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Abstract— For robots to operate robustly in the real world,
they should be aware of their uncertainty. However, most meth-
ods for object pose estimation return a single point estimate of
the object’s pose. In this work, we propose two learned methods
for estimating a distribution over an object’s orientation. Our
methods take into account both the inaccuracies in the pose
estimation as well as the object symmetries. Our first method,
which regresses from deep learned features to an isotropic Bing-
ham distribution, gives the best performance for orientation
distribution estimation for non-symmetric objects. Our second
method learns to compare deep features and generates a non-
parameteric histogram distribution. This method gives the best
performance on objects with unknown symmetries, accurately
modeling both symmetric and non-symmetric objects, without
any requirement of symmetry annotation. We show that both
of these methods can be used to augment an existing pose
estimator. Our evaluation compares our methods to a large
number of baseline approaches for uncertainty estimation
across a variety of different types of objects. Code available
at https://bokorn.github.io/orientation-distributions/

I. INTRODUCTION

Pose estimation is a commonly used primitive in many

robotic tasks such as grasping [1], motion planning [2], and

object manipulation [3]. For grasping, pose estimation is reg-

ularly used to register an observed object to a 3D model for

which grasp positions have been annotated [4], [5]. In motion

planning, many algorithms require the poses of objects in

the environment, either for avoiding collisions [6] or as a

state representation used for planning how to manipulate the

objects [2].

Most prior methods for pose estimation output a single

best guess of each object’s pose [7], [8], [9], [10]. In contrast,

for many robotic applications, we believe that it is important

for a robot to be aware of the uncertainty underlying these

estimates before taking an action. This uncertainty can be

caused by environmental factors, such as occlusions, poor

lighting, or object symmetry, or by biases in the algorithm,

induced by insufficient training sets. These factors can cause

ambiguity with respect to the object’s orientation. If this

uncertainty is not taken into account, then the actions of

the robot may cause irreversible damage to itself or its envi-

ronment. For example, a poorly estimated pose estimate can

cause a robot to knock over fragile objects while attempting

to grasp them. In such cases, rather than taking potentially

dangerous actions, the robot should instead capture more

information about the environment in an attempt to reduce
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Fig. 1. Multi-modal distributions estimated by our Learned Comparison
Histogram approach. These distributions are generated for the tuna can, bowl
and sugar box using PoseCNN featurizations of the top right image. Here
we see the estimator capturing multiple possible viewpoint for the tuna can,
while still placing most of the probability density on the correct mode. It is
also able to capture the full symmetry of the bowl without any symmetry
labeling. In the case of unambiguous poses, like the sugar box, it is still
capable of producing tight uni-modal distributions.

this uncertainty. Additionally, estimates of uncertainty allow

the robot to fuse multiple estimates, through tracking, to

achieve a more robust final pose estimate. Thus, methods

for pose estimation for robotics should output a distribution

of poses rather than just a single pose estimate.

We propose two novel methods for estimating orientation

distributions. The first method learns a uni-modal, parametric

distribution in the form of an isotropic Bingham, regressed

from deep learned features. This model is ideal for objects

that are known to be non-symmetric. The second learns to

estimate a multi-modal non-parametric distribution, in the

form of a histogram distribution, obtained using a learned

comparison function over deep learned features. We find that

this second method works well for objects with unknown

symmetries, accurately modeling both symmetric and non-

symmetric objects, without any requirement of symmetry

annotation.

We compare our learned methods against other statistically

driven methods for estimating parametric and non-parametric

orientation distributions. We test each method on the pre-

trained feature representations from two state-of-the-art pose

estimation methods [7], [8], and evaluate on a large pose

estimation dataset [7] that has been used in a number of
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recent works [8], [11].

II. RELATED WORK

A. Pose Estimation

Previous methods for pose estimation fall into four major

categories: segmentation based methods, local coordinate

based methods, image template based methods, and direct

regression methods. Segmentation based algorithms [12],

[13] use an object segmentation algorithm to isolate the

points associated with the target object. The segmented

depth pixels can be registered with a 3D model of the

object using Iterative Closest Point (ICP) algorithms. Local

coordinate methods densely predict the 3D location of each

pixel with respect to the original object model [9]. These

local coordinates define correspondences between the model

and the image pixel locations; which are then used with

RANSAC [14] to find the object’s pose. Alternatively, instead

of densely estimating coordinates, the coordinates of an

object’s bounding box can be regressed can be regressed [11].

Image template methods [15], [16], [17] render a template

image at multiple viewpoints around the object model and

compute a feature representation at each pose. The objects

pose is estimated by looking up the nearest object templates,

either by successive pruning of candidates [15], a hashing

function [17], [18], or by GPU parallelized comparison [16].

These coarse estimates tend to be refined using ICP. Recently,

deep learned methods have been explored, which can directly

regress the object’s pose using RGB images [7] or densely

fused image and point features [8]. Additionally, learned

latent spaces have been explored as object pose representa-

tions [19], [20], [21]. In this work, we focus not on improving

the accuracy of the underlying pose estimate but in adding a

model of the estimates uncertainty over the entire orientation

space.

B. Pose Distribution Estimation

While most prior methods for pose estimation output a

single best guess of each object’s pose, there has been some

recent work on estimating pose distributions. Su [22] esti-

mated uncertainty distributions over the individual camera

view angles relative to classes of objects through a soft

classification method. Marton [23] estimated a conditional

probability distribution over orientations, in the form of

a confusion matrix generated over rendered point clouds.

Glover [24] fit mixtures of Bingham distributions to clusters

of local point cloud features to estimate an orientation

distribution. Similarly, Riedel [25] combined multiple pose

estimates using Bingham mixture models. However, unlike

this work, they do not evaluate uncertainty estimation with

respect to existing deep learned methods or with respect to

log likelihood.

Other previous work has estimated a distribution over the

object coordinates [26] or bounding box coordinates [11].

However, these methods do not output a distribution over

poses, nor do they evaluate whether the distributions them-

selves are reasonable. One previous paper evaluates dis-

tributions over the poses of object classes [22], mostly

focusing on azimuth estimation. In contrast, we estimate the

orientation distribution of specific object instances and over

the full space of orientation.

Most recently, Deng [27] used a learned feature space to

estimate multimodal uncertainty distributions over rotations,

and used those estimates for particle filter tracking. However,

this work did not quantitatively evaluate the uncertainty

distribution itself, nor did it compare to other approaches for

estimating orientation distributions. Additionally, this method

requires the use of a specifically learned autoencoder repre-

sentation [19]. Manhardt [28] explored learning orientation

distributions through PCA analysis of multiple orientation

hypotheses, trained using a winner-take-all approach. While

this method does visualize their distributions as Bingham

distributions, they do not investigate the accuracy of the un-

derlying uncertainty distribution beyond qualitative analysis.

C. Neural Network Uncertainty Estimation

Because deep learning is a popular method for many

computer vision tasks (including pose estimation), many

approaches have explored how to estimate uncertainty from

neural networks. The most popular approaches include

Monte Carlo Dropout [29] to estimate epistemic uncertainty,

and regressing to the parameters of a distribution [30] to

estimate aleatoric uncertainty. We evaluate both of these

approaches in this work.

D. Pose Tracking

Tracking 6D rotation has been done using Kalman fil-

ters over Bingham Distributions [31], [32]. Bingham dis-

tributions [33] are well suited for this problem when the

orientation distribution is expected to be unimodal, as they

well model rotation quaternion and their composition is well

defined. Additionally, particle filtering [27], [34] as well

as histogram filtering [23] have been used to sequentially

improve and track object pose. The distribution estimates

estimated by our method can be similarly used to improve

pose estimate accuracy.

III. BACKGROUND

A. Orientation Representation

Unit quaternions are used as our rotation representation,

as they are a compact, numerically stable representation

that does not suffer from singularities or gimbal lock. For

these reasons, they are the preferred representation of 3D

orientation in many papers for both robotics and deep

learning [7], [8]. Additionally, unit quaternions have well

studied parametric distributions, as well as several uniform

sampling strategies [35], [36], [37]. For more background on

quaternions, we refer the reader to [38].

B. Bingham distributions

One of our proposed methods, described in Section IV-A,

makes use of a Bingham distribution [33]. A Bingham

distribution is an antipodal distribution over the surface of a

sphere, equivalent to a Gaussian distribution conditioned to

lie on the orientation space, SO(3). Bingham distributions
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Fig. 2. System pipeline for estimating orientation distributions about an
existing pose estimator. The base pose estimator generates an orientation q̂
and a featurization φ of the input, one or both of which are used to estimate
a uncertainty distribution over possible poses. We render this distribution in
as a heat map in axis angle space, lower right, with each orientation being
plotted as point in the directions of the axis of rotation and at a distance
away form the origin equal to the angle of rotation.

have been used for both orientation tracking and filter-

ing [31], [24], [25]. These distributions are parameterized

by an orthogonal 4x4 quaternion rotation matrix M, which

describes how the distribution will be rotated on the 3-

sphere, and the diagonal 4x4 concentration matrix Z which

describes the spread of the distribution. Similar to Gaussian

distributions, Bingham distributions can be simplified to an

isotropic distribution, parameterized by a mean quaternion

and a single concentration parameter, analogous to variance

for a Gaussian) .

IV. METHODS FOR ESTIMATING ORIENTATION

DISTRIBUTIONS

We introduce two novel algorithms for learning orientation

distributions. These methods can be used to augment many

existing pose estimators, without decreasing the single point

accuracy of the underlying system. In this work, we focus

on estimating only the uncertainty of the object’s orientation,

and not its full 6D pose. However, given a distribution over

the object’s orientation, a distribution over translation can

also be estimated using Rao-Blackwellized particle filter

sampling [27].

A. Bingham Distribution Regression

Our first method is designed to estimate the distribution

of non-symmetric objects. For such objects, we regress the

parameters of a Bingham distribution from deep learned

object features. Our method builds off of a base pose

estimator which extracts a set of features φ(I) from a cropped

image I of the target object. The base pose estimator then

regresses from these features φ(I) to a single point estimate q̄

of the object’s orientation. The focus of our approach is not in

obtaining these features φ(I) or in learning the point estimate

q̄; rather, these are provided as an input to our system. We

evaluate a couple of different options for feature extraction,

as explained in Section V-C, and show that our method works

for both.

We use the orientation q̄ as the mean of the Bingham

distribution. From the features φ(I), our method learns to

regress the remaining parameters of the Bingham distribu-

tion, explained below. The parameters of this method are

learned by maximizing the log likelihood of the ground-truth

pose for each image in the training set.

For simplicity, we limit our Bingham distribution to having

an isotropic covariance, requiring only a single parameter

σ to be learned. The orthogonality constraint on M can

be handled using the Cayleys factorization of the of 4D

rotations [39], giving us a parameterization of M into two

unit norm quaternions, qL and qR. By setting qL = q̄ and qR

to the identity quaternion, we both simplify the regression

and guarantee that the distribution is centered about q̄.

This parameterization can be used to regress an anisotropic

Bingham, but we found that the isotropic Bingham produced

more accurate results and a more stable training procedure.

Results using the full Bingham regression are included as a

baseline; see Section V-A.5 for details.

B. Multi-modal Distribution Regression

For symmetric objects, or objects that appear symmetric

from certain poses or under particular occlusion patterns,

a uni-modal Bingham distribution may not be sufficient to

capture the object’s uncertainty. In such cases, a multi-modal

histogram distribution may be more appropriate.

We use a k-nearest neighbor representation over a uni-

formly gridded space of unique orientations. In this work,

we using the discretization method described by Straub [40],

as it enforces a near uniform distance between vertices, but

any uniform sampling or gridding method could be used.

The likelihood estimates at these vertices are interpolated

using inverse distance weighting to the k nearest orientations

with respect to angular distance. These interpolated values

are normalized by dividing by the surface integral of the

interpolation over the space of unique rotations, to form a

valid continuous probability distribution.

A naive approach to obtaining such a histogram would

be to regress from some latent features φ(I) directly to the

parameters of a multi-modal histogram, p(q | φ). We include

Fig. 3. Isotropic Bingham distributions regressed for the soup can, top, and
the wood block, bottom, using DenseFusion featurization. The estimator is
able to tightly fit a Bingham to the unambiguous pose of the soup can, but
is not able to capture the multi-modal symmetry of the wood block. The
only recourse is to inflate the uncertainty in an attempt to capture multiple
modes.
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this approach as one of our baselines; see Section V-A.6 for

details. We show that such a method leads to poor results,

due to the inability of such a method to generalize to unseen

object viewpoints.

Learned Comparison Histogram: We instead learn a com-

parison function f (φ(I j) | φ(I)) between the features φ(I)
and the features φ(I j), which are computed from an image of

the object rendered at orientation q j. To simplify notation, we

will write this comparison function as f (φ j | φ) These ren-

dered orientations are selected using the gridding described

above. Our feature comparison function, once normalized,

is specifically trained to approximate the posterior, e.g.

f (φ j,φ)≈ p̂(q j | φ), as described below.

To mimic the posterior p̂(q j | φ), we train the comparison

function, f (φ j | φ), using an interpolated negative log like-

lihood loss. Specifically, given a ground-truth orientation of

q∗, we minimize the loss

L (q∗;φ) =− log

(

K

∑
k=1

p̂(qk | φ)/d(q∗,qk)

)

+ log

(

N

∑
j=1

p̂(q j | φ)

)

(1)

where d(q∗,qk) is the minimum angular distance between

orientations q∗ and qk. The set {q1, . . . ,qK} are the K nearest

gridded orientations to q∗, and {q1, . . . ,qN} are all of the

orientations in our gridding. In our experiments, we use K =
4.

We pre-compute the features φ j using a rendered image,

I j, of the object generated with uniform lighting and no

occlusions at orientation q j. This image is then passed

through the base pose estimator to extract features φ j. Note

that, if the featurization φ(·) is fixed, the features φ j can be

pre-computed and cached. This method is capable of learning

tight uni-modal distributions when the pose of the object

is unambiguous, like the sugar box in Fig. 1, while still

maintaining the flexibility to learn complicated multi-modal

distribution cause by symmetry, as is the case with the bowl

or ambiguity cause by similar viewpoints, as seen with the

tuna can.

Although the feature comparison function f (φ j|φ) can be

parameterized in a variety of ways, we parameterize it as a

neural network that takes concatenated features φ and φ j as

input. Implementation details of our specific architecture and

training procedure can be found in Section V-C.

V. EXPERIMENTAL EVALUATION

A. Baselines

We compare our method to other common distribution

estimation approaches.While the set of methods we compare

to is far from exhaustive, we believe it represents a good

sampling of the major classes of distribution estimation

algorithms.

1) Fixed Isotropic Bingham: Given a base pose estimator

(such as [8], [7]) which outputs a single point estimate q̄

of the object’s orientation, a simple baseline method for

estimating an orientation distribution is to fit a Bingham

centered about q̄, with a fixed isotropic concentration pa-

rameter, σ . This parameter can be tuned independently for

each object, using cross-validation. In our experiments, we

fit this parameter using a sub-random search [41] over a

validation set, maximizing the log likelihood of the ground

truth orientation.

Note that, unlike our method described in Section IV, the

uncertainty of this baseline does not depend on the input

image; rather, a single uncertainty parameter is used for all

images of a given object type. Thus, this approach is not

sensitive to the uncertainties that can be induced by envi-

ronmental factors such as lighting, viewpoint, or occlusions.

We show that this approach performs significantly worse

than our method which outputs image-dependent uncertainty

estimates.

2) Mixture of Isotropic Binghams: Some methods, such

as DenseFusion [8], output a set of orientation estimates

qi, each with a corresponding confidence ci. A mixture of

isotropic Bingham distributions can be fit to this output,

with each isotropic Bingham distribution centered at the

orientation estimate qi with a fixed concentration parameter,

σ , similarly tuned using cross-validation. These Bingham

distributions are combined into a single mixture distribution

by weighting each one by its confidence ci, where the

confidence scores are normalized to sum to one.

3) MC-Dropout Ensemble: Monte Carlo Dropout [29]

has been used to approximate the epistemic uncertainty

of a network’s predictions, using dropout to simulate an

ensemble of estimators. PoseCNN [7] includes a dropout

layer, whereas we retrained DenseFusion [8] with an ad-

ditional dropout layer inserted into the network. At test

time, n forward passes of the network are run on each

observation, with dropout active, to generate n orientation

estimates for each input. This process generates an estimate

of the epistemic uncertainty and is mathematically equivalent

to a deep Gaussian process [29]. We make the assumption

that these samples are drawn from a Bingham distribution

and fit the parameters of such a distribution to the sampled

orientation estimates. The number of forward passes used

provides a trade-off between the accuracy of the uncertainty

estimates and the speed of computation; following previous

work [42], we choose n = 50 as a balance between accuracy

and speed.

4) Confusion Matrix: As described in [23], a confusion

matrix can be used to estimate the conditional uncertainty

p(q∗ | q̂) of an estimate q̂. The confusion matrix is computed

over a discretization of the orientation space. This method

counts how often the ground-truth orientation q∗ is classified

as q̂ by the our base estimator in a training or validation set.

As with our method, we use the orientation discretization

from Straub [40] to define the discretization of the confusion

matrix.

Specifically, we form a n × n matrix, X, where n is
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the number of orientations in our discretization. Each row

represents the estimated poses q̂ j, whereas each column

represents the ground-truth poses q∗. We initialize this matrix

to 0. To compute the elements of this matrix, we iterate over

our dataset. For each image I j, we compute an estimated

orientation q̂ j with a base pose estimator (e.g. [7] or [8]).

Given the ground-truth pose q∗, we then increment the

value of the matrix corresponding to the row and column

of (q̂ j,q
∗). A small constant ε is to each element of the

confusion matrix for Laplace smoothing, and the rows are

then normalized using the procedure described in Section

IV-B.

At inference time, we compute the estimated orientation q̂

using the base estimator. The row in the confusion matrix that

corresponds to this estimated orientation gives the estimated

value of the distribution p(q∗ | q̂).
5) Full Bingham Regression: Using the parameterization

described in Section IV-A, we can regress the parameters

of a full Bingham distribution. We still require that the

Bingham be centered at the output of the estimator, q̄, but

the covariance can be dilated and rotated about this point.

The four parameters of the diagonal concentration matrix,

Z, can be simplified to three parameters by subtracting the

maximum value, without loss of generality [33]. To rotate

the distribution about q̄, the 4D rotation matrix M, can be

post-multiplied by the four dimensional rotation matrix Q,

using a three dimensional rotation RP parameterized by the

quaternion qP, Q = diag
([

1 RP

])

.

6) Direct Histogram Regression: As mentioned previ-

ously, we test directly regressing from the features φ(I) to the

histogram values at each gridded orientation q j, as opposed

to computing these values based on feature comparisons.

For this baseline, the values at each grid cell, p(q | φ), are

estimated using a neural network, which receives as input the

latent features φ and regresses an unnormalized posterior,

p̂(q j | φ). As before, we train this function with the log

likelihood loss of equation 1. Also as before, we normalize

over all of the gridded orientations, and use the gridding

from Straub [40].

7) Cosine Feature Difference: As an ablation of our

learned comparison method from Section IV-B, we evaluate

using the cosine distance as the feature comparison function,

e.g. f (φ j,φ) = φ j · φ/(||φ j|| ||φ ||). For this ablation, the

cosine distance replaces our learned comparison function, to

evaluate the benefits to learning such a comparison function.

This distance function f (φ j,φ) is used to approximate p̂(q j |
φ) in the same manner as described in Section IV-B.

B. Dataset

To evaluate the accuracy of our methods for uncertainty

estimation as well as the baselines, we use the YCB Video

dataset [7], a commonly used pose estimation dataset. This

dataset is comprised of videos of 21 objects in various

cluttered tabletop scenes, with segmentation and 6D pose

annotations. Each object in the dataset is accompanied by a

textured mesh. Among the 21 objects, four objects contain

discrete rotational symmetries, meaning the objects have a

rotational symmetry with respect to a discrete set of rotations.

One object (the bowl) has a continuous rotational symmetry,

having a symmetric axis about which the object can be freely

rotated. Twelve of the videos are held out as a test set,

leaving 80 videos for training. We focus on this dataset for

our evaluation, as the two base estimators that we evaluate,

DenseFusion [8] and PoseCNN [7], have made the pretrained

weight for these objects available.

C. Implementation Details

We tested each method for estimating orientation distribu-

tions using both PoseCNN [7] and DenseFusion [8] features.

When generating features with DenseFusion, we used the

segmentation estimated by PoseCNN for training images,

as is done in the original publication [8] and the ground

truth segmentation for the rendered images used for our non-

parametric distributions. We use the global feature produced

by DenseFusion for our multi-modal methods, while the

maximum confidence local feature is used in our Bingham

Regression method. These were experimentally verified to

produce the best results in each method. All features are gen-

erated using pretrained models without further fine-tuning.

For PoseCNN features, we use the output of the last hidden

layer of the network’s orientation head. When generating

PoseCNN features for rendered images, it is possible for

the estimator to not detect the target object, as the network

jointly estimates a segmentation mask as well as the pose

of the object. In these cases, we evaluated each method

using the featurization of the detected object whose mask

maximally overlaps the target object. When the estimator

failed to find any object in an image, we set the feature

to the zero vector. This process is only used for rendered

images. For real images, only the features of objects detected

by PoseCNN are used.

Our methods are trained using a combination of real

and rendered data. This data is resampled to ensure a

uniform coverage over SO(3) using the discretization method

described in Section III-B. In this case, we use coarser

discretization than our distribution gridding, with a maximum

distance to the nearest bin center of about 26 degrees.

Our non-parametric methods used a simple three layer

neural network with 4096 neurons on each hidden layer,

dropout and ReLU activations on the input and first hidden

layer, and sigmoid activation on the output. The parametric

methods draw inspiration from DenseFusion [8], using four

fully connected layers, with 640, 256, and 128 neurons on

the hidden layers and ReLU activation functions.

D. Evaluation Method

We evaluate each orientation distribution estimator on each

example in the YCB test set and record the log likelihood

of the ground-truth pose, clipped to a minimum of 1e-6. A

likelihood distribution is computed for each of these images

and the likelihood of the ground truth pose is computed

given that distribution. For multi-modal methods, the inter-

polation described in Section IV-B is used, while Bingham

based methods use standard Bingham likelihood. The log
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Fig. 4. Multimodal distribution of the wood block’s symmetries captured
by the Learned Comparison Estimator, using PoseCNN features. There are
eight distinct modes, associated with four 90 degree rotations about the long
axis multiplied by two 180 degree rotations about one of the short axes. This
distribution is impossible to well model with a single Bingham distribution,
as shown in Fig. 3, but can be easily captured by a multi-modal histogram.

likelihood evaluation metric allows us to evaluate whether

the distribution is correctly placing probability mass in the

appropriate locations.

VI. RESULTS

The log likelihood results of our method and all the

baselines can be seen in Table I. We separate the objects

into symmetric and non-symmetric objects and evaluate each

method using DenseFusion [8] and PoseCNN [7] features.

We find that our method of isotropic Bingham regression

performs the best for non-symmetric objects when combined

with DenseFusion features. Good performance is also ob-

tained with a Bingham distribution fit to samples from MC

Dropout using PoseCNN features. A uni-modal Bingham

distribution is able of capture the orientation uncertainty of

non-symmetric objects when the distribution is tightly fit

around a mean orientation, as shown by the tomato soup

can in Fig. 3. However, such a method will struggle with

symmetric objects, like the wooden block in Fig. 3, or

objects that appear symmetric from particular views or under

particular occlusion patterns.

While the Full Bingham Regression performed similarly

to the Isotropic Bingham Regression, we found this method

to be less numerically stable in training, as it requires the

gradients for the normalization constant of an anisotropic

Bingham distribution. The gradients of the isotropic nor-

malization constant, however, proved to be more stable and

cause few problems in training. Our experiments demonstrate

that this longer training time provides little benefit over the

isotropic version.

For symmetric objects, Table I shows that learning a non-

parametric histogram distribution is best able to capture

the multi-modal nature of the uncertainty of such objects.

Specifically, Table I shows that our Learned Comparison

Histogram estimation method has the best log likelihood,

when using PoseCNN features. PoseCNN features using His-

togram Regression is also among the top scoring methods for

this task, although performance is significantly worse than

our method. Note that the log likelihoods of the symmetric

objects are expected to be lower than the log likelihood for

non-symmetric objects, since the optimal distribution will

spread the probability mass evenly over each symmetric

mode, leading to a lower likelihood at each mode. This can

be seen when our method correctly distributes the probability

density to all eight of the wood block’s symmetric modes,

shown in Fig. 4. Overall, our learned comparison based

method for estimating a non-parametric distribution is best

able to capture the uncertainty across the full set of objects,

having the flexibility to model multi-modal distributions for

objects with various types of symmetries, while still being

able to concentrate the probability mass over a single mode

when necessary.

We note that the log likelihood values in Table I may

be hard for the reader to interpret directly; for reference,

a uniform distribution, where every orientation is equally

likely, would be expected to obtain a log likelihood of -2.29.

As shown in Table I, some distributions perform worse than

the uniform distribution. This is likely caused by overesti-

mating the certainty of the output, i.e. the distribution for

such methods is often concentrated around a single incorrect

mode. In such cases, the method fails to put sufficient

probability mass in regions of the pose space far from this

incorrect mode, leading to a very low log likelihood at the

ground-truth pose.

Table I also reveals that DenseFusion performs poorly on

uncertainty estimation for symmetric objects, for all methods

and baselines. Our analysis revealed that this is due to Dense-

Fusion’s lack of robustness to poor segmentation masks.

To demonstrate this, we evaluated our Learned Comparison

method using DenseFusion features but using ground truth

masks, instead of estimated masks. The results, shown in

Table II, reveal a substantial increase in performance for the

log likelihood of symmetric objects, when using ground truth

masks instead of estimated masks. This experiment reveals

the large contribution of poor segmentation to the overall

pose uncertainty in Table I, for DenseFusion on symmetric

objects. In contrast, because PoseCNN does not receive as

input a segmentation mask, it is more robust to these types

of errors.

A. Confidence Filtering

As previously shown [28], pose uncertainty estimation can

be used to robustly filter pose estimates. As we are directly

computing the likelihood of an estimate, the output of our

algorithm can be used to select which poses to trust and

which to reject. Specifically, we use each of our methods to

estimate a distribution over orientations. We then compute a
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Our Method Baselines

Bingham Learned Fixed Bingham Confusion Cosine Full Histogram
Objects Regression Comparison Bingham Mixture Dropout Matrix Distance Bingham Regression

Non-Symmetric

DenseFusion 2.80 1.18 1.74 0.66 0.70 1.63 -1.90 2.56 0.28
PoseCNN 1.91 2.17 1.50 - 2.71 -2.46 -0.92 1.95 1.87

Symmetric

DenseFusion -3.81 -5.54 -3.66 -2.27 -8.09 -2.91 -2.23 -4.18 -2.57
PoseCNN -8.82 -0.52 -9.18 - -5.28 -7.75 -1.55 -3.70 -1.23

All

DenseFusion 1.72 0.08 0.86 0.18 -0.74 0.88 -1.95 1.46 -0.19
PoseCNN 0.19 1.74 -0.22 - 1.43 -3.31 -1.02 1.05 1.37

TABLE I

MEAN LOG LIKELIHOOD OF GROUND TRUTH ORIENTATION. FOR EACH GROUPING, BEST-SCORING METHODS ARE MARKED IN BOLD; SECOND-BEST

SCORING METHODS ARE INDICATED BY ITALICS.

Non-Symmetric Symmetric All

Estimated Masks 1.18 -5.54 -0.18
Ground Truth Masks 1.97 -0.18 1.61

TABLE II

MEAN LOG LIKELIHOOD OF GROUND TRUTH ORIENTATION FOR

LEARNED COMPARISON ESTIMATOR USING DENSEFUSION FEATURES

WITH ESTIMATED AND GROUND TRUTH MASKS.

pose estimate q̂ from the base pose estimator, and we use

our estimated distributions to compute the likelihood at this

pose: p(q̂ | φ(I)). For our Learned Comparison method, this

requires interpolating the histogram, which we achieve using

the interpolation described in Section IV-B.

We test the validity of this process in Table III, which

shows the effects of rejecting pose estimates based on

likelihood thresholds. In this experiment, we describe these

thresholds as multiples of the likelihood of a sample selected

at from a uniform distribution, 0.101. As a reminder, this

is a probability density, rather than a discrete probability

value, and thus ranges from 0 to infinity. For the remaining

poses, angular error is calculated with respect to annotated

symmetry axes and Average Distance Error (ADD) and

Symmetric Average Distance Error (ADD-S) is computed for

non-symmetric objects and symmetric objects, respectively.

Further details on these evaluation metrics can be found in

prior works [7], [8], [28].

Our results can be seen in Table III, which shows a

clear trend of decreasing angular error with an increasing

threshold of estimated log likelihood. This shows that using a

threshold on the estimated log likelihood (using our methods

for estimating orientation distributions) is indeed an effective

approach for filtering out examples with a large angular error.

Such a threshold can be used to allow a robot to determine

when its predictions might be inaccurate. In such cases, the

robot can move its camera to acquire new viewpoints before

taking an action, or it can ask a human for help.

VII. CONCLUSION

We propose two methods for augmenting existing pose es-

timation methods with orientation distributions. These meth-

ods were compared to a series of uncertainty estimation base-

lines, evaluated using the log likelihood of the ground-truth

orientation. Our findings indicate that, for non-symmetric

Learned Comparison (PoseCNN)

Threshold Ang Error (deg) ADD (m) Reject (%)

- 25.44 0.0402 0
Uniform 24.76 0.0398 3

10x Uniform 23.69 0.0390 7
50x Uniform 17.12 0.0374 20

100x Uniform 15.90 0.0361 34
200x Uniform 12.72 0.0364 71

Bingham Regression (DenseFusion)

Threshold Ang Error (deg) ADD (m) Reject (%)

- 21.68 0.0155 0
Uniform 21.61 0.0155 0

50x Uniform 19.08 0.0145 11
250x Uniform 16.91 0.0135 18
1e3x Uniform 13.74 0.0118 25
2e3x Uniform 12.53 0.0112 30

(a) Non-Symmetric Objects

Learned Comparison (PoseCNN)

Threshold Ang Error (deg) ADD-S (m) Reject (%)

- 40.05 0.0478 0
Uniform 34.13 0.0472 13

2x Uniform 32.60 0.0475 16
5x Uniform 29.24 0.0468 24
15x Uniform 25.43 0.0487 40

(b) Symmetric Objects

TABLE III

POSE ERROR COMPUTED ON ESTIMATES BELOW LIKELIHOOD

THRESHOLDS FOR NON-SYMMETRIC (A) AND SYMMETRIC (B)

OBJECTS. THE THRESHOLDS ARE DESCRIBED AS MULTIPLES OF

CHANCE, THE LIKELIHOOD OF A UNIFORM DISTRIBUTION (0.101).

objects, our learned isotropic Bingham regression gives the

best performance. For objects with unknown symmetries, our

method for estimating a non-parametric distribution based

on a learned feature comparison gives the best performance.

We demonstrate that our method can be used to filter out

the examples with the worst angular error, for which the

robot can choose to capture more information about the

environment or request help from a human. Future work

will use this uncertainty estimation in the context of tracking

or grasping applications; we will also explore how multiple

methods for estimating uncertainty can be combined for

improved performance.
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