding image processing working condition, i.e.,
detection success and detection failure. Then, the classifi-
cation tree learning algorithm is applied to determine the
optimal speed of the quadrotor, i.e., the highest speed that
allows a successful vehicle detection. Finally, the obtained
optimal speed will be applied to the quadrotor throughout
the experiment.

1) Preliminaries: Define V = {v1, v2, v3, ...vi} as
the set of attributes with domains Dv1, Dv2, Dv3, ...Dvi,
respectively. Define Y = {y1, y2, y3, ..yi} as the out-
put with domain Dy . Consider the data set D∗ =
{(vi, yi) |vi ∈ Dv1 ×Dv2 ×Dv3 × ...Dvi, yi ∈ Dy}, where
each of vi is associated with an output yi. Define

L =

i∑
(xi,yi)∈D∗ (yi − ŷi)

2 (1)

be a loss function, where ŷi are the predicted results. Given
the data set D∗, the goal of the classification tree learning
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Algorithm 1 BuildTreeModel
Input: node vi, data D∗

1: (vi → split, DL, DR) = GetBestSplit(D∗)
2: if StoppingCriteria(DL)
3: vi → LEFT = GetPrediction(DL)
4: else
5: BuildTreeModel(vi → left, DL)
6: if StoppingCriteria(DR)
7: vi→ RIGHT = GetPrediction(DR)
8: else
9: BuildTreeModel(vi → right, DR)

is to obtain a model M that best approximates the true
distribution of D∗, and minimizes the loss L.

2) Generation of Data Set: To generate the data set, the
quadrotor is commanded to maneuver above the parking lot
with specific speeds: from 1 m/s to 11 m/s, where 11 m/s
is the maximum speed of the Parrot Anafi in autonomous
mode. For each specific speed, 5 tests are conducted and the
images are processed by the ground station. Once a detection
failure happens in any of those 5 tests, the detection results
of the corresponding speed will be marked as 0 (Failure).
On the other hand, if all 5 tests succeed, that is, no detection
failure happens, the corresponding speed will be marked as
1 (Success). The results are gathered in Table I, where the
tested flying speeds are recorded as vi and the detection
results are marked as yi. A total of 51 speeds have been
tested, and the entire data set can be found in [31].

3) Classification Tree Model: The classification tree
model of this study is straightforward, as shown in Fig. 5,
where the root node A is the quadrotor speed, and it has 1
split leading to 2 leaves, i.e., node B (detection success) and
node C (detection failure).

As described in Algorithm 1 [32], the entire data set D∗

is explored to find the best split for the root. Then the whole
data set is divided according to the split and the process
is repeated recursively. DR and DL define the left and right
partitions of the node, respectively. StoppingCriteria function
defines how much the tree learns and pruning can be used
to improve generalization on a learned tree. In this case, the
stopping criteria is set to count = 1. GetPrediction function
defines the tree partitioning. The function GetBestSplit is to
find the best split for the node, i.e., the maximum speed that
allows a successful vehicle detection.

4) Prediction: Define the testing set

Ωv = {vj |vj+1 = vj + 0.1, v1 = 1, vj < 11.0} (2)

where j = 1...101. The process of prediction is given as
follows. First, feed the set Ωv to the trained model, then
observe the output ŷi. Second, define the maximized speed
that ensures ŷi = 1 as vopt. Finally, there is

vopt = 9.8 (3)

The optimal speed vopt = 9.8 will be used throughout the
experiments.

𝑣𝑖 < 𝑣𝑜𝑝𝑡𝑣𝑖 > 𝑣𝑜𝑝𝑡

A

B C

Success Failure

Figure 5. The classification tree for the quadrotor speed range selection.
vopt is the split condition for the tree, which in this paper, is also considered
as the optimal speed.

IV. EXPERIMENTAL RESULTS

In this section, the effectiveness of the proposed system
will be tested in different scenarios, e.g., covered parking,
on-street parking with human factors and trees. It should be
noted that the occupancy detection for covered parking and
on-street parking are normally challenging, as mentioned in
Section I. However, the following results demonstrate that the
proposed system can successfully handle those challenging
scenarios. The videos can be found in [31].

A. Case I: Normal Condition

This case will demonstrate the parking occupancy detec-
tion with the optimized speed under normal condition, i.e.,
without any obstacles. The experiment is carried out at an
on-street parking lot with a total of 18 parking spots, with
7 parked vehicles and 11 vacancies. As shown in Figs. 6(a)-
(f), the quadrotor takes off at the right side of the parking
lot, then flies over the parking lot from the right to the left.
The results have shown that, with the optimized speed, no
detection failure happens and the system can successfully
release the occupancy information to the driver’s mobile
device, as shown in Fig. 10(a).

B. Case II: Covered Parking

In this case, the parking occupancy detection for covered
parking is demonstrated. In this experiment, the number of
the total parking spots is 13, with 6 occupied and 7 vacant.
Since the proposed system adopts the detection strategy
described in Section II, the quadrotor can carry out a low-
altitude flight, which makes the vehicle detection for covered
parking possible. Similar to Case I, the quadrotor flies over
the parking lot form the right to the left. The detection
results are shown in Figs. 7 (a)-(f). It is clear that the system
works efficiently for the covered parking lot and the results
displayed at the mobile device end are shown in Fig. 10(b).

C. Case III: With Pedestrians

In this case, two pedestrians are present in the parking lot,
where one pedestrian is passing by and the other is checking
the vehicle trunk. The parking lot remains the same as Case
I with a total of 18 parking spots. During the experiment,
13 parking spots are occupied. From Figs. 8 (a)-(f), the
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Case I: Parking occupancy detection without obstacles.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Case II: Parking occupancy detection for covered parking.

quadrotor takes off at the left side of the parking lot, then
flies over it from the left to the right. It can be seen that the
counting is accurate and no detection failure happens. In Figs.
8 (c) and (d), a pedestrian is passing by and partially blocking
the vehicle; in Fig. 8 (e), the silver vehicle has an open trunk
and the driver blocks part of the vehicle. However, the system
works efficiently with accurate counting. The results from the
driver’s end are shown in Fig. 10(c).

(a) (b)

(c) (d)

(e) (f)

Figure 8. Case III: Parking occupancy detection with pedestrians present.

(a) (b)

(c) (d)

(e) (f)

Figure 9. Case IV: Parking occupancy detection with trees.

D. Case IV: With Trees

In this case, the parking occupancy detection is examined
in scenarios with trees. The parking lot has 18 parking
spots, with 7 occupied and 11 vacant. From Figs. 9 (a)-
(f), the quadrotor takes off at the left side of the parking
lot and maneuvers to the right. From the results, it can be
concluded that no detection failure happens and the counting
is successful. In Figs. 9 (e) and (f), the silver vehicle and the
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(a) (b) (c) (d)

Figure 10. Mobile device interfaces. (a) Case I. (b) Case II. (c) Case III.
(d) Case IV.

black vehicle are partially blocked by trees and the shadow.
However, the system can work successfully with accurate
detection. The results sent to the driver’s end are shown in
Fig. 10(d).

V. CONCLUSION

In this paper, a portable autonomous parking occupancy
detection system has been developed for large special-events
parking. The parking lot images are obtained by a camera-
equipped quadrotor and the drivers can access the real-
time occupancy information from their mobile devices. A
CNN-based vehicle detection model has been trained and
implemented by considering real-life uncertainties. Besides,
the trade-off between the detection efficiency and accuracy
was investigated to obtain the optimal flying speed for the
quadrotor via the decision tree algorithm. Accordingly, a
successful parking occupancy detection can be achieved.
Experimental results have illustrated the effectiveness of the
proposed parking occupancy detection system.
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