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Abstract— Heuristic-based graph search algorithms like A*
are frequently used to solve motion planning problems in many
domains. For most practical applications, it is infeasible and
unnecessary to pre-compute the graph representing the whole
search space. Instead, these algorithms generate the graph
incrementally by applying a fixed set of actions (frequently
called motion primitives) to find the successors of every node
that they need to evaluate. In many domains, it is possible
to define actions (called adaptive motion primitives) that are
not pre-computed but generated on the fly. The generation
and validation of these adaptive motion primitives is usually
quite expensive compared to pre-computed motion primitives.
However, they have been shown to drastically speed up search
if used judiciously. In prior work, ad hoc techniques like fixed
thresholds have been used to limit unsuccessful evaluations
of these actions. In this paper, we propose a learning-based
approach to make more intelligent decisions about when to
evaluate them. We do a thorough empirical evaluation of
our model on a 3 degree-of-freedom (dof) motion planning
problem for navigation using the Reeds-Shepp path as an
adaptive motion primitive. Our experiments show that using
our approach in conjunction with search algorithms leads to
over 2x speedup in planning time.

I. INTRODUCTION

Graph search based methods are commonly used for
solving a host of robot motion planning problems. These
methods represent the search space as a graph, wherein each
vertex is a valid state of the robot in the configuration space
(C-space) and an edge between two vertices corresponds to
a valid motion between those states. The graph is usually
generated by applying a small set of pre-computed actions,
called motion primitives at every state. In addition, we can
also use adaptive motion primitives [1] which are actions that
are generated on the fly. In many domains, they have proven
to be useful in making motion planning more efficient and
precise. Adaptive motion primitives are usually computed
by running a solver either analytical or numerical and as a
result, can be much more computationally expensive than a
pre-computed primitive. Hence, using these adaptive motion
primitives naively may sometimes even slow down the search
substantially.

One standard approach for minimizing the calls to com-
pute adaptive motion primitives is using them with some
fixed preconditions. For example, in navigation, one may
try to add an edge to the goal corresponding to the Dubins
[2] [3] or Reeds-Shepp [4] path, if a state is close enough
to the goal. The problem with this approach is that the
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(a) Infeasible adaptive motion primitives slow down
search due to long validation time

(b) Feasible adaptive motion primitives accelerate
search

Fig. 1: Trade-off associated with using adaptive motion
primitives

decision regarding choosing the threshold distance is not well
informed and doesn’t take into account information about
robot surroundings with context to the robot pose. As we
can see in Fig. 1 (b), an adaptive motion primitive can make
search progress much faster if used judiciously. However, in
Fig. 1 we can observe that even though in both the cases the
distance between two poses being connected by the primitive
is same, the first one is invalid whereas the second one is
valid. This leads to the insight that the decision boundary of
the validity of motion primitives is not trivial and depends
upon the pose of the robot and obstacles in its surroundings.
Fig. 2 shows the decision boundary for the validity of a
Reeds-Shepp motion primitive to a fixed goal pose from all
other possible poses of the robot in 2 dimensions. This shows
that activating this primitive only within a fixed radius from
the goal is not a very informed approach and we can make
better decisions regarding adaptive motion primitive calls if
we had a way to learn this decision boundary.

This work approaches the bottleneck of expensive gener-
ation and validation of adaptive motion primitives with two
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Fig. 2: Non-trivial decision boundary for validity of Reeds-
Shepp path for a given goal. The boundary is drawn for a
fixed heading of 0 degrees for the start pose of the vehicle.
The green area shows the states from which we can connect
to goal with a valid Reeds-Shepp motion primitive.

key insights. First, the inherent structure of the environment
and C-space of the robot can be used to make informed
decisions on calls to adaptive motion primitives. Second,
using a parallel neural network inference for the task can
substantially speed up the pruning of invalid adaptive motion
primitives.

The first insight leads to the idea of learning to pre-
dict the validity of adaptive motion primitives using some
representation of the immediate environment of the robot
for a given robot state. Provided enough examples, the
robot can learn to predict the validity of these primitives
without explicitly generating and validating them. Multilayer
feedforward neural networks are universal approximators and
can learn arbitrarily accurate representation of a continuous
function[5]. In this work, we train a deep neural network,
AMPNet to predict the validity of adaptive motion primitives
using computationally expensive motion primitive generator
and evaluator for training.

The second insight leads to the idea of leveraging the
efficiency of neural networks at processing large batches of
data. Using a neural network for inferring the validity of
an adaptive motion primitive is still an expensive operation
due to additional computational overheads. Therefore, we
avoid inferring the validity of an adaptive motion primitive
for each state expansion during the search by doing a pre-
processing step before search. We intelligently sample our
C-space and do a batch inference for determining the validity
of adaptive motion primitives from sampled states to a fixed
successor state and later use this information during search
for determining the validity of the adaptive motion primitive
from the current state being expanded in search.

We test our approach on 3-DOF navigation domain for a
non-holonomic ground robot with Reeds-Shepp path as an
adaptive motion primitive. We compare our method to the

one used in [1] that uses adaptive motion primitives to snap
to the goal only when the state to be expanded is within
some fixed distance from the goal.

II. RELATED WORK

Several previous works have attempted to speed up motion
planning using learning-based techniques. Most of these
works focus on speeding up sampling based motion planning
methods like RRT [6] and PRM [7]. Collision checking is
the primary bottleneck in sampling based motion planning.
Therefore, there has been a lot of work in speeding up colli-
sion checking using learned models for collision detection
[8] [9] and reducing collision checks required by biased
sampling using learned models [10]. Our work differs from
this class of work in two ways. First, our focus is on speeding
up heuristic search-based motion planning. Heuristic search
based motion planning allows the incorporation of complex
cost functions and constraints, and provides consistent plans
with theoretical guarantees such as completeness and sub-
optimality bounds [11]. Second, we are not trying to learn
a proxy collision checking model. Instead, we are trying to
predict the validity of an adaptive motion primitive without
even generating it.

There has also been some work in speeding up search
based motion planning on graphs with expensive edges by
using lazy evaluations. Algorithms like Lazy Weighted A*
[12] and LazySP [13] try to reduce the number of edge
evaluations by postponing the evaluation of an edge until
it is absolutely necessary to evaluate it during the search.
This comes with the overhead of additional graph operations
which can be large depending on the look-ahead. Our work
is complementary to these algorithms. We don’t consider
evaluating an edge that corresponds to an adaptive motion
primitive if our predictor predicts it to be invalid.

III. ALGORITHM

We present AMPNet, a feed-forward neural network that
predicts validity of an adaptive motion primitive, and its
use within a search based planning algorithm. AMPNet is
a multilayer perceptron that takes as input, the local obstacle
information around the robot combined with the relative
position of the goal with respect to robot state. It predicts if
an adaptive motion primitive from the robot state to the goal
is feasible or not.

We also present an algorithm that takes advantage of the
fact that inference in neural networks is highly parallelizable
using batches. This algorithm combined with a weighted A*
[14] search then explores the configuration space of the robot
and returns a valid path with bounds on suboptimality.

A. AMPNet

1) Data Generation: The input features to the network
are divided into two parts. The first part of the input encodes
the local information about the obstacles in the vicinity of
the current robot state Scurr = {Xcurr, Ycurr, θcurr} and
the second part encodes the relative pose of the goal of the
motion planning problem Sgoal with respect to Scurr. For the
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Fig. 3: Environments with increasing complexity(from left to right) with respect to number and shape of obstacles

first part, we choose to do a 360 degrees ray tracing from
Scurr and get a vector of distances d to the closest obstacle
in each direction. For the second part we calculate relative
pose prel of Sgoal with respect to Scurr in polar coordinates
with the reference angle aligned with θcurr. To estimate
the validity v of a primitive from Scurr to Sgoal, we use
Reeds-Shepp algorithm to first generate the adaptive motion
primitive and then validate it using a collision checker. The
data collection process then gathers triplets of ray tracing
distance vectors d, relative start goal poses prel and validity
of primitive v into a dataset D = {d,prel,v}. The reason
for choosing a 360 degree ray tracing distance vector as an
input feature is motivated by the fact that this feature is
generalizable and can work on any arbitrary environment. At
the same time, the relative position of Sgoal with respect to
Scurr in polar coordinates helps us to compactly represent
the relative pose of states being connected by the motion
primitive.

2) AMPNet Training: We train AMPNet using the gener-
ated dataset D. The network takes the ray tracing distance
vector d and relative pose prel of Sgoal with respect to
Scurr as input and outputs if the adaptive motion primitive
from Scurr to Sgoal is valid or not. As the motive of using
the network is to speed up validation of adaptive motion
primitives by pruning away potentially invalid primitives,
we impose a limit on the inference time for the network.
A network with inference time considerably lower than the
actual generation and validation time of the primitive is
required for the task. This, in turn, puts a limit on the
complexity of the network. The network is required to be as
simple as possible while achieving a good enough accuracy
to guarantee speedups in planning times. Furthermore, false-
negative inferences affect the planning times much more than
false-positives because a large number of false negatives can
lead us to discard some valid adaptive motion primitives.
Therefore, during training, we also keep in mind that we
want to penalize false negative inferences more as compared
to false positive inferences. The network is designed keeping
these trade-offs in mind. The network consists of one input
layer, 2 fully connected hidden layers followed by dropout
and an output layer. The network training minimizes the
weighted binary cross entropy loss.

B. Pre-Processing before Search

Using a neural network inference for validating an adap-
tive motion primitive during each expansion of search can be
expensive. This is due to the computational overhead associ-
ated with the generation of inputs and forward pass through
the network. The fact that batch inference in neural networks
is highly parallelizable combined with the observation that
inference for neighboring robot poses in C-space is quite
likely to be similar helps us to come up with a more efficient
algorithm that can considerably speed up the search.

Algorithm 1 Pre-Processing before Search
Input: Sgoal: End vertex of the Adaptive Motion Primitive
in C-space
Input: Nsample: Number of vertices to be sampled in C-
space C
Input: AMPnet: Learned model for evaluation of adaptive
motion primitives
Output: Minf : Map from sampled vertices to adaptive
motion primitive validity as inferred from the model
Output: Kt: k-d tree comprising of all sampled vertices

1: Psample ← sample Nsample vertices from C.
2: Calculate Features F for all samples in Psample

3: Fbatch ← all features F stacked in a batch.
4: Ibatch ← Inference for forward pass of Fbatch through
AMPnet

5: Minf ← Create a Map from Psample to Ibatch
6: Kt ← create a k-d tree containing Psample

7: return Minf ,Kt

We propose a pre-processing step before the search as
described in algorithm 1. First, we sample Nsample vertices
in the C-space of the robot and store them in Psample. We
then calculate the features F for all vertices in Psample and
store them in Fbatch. Next, we pass Fbatch through AMPNet
for inferring validity of all the edges from Psample to Sgoal.
The output of the network Ibatch is stored in a hash map
Minf from Psample to Ibatch. We then create a k-d tree Kt

for storing all vertices in Psample. The map Minf and the
k-d tree Kt are used during the search for pruning invalid
adaptive motion primitives.

Sampling Strategy: We come up with a sampling strategy
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to maximize the efficiency of our algorithm given a fixed
number of samples. Given N samples we do sampling in 2
rounds. The algorithm first samples a proportion of vertices
uniformly in the C-space of the robot and does a batch
inference for the validity of motion primitives for these
sampled vertices. In the next round, we go through all the
vertices with valid inferences from the previous round and
sample new samples uniformly within a fixed radius around
them.

C. Adaptive Motion Primitive Validation during Search

Using the results of the pre-processing step, we can use
adaptive motion primitives during all expansions in the
search using the procedure outlined in algorithm 2. For
given state Scurr being expanded in search, we query K
nearest neighbours {Sn1, Sn2.., Snk} ∈ Psample using Kt.
We check for the validity of adaptive motion primitives from
all of these neighbors by querying Minf . Then we do a poll
amongst the neighbors and select the most common inference
for determining the validity of adaptive motion primitive
from Scurr.

Algorithm 2 Adaptive Motion Primitive Validation during
Search using AMPNet
Input: Kt: k-d tree comprising of all sampled vertices.
Input: Scurr: Current state being expanded in search.
Input: Minf : Map from sampled vertices to adaptive motion
primitive validity as inferred from the model.
Output: I: Boolean variable indicating predicted validity of
the edge.

1: {Sn1, Sn2.., Snk} ← query K nearest neighbour for
Scurr from Kt

2: Ineigh ← lookup inferences for {Sn1, Sn2.., Snk} from
Minf

3: Icurr ← Mode inference in Ineigh
4: return Icurr

D. Search

GetSuccessors is a standard routine used in search based
motion planners. The routine determines the successor states
Succs that can be reached from Scurr given the set of actions
or motion primitives. Algorithm 3 outlines the modified
GetSuccessors procedure we use to incorporate our algo-
rithm within a heuristic search. GetSuccessors takes Scurr

and set of motion primitives as input. Here we have 2 sets of
motion primitives, Mstatic and Madaptive. The modification
that we make here is that if a motion primitive is adaptive, we
call our validation network AMPNet to validate it as outlined
in algorithm 2. If the network predicts the motion primitive
to be invalid we do not add it to our list of successors Succs.
However, if the network predicts the motion primitive to be
valid, we generate it and validate it using a collision checker
before adding it to the list of successors. This step is required
as the learned model is approximate and we need to discard
all invalid motion primitives.

Algorithm 3 Modified Get Successors Routine for Search

1: procedure GETSUCCS(Scurr, Mstatic, Madap)
2: Succs← {}
3: for all actions astatic ∈ Mstatic do
4: Ssucc ← apply (Scurr,astatic)
5: if collision check (Scurr,astatic) then
6: Succs← Succs ∪ {Ssucc}
7: end if
8: end for
9: for all actions aadap ∈ Madap do

10: if valid AMPNet (Scurr,aadap) then
11: Ssucc ← generate adaptive motion primitive

for Scurr

12: if collision check (Scurr,astatic) then
13: Succs← Succs ∪ {Ssucc}
14: end if
15: end if
16: end for
17: return Succs
18: end procedure

IV. RESULTS

Experimental Setup: We evaluate AMPNet and our al-
gorithm combined with a weighted A* search on a 3-DoF
motion planning problem for a non-holonomic ground robot.
We use a set of 4 static motion primitives combined with
Reeds-Shepp path as an adaptive motion primitive. Reeds-
Shepp path is defined as the shortest traveling path of
the Reeds-Shepp Car, a car that can go both forward and
backward with a constrained turning radius. Reeds-Sheep
path can be viewed as a generalized version of Dubins
path [3]. We evaluate the performance of our algorithm on
environments with varying order of complexity in regards to
the number and positions of obstacles as shown in figure 3.
The environment is parameterized by location of obstacles
and the origin. The input to AMPNet is of length 47. The first
45 inputs correspond to 360 degree ray tracing around the
vehicle’s current state. The discretization for the ray tracing
angle is 8 degrees i.e each ray is 8 degrees apart. The last
2 inputs are the relative pose of the goal with respect to the
current state of the robot in polar coordinates. The number
of samples used in the pre-processing step of our algorithm
is chosen to be 5000 and the value of K for nearest neighbor
lookup is set to be 3.

A. AMPNet Results

Accuracy : Table II summarizes the accuracy of AMPNet.
As the network was trained with a weighted binary cross
entropy loss to penalize misclassification of positive class
more, we can see that the network achieves an accuracy
of 97% on the positive class and is unlikely to misclassify
valid motion primitives. False Positives are handled by our
validation step in the algorithm and don’t lead to invalid
paths. However, a higher number of false positives means
more validation checks.
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TABLE I: Summary of path characteristics and planning statistics for AMPNet algorithm and baseline methods averaged
over 100 planning queries across 7 environments with varying degree of complexity

Method Planning
Time(s)

Std. Deviation Max Time(s) Path Cost Expansions
per sec

Reeds-Shepp with AMPNet 0.37 1.10 6.1 338 57578
Reeds-Shepp within a fixed distance 0.91 14.5 22.1 342 105790
Reeds-Shepp always 0.98 15.2 23.27 336 38151
No Reeds-Shepp 1.67 25 29 345 157600

Fig. 4: Time per inference vs batch size for AMPNet

TABLE II: AMPNet Accuracy Stats.

Accuracy False Positives False Negatives

87% 20% 3%

Inference Time: Figure 4 shows time per inference vs batch
size for AMPNet. Note that both the axes of the plot are in
logarithmic scale. We can see that time per inference falls
exponentially with the increase in batch size. We use this
property to our advantage during the pre-processing step
mentioned in algorithm 1. We observe from the figure that if
we use a batch size greater than 800 we can do much better
than the actual evaluation time of Reeds-Shepp path using
the classical approach.

B. Planning Results

We compare our method labeled as Reeds-Shepp with
AMPNet in Table I with 3 baselines: Weighted A* planner
with no adaptive motion primitive labeled as No Reeds-
Shepp, weighted A* planner using Reeds-Shepp path as
adaptive motion primitive used always at each expansion
during search labeled as Reeds-Shepp always and weighted
A* planner that uses Reeds-Shepp motion primitive only
when the state to be expanded during search is within a fixed
distance from the goal labeled as Reeds-Shepp within a fixed
distance. AMPNet was implemented in C++ using LibTorch
api from PyTorch [15]. All computations were done using
CPU only on a 16GB memory, intel i7(gen 9) machine.

We evaluate all methods on 7 environments with varying
degrees of complexity with 100 start and goal pair config-
urations for each environment. The timeout for solving the

problem is set to be 30 seconds. The results for the tests have
been summarized in Table I. Reeds-Shepp with AMPNet is
able to solve queries 2.5x faster than Reeds-Shepp at fixed
distance, 2.7x faster than naive Reeds-Shepp used always,
and 4.5x faster than not using Reeds-Shepp at all.

Variation with Environment Complexity: As mentioned,
we test all methods on environments with varying degrees of
complexity. Environment specific results for 3 environments:
uncluttered, slightly cluttered and highly cluttered are shown
in figure 5. There are high chances of Reed-Shepps motion
primitive to be valid from long distances in the uncluttered
environment. This can be observed from figure 5(a) where
our algorithm and the method where we use Reeds-Shepp
always, perform an order of magnitude faster than other
methods. In slightly cluttered environments, we can observe
that the method involving using Reeds-Shepp always doesn’t
perform well as the chances of the primitive to be valid
from an arbitrary far distance are very low. Our algorithm
still performs better than other methods because it can
intelligently use the adaptive motion primitives and only tries
to extend a primitive when there are high chances of it being
valid. This fact is further corroborated by the performance
of our algorithm on highly cluttered environments as shown
in figure 5 (c). We can observe that the performance gap
between the method using Reeds-Shepp at distance and our
algorithm is not as pronounced as in other environments
because the chances of a Reeds-Shepp primitive to be valid
are very low in highly cluttered environments.

Fig. 6: No. of samples vs average planning times

Effect of Number of Samples: As outlined in algorithm 1,
the number of samples Nsample is an important parameter.
We tested our algorithm’s performance on a varying number
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(a) Planning time comparison in uncluttered
environment

(b) Planning time comparison in slightly cluttered
environment

(c) Planning time comparison in highly
environment

Fig. 5: Performance of tested methods with varying complexity of environments

of samples using 2 sampling strategies. In the first strategy,
we naively sample the C-space uniformly and use those
samples for the pre-processing step in the algorithm. The
second strategy has been outlined in section III-B. We vary
the number of samples from 2000 to 9000 and the results of
the performance of both the strategies are shown in figure 6.
It can be observed that our sampling strategy achieves lower
average planning times with much fewer samples compared
to the naive approach.

C. Additional Analysis of Run-Time

The generation and validation time Tval for Reeds-Shepp
path is 0.113ms on average. In contrast, the validation time
using AMPNet Tnet is 0.0035 ms. Considering that we only
evaluate primitives that are labeled positive by the network,
the validation time for a positive inference is

Tpos = Tnet + Tval (1)

Whereas, validation time for a negative inference is

Tneg = Tnet (2)

Considering AMPNet’s accuracy on positive class Ppos as
shown in table II, the average expected evaluation time for
a true valid adaptive motion primitive is

T pos
exp = Ppos(Tpos) + (1− Ppos)(Tneg) (3)

Similarly, average expected time for true invalid adaptive
motion primitives with negative class accuracy Pneg is

Tneg
exp = Pneg(Tneg) + (1− Pneg)(Tpos) (4)

Empirical probability Pval of a valid Reeds-Shepps path
in our dataset D is found out to be 0.25. Therefore average
expected evaluation time T eval

exp for a Reeds-Shepp path using
AMPNet can be calculated as

T eval
exp = PvalT

pos
exp + (1− Pval)T

neg
exp (5)

The results of the above equation have been summarized
in table III

TABLE III: Run-Time Analysis Results

Tpos 0.1165 ms

Tneg 0.0035 ms

T pos
exp 0.1131 ms

Tneg
exp 0.0261 ms

T eval
exp 0.0282 ms

We can see from table III that average expected time
per evaluation using AMPNet and our algorithm is 4.2x
lower than the actual evaluation time for the dynamic motion
primitive.

V. CONCLUSION

In this paper we present a technique for intelligently
using adaptive motion primitives in heuristic search based
algorithms for motion planning. Our method uses a learned
model to approximate the decision boundary of the validity
of adaptive motion primitives. The model uses information
about the robot’s surroundings and the robot’s pose to learn
the decision boundary. This approach of using adaptive
motion primitives considerably speeds up motion planning.
The approach can be extended to other motion planning
domains where adaptive motion primitives are used and are
expensive to evaluate during the search. Furthermore, this
approach can also be extended to sampling based planners
like RRT [6] or PRM [7] where we can use the learned
model to find feasibilty of an edge extension from tree to
a new sampled vertex. Future work includes applying the
idea of learning a predictor for adaptive motion primitives
to other domains including planning for manipulation and
kinodynamic planning.
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