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Abstract— The majority of learning-based semantic segmen-
tation methods are optimized for daytime scenarios and favor-
able lighting conditions. Real-world driving scenarios, however,
entail adverse environmental conditions such as nighttime
illumination or glare which remain a challenge for existing
approaches. In this work, we propose a multimodal semantic
segmentation model that can be applied during daytime and
nighttime. To this end, besides RGB images, we leverage
thermal images, making our network significantly more robust.
We avoid the expensive annotation of nighttime images by
leveraging an existing daytime RGB-dataset and propose a
teacher-student training approach that transfers the dataset’s
knowledge to the nighttime domain. We further adopt a domain
adaptation method to align the learned feature spaces across
the domains and propose a novel two-stage training scheme.
Furthermore, due to a lack of thermal data for autonomous
driving, we present a new dataset comprising over 20,000
time-synchronized and aligned RGB-thermal image pairs. In
this context, we also present a novel target-less calibration
method that allows for automatic robust extrinsic and intrinsic
thermal camera calibration. Among others, we use our new
dataset to show state-of-the-art results for nighttime semantic
segmentation.

I. INTRODUCTION

Robust and accurate semantic segmentation of urban

scenes is one of the enabling technologies for autonomous

driving in complex and cluttered driving scenarios. Recent

years have shown great progress in RGB image segmentation

for autonomous driving [36], [5], which were predominantly

demonstrated in favorable daytime illumination conditions.

While the reported results demonstrate high accuracies on

benchmark datasets [5], [18], these models tend to generalize

poorly to adverse weather conditions and low illumination

levels present at nighttime as no large-scale nighttime dataset

for image-segmentation is publicly available. This constraint

becomes especially apparent in rural areas where artificial

lighting is weak or scarce. In autonomous driving, to ensure

safety and situation awareness, robust perception in these

conditions is a vital prerequisite.

Transfer learning and domain adaptation approaches aim

at narrowing the domain gap between a source domain,

where supervised learning from labelled data is possible, to

a target domain, where labelled data is either sparse or not

available. Such approaches, as demonstrated in [28] or [35],

allow to adapt a given segmentation model to a different

domain. These approaches, however, do not leverage a com-

plementary modality such as thermal infrared images that

∗These authors contributed equally. All authors are with the Uni-
versity of Freiburg, Germany. Wolfram Burgard is also with the
Toyota Research Institute, Los Altos, USA. Corresponding author:
vertensj@informatik.uni-freiburg.de

Unimodal Daytime Dataset

Day- or Nighttime 

RGB-T Input Data

 

 

Multimodal

HeatNet

Knowledge

Transfer

Day- or Nighttime 

Segmentation Maps

Fig. 1. Our multimodal segmentation network leverages both nighttime
and daytime images. We transfer relevant knowledge from a large-scale
unimodal daytime dataset for semantic segmentation with a teacher model
to our multimodal HeatNet and simultaneously adapt our model to the
nighttime domain by unsupervised domain adaptation.

can contain more relevant information to solve a given task

in certain environmental conditions than a single modality

would provide.

In order to perform similarly well in challenging illumi-

nation conditions, it is beneficial for autonomous vehicles

to leverage modalities complementary to RGB images [29],

[30]. Encouraged by prior work in thermal image processing

for object detection [31], object tracking [14], and semantic

segmentation [9], [25], we investigate leveraging thermal

images for nighttime semantic segmentation of urban scenes.

Thermal images contain accurate thermal radiation mea-

surements with a high spatial density. Furthermore, thermal

radiation is much less influenced by sunlight illumination

changes and is less sensitive to adversary conditions. Existing

RGB-thermal datasets for semantic image segmentation such

as [9] are not as large-scale as their RGB-only counterparts.

Thus, models trained on such datasets generalize poorly to

challenging real-world scenarios.

In contrast to previous works, we utilize a semantic

segmentation network for RGB daytime images as a teacher

model to provide labels for the RGB daytime images in our

dataset. We project the thermal images into the viewpoint

of the RGB camera images using extrinsic and intrinsic

camera parameters that we determine using our novel target-

less camera calibration approach. Afterwards, we can reuse

labels from this teacher model to train a multimodal semantic

segmentation network on our daytime RGB-thermal image

pairs. In order to encourage day-night invariant segmentation
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of scenes, we simultaneously train a feature discriminator

that aims at classifying features in the semantic segmentation

network to belong either to daytime or nighttime images.

Furthermore, we propose a novel training schedule for

our multimodal network that helps aligning the feature

representations between day and night. Finally, we propose

a new way of training a nighttime-daytime RGB-only se-

mantic segmentation network by using thermal images as a

bridge modality. In our baseline comparison and our ablation

studies, we show that our model achieves comparable perfor-

mance to fully supervised multimodal models. Additionally,

we demonstrate that our first-of-its-kind method significantly

reduces the domain gap between daytime and nighttime.

In summary, the contributions of this work are:

• A novel multimodal approach for daytime and nighttime

image segmentation, leveraging both RGB and thermal

images while not requiring annotations for nighttime

RGB or thermal infrared images.

• The Freiburg Thermal dataset containing more than

20,000 time-synchronized RGB and thermal images

recorded in urban and rural environments both in day-

time and in nighttime conditions. We also provide

LiDAR pointclouds, accurate GPS data and IMU read-

ings.

• A novel target-less thermal camera calibration approach.

• Extensive qualitative and quantitative evaluation of our

approach, including ablation studies.

II. RELATED WORKS

A. Multimodal RGB-Thermal Datasets and Calibration

While unimodal datasets with images in the visible domain

are prevalent in computer vision research, some datasets have

been proposed that entail aligned RGB-thermal image pairs.

Berg et al. [1] propose a dataset that consists of thermal

infrared images which is mainly targeted towards object

tracking. Similarly, Li et al. [14], propose a RGB-thermal

dataset for multimodal object tracking in varying outdoor

settings and conditions. The authors of CATS [26] present a

general outdoor dataset for color and thermal stereo disparity

estimation. Besides RGB-thermal image pairs, LiDAR-based

ground-truth disparity maps are available. Furthermore, the

work of Shivakumar et al. [23] targets the scenarios of

the DARPA Subterranean Challenge providing 894 RGB-

thermal image pairs with pixel-wise semantic annotations

for underground rescue scenarios. There exist only a few

datasets that contain thermal infrared imagery in the context

of autonomous driving. In the work of Hwang et al. [11],

a dataset is proposed that consists of more than 95k RGB-

thermal image pairs. Each pair is annotated with bounding

boxes for persons and is hence aimed towards pedestrian de-

tection research. The KAIST multispectral dataset [4] entails

multiple modalities such as RGB, thermal infrared, LiDAR,

GNSS and IMU for a total of 7512 frames. They also provide

annotations/ground-truth for 2D bounding boxes, drivable

region, image enhancement, depth, and colorization. The

authors of MFNet [9] present the first urban scene dataset for

multimodal semantic segmentation, comprising 1569 pixel-

wise annotated RGB-thermal image pairs. Approximately

half of the recorded images were captured during nighttime.

However, many of the most common classes in the context

of semantic segmentation for autonomous driving such as

road, sidewalk, pole, sign, building or sky are not annotated.

Due to the lack of large-scale RGB-thermal datasets for

urban semantic segmentation, we propose the Freiburg Ther-

mal dataset comprising over 20000 high-resolution RGB-

thermal image pairs in particularly challenging environments.

We additionally provide semantic annotations for a distinct

test set.

For most previously proposed datasets, distinct RGB and

thermal cameras were used and calibrated leveraging hand-

made patterns such as checkerboards [26], [23] or lines on

printed circuit boards [4]. A different approach was presented

by Lussier et al. [17] in which an edge response map between

depth and thermal images is minimized using grid search

over the calibration parameter space.

In contrast to prior work, we propose a method to cal-

ibrate the intrinsic, extrinsic and distortion parameters of

the thermal infrared camera in a purely target-less fashion,

leveraging spatial transformer networks [12] and stochastic

gradient descent over a large number of images.

B. Semantic Segmentation of Thermal Images

Recently, semantic segmentation of thermal images began

to attract more attention in the computer vision community.

Qiao et al. [20] use a level set method to detect pedestrians

in thermal images. More recently, Li et al. [15] proposed an

edge-conditioned segmentation network for thermal images,

trained supervised on a dataset containing various indoor and

outdoor scenes. The works closest to our work are [9] and

[25]. In the work of Ha et al. [9], the authors propose a

multimodal fusion network architecture for RGB and thermal

images. They evaluate their approach on their own dataset

MF [9]. Similarly, Sun et al. [25] propose an RGB-thermal

fusion network and show their results on the MF dataset.

In contrast to the works mentioned above, we train an

RGB-thermal semantic segmentation model without requir-

ing any manual labeling efforts. We instead use a teacher

model trained solely on RGB images to provide supervision

for the daytime image pairs. We further present an extended

multimodal domain adaptation method that enables robust

nighttime segmentation.

C. Domain Adaptation for Semantic Segmentation

Many works in transfer learning explore unsupervised

domain adaptation from synthetic data to real environments

[27], [3], [33]. Other recent works explore model adaptation

from daytime to nighttime via an intermediate twilight do-

main [6], [22]. Following a different approach, works were

proposed that conduct unpaired image-to-image translation

using generative models to create synthetic nighttime training

data [19], [24], [21]. Most similar to our work, in [32], the

authors investigate adversarial domain adaptation, where they

use a binary classifier to discriminate between daytime and

nighttime image features produced by an encoder network.

A domain confusion loss penalizes features that can easily
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be classified as originating from the daytime or nighttime

domain.

In contrast to the above works, our approach leverages

additional modalities such as thermal images that provide

complementary inputs for semantic segmentation in chal-

lenging illumination conditions, significantly narrowing the

daytime-nighttime domain gap.

III. TECHNICAL APPROACH

In the following, we describe our approach to multimodal

semantic segmentation for daytime and nighttime scenes,

leveraging RGB and thermal images. In our approach, we

first train a semantic segmentation teacher model in a

supervised fashion on the Mapillary Vistas dataset [18].

Subsequently, we use this teacher network to infer labels of

daytime RGB images on our multimodal Freiburg Thermal

dataset. We then train a student network supervised on the

daytime image annotations provided by the teacher model,

using both RGB and thermal infrared images. While the

thermal modality is mostly invariant to lighting changes,

the RGB modality differs significantly between daytime and

nighttime and thus exhibits a significant domain gap. We thus

further utilize a domain adaptation technique that aligns the

internal feature distributions of the multimodal segmentation

network, enabling the network to perform similarly well for

nighttime images as for daytime images. Note that we do not

use any hand-annotated nighttime image labels for training

at any time. As thermal cameras are not yet available in

most autonomous platforms, we further propose to distill the

knowledge from the domain-adapted multimodal model back

into a unimodal segmentation network that exclusively uses

RGB images. We distinguish between daytime and nighttime

in a binary manner, neglecting images taken in twilight.

In the following we detail our approach.

A. RGB-T Semantic Segmentation

We initially train a PSPNet model [36] for semantic RGB

image segmentation on the Mapillary Vistas dataset [18],

which contains 20,000 RGB images and semantic annota-

tions from highly diverse and challenging urban scenes. We

use this model as a teacher model MD for daytime images,

providing pixel-wise semantic annotations for all daytime

RGB images in our Freiburg Thermal dataset. Since we

project each thermal image into the viewpoint of the RGB

camera using the extrinsic and intrinsic camera calibration

parameters, described in Sec. IV-A, we can use the same

annotations for each respective thermal image. Given the

labels produced by MD, we subsequently train our multi-

modal RGB-T model MM by minimizing the cross-entropy

loss between the network and the teacher model prediction.

Note that the teacher model can only provide supervision for

the daytime domain since we can assume that MD does not

generalize to nighttime images as it is not trained on data

from this domain. We formulate the daytime segmentation

loss as:

LD
s = −

1

HW

∑

h,w

MD(IDRGB) logMM (IDRGB, I
D
T ), (1)

where MD(ID
RGB

) denotes the teacher model prediction

and MM (ID
RGB

, ID
T
) denotes the prediction of our multi-

modal RGB-T model for daytime thermal images ID
T

and

RGB images ID
RGB

. H and W denote the height and width

of the output, respectively. For simplicity, we omit the class

index i in Eq. 1. By supervised training using the labels

from MD, the student model MM does not generalize well

to nighttime scenes because of the large domain shift in the

RGB domain, in contrast to the thermal domain. In order to

adapt the model to the nighttime domain in an unsupervised

manner, we utilize a domain adaptation approach similar to

[27] and insert a domain discriminator C after the softmax

prediction layer of MM . The domain discriminator has as

inputs the softmax activations SD or SN of our segmentation

model for daytime or nighttime inputs, respectively, and is

trained to differentiate between both domains. We thus define

the discriminator loss Ld as

Ld =
1

HW

∑

h,w

{

[0− C(SX)]2, if X = D

[1− C(SX)]2, if X = N
(2)

In order to adapt our model to the nighttime domain we

aim to predict semantic segmentation maps that fool the

discriminator model. In other words, we want to output

predictions whose origin is classified as the daytime domain.

If this confusion of the discriminator model can be achieved,

it can be assumed that the distribution of the internal feature

representations of our multimodal model are matched and

the model is adapted to the nighttime domain. We train

our model with an alternating training scheme for the two

networks, where we step-wise alternate between adjusting

the parameters of the discriminator model while freezing the

segmentation model parameters and adjusting the parameters

of the segmentation model while freezing the discriminator

model parameters. In each iteration we sample an RGB-T

image pair from the daytime and nighttime domain. In the

first step of an iteration, we train our semantic segmentation

network for the daytime domain while adapting the nighttime

feature representations to daytime. We minimize an overall

loss Lp1
:

Lp1
= LD

s + λ[0− C(SN )]2, (3)

where λ denotes a constant weighting factor between both

losses, which we set to 0.01 during all experiments. In

the second step, we exclusively train the discriminator to

differentiate between day and night segmentation maps with

the overall loss Lp2
:

Lp2
= Ld (4)

Our model architectures and the overall training scheme

are illustrated in Fig. 2. In addition to the described approach,

we propose the following extensions:

1) Two-Stage Training: We argue that the domain gap

between day and night is much smaller for thermal images

than for RGB images. This results in superior nighttime

performance if a network is exclusively trained on thermal

infrared images without any domain adaptation. As our goal
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Fig. 2. Our proposed HeatNet architecture uses both RGB and thermal images and is trained to predict segmentation masks in daytime and nighttime
domains. We train our model with daytime supervision from a pre-trained RGB teacher model and with optional nighttime supervision from a pre-trained
thermal teacher model trained on exclusively thermal daytime images. We simultaneously minimize the cross entropy prediction loss to the teacher model
prediction and minimize a domain confusion loss from a domain discriminator to reduce the domain gap between daytime and nighttime images.

is to train a multimodal network that performs best in both

domains, day and night, we conduct domain adaptation

to compensate for the illumination changes in the RGB

images. We argue, however, that during domain adaptation

the training could converge into local minima due to the

large domain gap within the RGB modality and insufficient

feature distribution overlap. We thus propose to first train our

multimodal network MM with the daytime teacher model

MD and an additional nighttime teacher model MN . This

additional teacher network is trained exclusively on daytime

thermal infrared images and therefore predicts reasonable

nighttime segmentation maps without domain adaptation due

to the small domain gap. However, we argue that the seman-

tic predictions provided by MN can still be improved as MN

does not use complementary RGB data. Therefore, after the

training with both teacher networks, we continue with the

normal training procedure including domain adaptation, but

without the nighttime teacher model, which we explained

in the previous section. Following this training scheme, the

feature representations align reasonably in the first training

stage and the domain adaption in the second training stage

does not need to bridge the full domain gap anymore.

2) RGB-T to RGB Model Distillation: Since thermal

infrared cameras are not always installed on mobile robots,

we propose a simple, yet effective strategy to enable RGB-

only nighttime semantic segmentation using our approach.

As previously mentioned, due to the domain gap in the

visible spectrum, it is challenging to adapt an RGB-only

model to the nighttime domain. Meanwhile, with our previ-

ous multimodal adaption approach we are capable of train-

ing a multimodal network that leverages RGB information

jointly with thermal infrared information which exhibits a

significantly smaller domain gap. We thus propose to first

train a multimodal RGB-T network following the previously

described method. We afterwards distill the knowledge of the

RGB-T network to an RGB-only network. To this end we use

the previously described RGB-only daytime teacher model

to provide supervision in daytime and our best-performing

RGB 1

Thermal

Camera

RGB 2

Fig. 3. Our stereo RGB and thermal camera rig mounted on our data
collection vehicle.

RGB-T network to provide supervision in nighttime and train

this RGB-only model fully supervised in both domains.

IV. DATASET

To kindle research in the area of thermal image seg-

mentation and to allow for credible quantitative evalua-

tion, we create the large-scale dataset Freiburg Thermal.

We provide the dataset and the code publicly available

at http://thermal.cs.uni-freiburg.de/ . The Freiburg Thermal

dataset was collected during 5 daytime and 3 nighttime data

collection runs, spanning the seasons summer through winter.

Overall, the dataset contains 12051 daytime and 8596 night-

time time-synchronized images using a stereo RGB camera

rig (FLIR Blackfly 23S3C) and a stereo thermal camera rig

(FLIR ADK) mounted on the roof of our data collection

vehicle. In addition to images, we recorded the GPS/IMU

data and LiDAR point clouds. The Freiburg Thermal dataset
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contains highly diverse driving scenarios including highways,

densely populated urban areas, residential areas, and rural

districts. We also provide a testing set comprising 32 daytime

and 32 nighttime annotated images. Each image has pixel-

wise semantic labels for 13 different object classes. Annota-

tions are provided for the following classes: Road, Sidewalk,

Building, Curb, Fence, Pole/Signs, Vegetation, Terrain, Sky,

Person/Rider, Car/Truck/Bus/Train, Bicycle/Motorcycle, and

Background. We deliberately selected extremely challenging

urban and rural scenes with many traffic participants and

changing illumination conditions.

A. Camera calibration

For our segmentation approach it is important to perfectly

align RGB and thermal images as otherwise the RGB teacher

model predictions would not be valid as labels for the thermal

modality. Thus, in order to accurately carry out the camera

calibration for the thermal camera, we propose a novel target-

less calibration procedure. While in previous works [23],

[16] different kinds of checkerboards or circleboards have

been leveraged, our method does not require any pattern.

Although, for RGB cameras, these patterns can be produced

and utilized easily, it still remains a challenge to create

patterns that are robustly visible both in RGB and thermal

images. In general, the used modalities infrared and RGB

entail different information. However, we note that the edges

of most common objects in urban scenes are easily observ-

able in both modalities. Thus, in our approach we minimize

the pixel-wise distance between such edges. In the case

of aligning two monocular cameras, targetless calibration

without any prior information results in ambiguities for the

estimation of the intrinsic camera parameters. We therefore

utilize our pre-calibrated RGB stereo rig in order to provide

the missing sense of scale. Due to the target-less nature of

our approach, our thermal camera calibration method can be

easily deployed in an online calibration scenario.

Our aim is to overlay the RGB and thermal images as best

as possible, solving both for the extrinsic and intrinsic pa-

rameters. If this alignment can be achieved, our cameras are

assumed to be fully calibrated. In the following we assume

the RGB image IRGB to be undistorted and rectified. We

formulate the misalignment E as the difference between the

gradients of the calibrated RGB image and the transformed

thermal image as:

E =
∑

u,v

[∇IRGB −∇S(IT , F )] (5)

Here, S(IT, F ) denotes a function that transforms a source

thermal image IT to a target RGB image IRGB while using

a pixel displacement map F that maps from IT to IRGB.

A successful calibration would result in the minimum value

of E and would therefore align the thermal image with the

RGB image. We follow [12] in order to implement S , using

differentiable spatial transformer networks.

We compute F by projecting the pixel coordinates of

the RGB images to 3D, transforming them into the thermal

camera coordinate system and projecting them back to the

thermal image plane. Thus, the displacement map F =
pRGB − pT between the RGB pixel coordinates pRGB and

the thermal image pixel coordinates pT can be found with:

pRGB = φ
(

KT TRGB→Tγ(pRGB | KRGB, DRGB)
)

(6)

where the function γ(p | K,D) = D(p)K−1h(p) back-

projects the RGB pixel coordinate into the 3D camera

coordinate system while h(p) transforms p in the homo-

geneous vector form. The intrinsic calibration of the RGB

camera is denoted as KRGB and DRGB refers to the depth

corresponding to the RGB image IRGB. Further, TRGB→T

and KT refer to the sought extrinsic and intrinsic thermal

camera calibration values, respectively. The function φ(x)
simply divides the vector x by its last element. We infer

DRGB by leveraging a dense stereo depth estimation method

based on a convolutional neural network [2]. Due to the

locality of the edges within the RGB and the thermal image,

the direct minimization of the misalignment E would lead to

vanishing gradients and would prevent fast convergence on

the global minimum. In order to cope with this problem, we

convolve the difference of gradients
(

∇IRGB−∇S(IT, F )
)

with a large Gaussian kernel G(σ) which we empirically

parameterize with zero mean, standard deviation σ = 3, and

51 pixel aperture size, resulting in our loss function:

Lc =
∑

u,v

[

G(σ) ∗
(

∇IRGB −∇U(S(IT, F ), v)
)]2

(7)

We follow [10] to model the distortion of the thermal

image by the function U and optimize its parameters v =
[k1, k2, p1, p2], referring to radial and tangential distortion

respectively, while optimizing the objective function.

We define the extrinsic calibration TRGB→T as a rigid

body transformation TRGB→T =

(

R t
0 1

)

∈ SE (3) where

R ∈ SO(3) and t ∈ R
3. In order to ease the optimization

we optimize the transformation in Lie-algebraic exponential

coordinates ξ = (vT ωT ) ∈ se(3) and use the exponential

map with small-angle approximations [7] to map from se(3)
to SE (3).

In our implementation we use Adam [13] for stochastic

gradient descent to minimize Eq. 7 which yields the opti-

mal extrinsic calibration T ∗

RGB→T
, thermal camera intrinsic

matrix K∗

T
, and undistortion parameters v∗.

We take 600 random image-pairs for the optimization

process and set a batch size of 10. Furthermore, we set the

number of iterations to 8000 and halve the step size every

500 steps. We initialize KT as:

KT =





fm/l 0 rw/2
0 fm/l rh/2
0 0 1



 , (8)

where fm denotes the ideal manufactured focal-length of

the lens, l the size of a single square pixel in mm, rw
the horizontal resolution and rh the vertical resolution. All

other parameters such as extrinsic calibration and distortion

parameters are set to 10−4 to prevent vanishing gradients.
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RGB Cam Thermal Cam

Fig. 4. Our calibration board placed in front of a heating panel is visible in
the RGB and thermal domain. We record multiple image-pairs covering the
whole camera frustum and obtain the calibration parameters with Kalibr [8].
This method is used as a baseline for our target-less calibration approach.

GradientsOurs

Kalibr Kalibr Ours

Fig. 5. Qualitative result of our target-less RGB-T calibration approach.
In the left column, we show the RGB and thermal image alignment overlay
with calibration parameters as obtained with Kalibr and our approach,
respectively. The magnified view in the top-right corner demonstrates that
our approach yields superior alignment of object edges. The bottom-right
corner illustrates the magnitude of gradient difference between RGB and
thermal image after the optimization process with our approach.

We qualitatively compare the RGB-thermal image align-

ment obtained with our target-less approach to a circleboard-

based calibration procedure carried out using the publicly

available tool Kalibr [8]. We manufactured a circleboard

and placed it in front of a heating panel. Fig. 4 shows

our calibration board as recorded by the RGB and thermal

camera. The recorded image-pairs were used to obtain the

extrinsic and intrinsic calibration parameters with Kalibr.

Fig. 5 qualitatively compares the RGB-thermal alignment

obtained with our target-less approach to the alignment

obtained with calibration parameters produced by Kalibr.

Despite our approach not requiring any calibration targets,

we observe that our approach yields qualitatively better

alignment of RGB and thermal images.

V. EXPERIMENTAL RESULTS

In the following we present the experimental results of

our proposed multimodal semantic segmentation method.

We evaluate our model on our proposed Freiburg Thermal

dataset and on MF [9]. Furthermore, we present results on

the 30 nighttime images of the Berkeley Deep Drive dataset

[34], using the unimodal RGB version of HeatNet, leveraging

our proposed knowledge distillation approach described in

Sec. III-A.2. We also present various ablation studies and

provide a discussion of all results.

A. Network Architecture

As our unimodal architecture for the teacher networks

MD and MN we use the PSPNet architecture [36]. For our

multimodal network we again adopt the PSPNet architec-

ture but replicate the first two blocks of the corresponding

ResNet-50 encoder. After passing the individual modalities

through the replicated blocks we concatenate the feature

maps and proceed with the remaining blocks of the encoder.

For the discriminator architecture we follow the described

architecture in [27].

B. Training Details

We train our HeatNet segmentation model for 100 epochs

with the RMSprop optimizer and with an initial learning rate

of 10−4. We use learning rate halving every 30 epochs. In

each training batch, using our alternating training scheme,

we forward the RGB-T image pair and minimize Eq. 3. We

set the batch size to 8 for all our experiments.

C. Baseline Comparison

We report the performance of HeatNet trained on Freiburg

Thermal and tested on Freiburg Thermal, MF, and on the

BDD night test split. All results are listed in Tab. I. We

observe that our RGB Teacher model MD, which is trained

on the Vistas dataset [18], has a high mIoU score of 69.4 in

the day domain and an expected low score of 35.7, as the

network is neither trained nor adapted to the night domain.

Our thermal teacher model MN achieves a mIoU score of

57.0, which shows that the domain gap is much smaller for

this domain as for RGB. Our final RGB-T HeatNet model

achieves with 64.9 the overall best score on our test set.

Furthermore the RGB-only HeatNet reaches a comparable

score to our RGB-T variant, proving the efficiency of our

distillation approach which leverages the thermal images as

a bridge modality.

We deploy the same distilled RGB network to publish

results on the night BDD split. It can be observed that our

method boosts the mIoU by 50%.

In order to compare the performance of our network with

the recent RGB-T semantic segmentation approaches MFNet

[9] and RTFNet-50 [25], we also fine-tune our model on the

784-image MF [9] training set and report scores on the cor-

responding test set. We select all classes that are compatible

between MF and Freiburg Thermal for evaluation which are

the classes Car, Person, and Bike. We train our method only

with labels provided by the teacher model MD, while not

requiring any nighttime labels or labels from MF in general.

Thus, it is expected that MFNet and RTFNet outperform

HeatNet as they are trained supervisedly. However, it can

be observed that HeatNet achieves comparable numbers to

MFNet.

We further evaluate the generalization properties of the

models trained on MF and tested on our FR-T dataset.

We observe that the model performance deteriorates when

evaluating MFNet or RTFNet on our FR-T dataset. We

conclude that the diversity and complexity of the MF dataset

does not suffice to train robust and accurate models for

daytime or nighttime semantic segmentation of urban scenes.

D. Ablation Studies

In order to evaluate the various components of our HeatNet

approach, we perform ablation studies with different variants

of our model. All ablation studies presented in this section
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Dataset RGB Image Thermal Image RGB-Teacher HeatNet RGB HeatNet RGB-T Ground Truth

FR-T

FR-T

RGB Image N/A RGB Teacher HeatNet RGB N/A Ground Truth

BDD

Fig. 6. Qualitative semantic segmentation results of our model variants. We compare segmentation masks of our RGB-only teacher model, HeatNet
RGB-only, and HeatNet RGB-T to ground truth. In the first two rows, we show segmentation masks obtained on the Freiburg Thermal dataset. The bottom
row illustrates results obtained on the RGB-only BDD dataset. The multimodal approaches cannot be evaluated on BDD and the corresponding images are
left blank.

TABLE I

COMPARISON OF RGB-THERMAL SEMANTIC SEGMENTATION PERFORMANCE WITH STATE-OF-THE-ART APPROACHES ON THE MF DATASET AND ON

THE FREIBURG THERMAL (FR-T) DATASET. WE MARK RESULTS OBTAINED USING FULLY SUPERVISED METHODS WITH A GRAY BACKGROUND.

CLASSES AVAILABLE FOR EVALUATION DUE TO INCOMPATIBLE OR MISSING ANNOTATIONS ARE MARKED WITH A DASH (-).
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Train On Test On Model RGB T Mean

MF MF MFNet [9] ✓ ✓ - - - - - - - - - 58.9 65.9 42.9 55.9
RTFNet-50 [25] ✓ ✓ - - - - - - - - - 67.8 86.3 58.2 70.7
HeatNet ✓ ✓ - - - - - - - - - 56.4 68.8 33.9 53.0

FR-T Day/Night MFNet [9] ✓ ✓ - - - - - - - - - 42.8 27.0 24.5 31.4
RTFNet-50 [25] ✓ ✓ - - - - - - - - - 63.2 61.5 51.3 58.6
HeatNet ✓ ✓ 86.7 57.5 67.7 46.4 41.5 43.8 57.9 44.1 63.7 63.1 85.6 58.2 59.7

FR-T MF HeatNet ✓ ✓ - - - - - - - - - 51.6 61.8 30.2 47.9

(Vistas) FR-T Day RGB Teacher ✓ ✗ 89.7 67.0 73.8 56.9 48.8 53.8 73.8 62.8 84.3 72.0 90.1 60.4 69.4
FR-T HeatNet ✓ ✓ 89.4 65.6 74.8 59.7 52.9 54.3 74.1 65.1 84.5 74.0 91.2 64.1 70.8

FR-T FR-T Night Thermal Teacher ✗ ✓ 84.9 60.5 65.5 43.1 31.8 38.1 51.8 40.1 72.6 49.6 87.1 56.9 57.0
(Vistas) RGB Teacher ✓ ✗ 76.3 22.6 53.4 10.8 14.1 31.6 10.4 13.5 47.7 28.0 74.3 45.2 35.7
FR-T HeatNet ✓ ✓ 86.4 60.9 65.4 45.5 35.5 42.0 52.5 52.3 73.9 54.9 85.7 53.3 59.0

FR-T FR-T Day/Night HeatNet ✓ ✓ 87.9 63.3 70.1 52.6 44.2 48.2 63.3 58.9 79.2 64.5 88.5 58.7 64.9
FR-T HeatNet RGB-only ✓ ✗ 82.7 56.0 66.0 45.3 34.0 37.8 58.4 49.5 71.0 54.4 84.2 57.4 58.0

(Vistas) BDD Night [34] RGB Teacher ✓ ✗ 68.8 21.5 32.9 - 0.0 12.3 11.5 6.6 27.2 24.5 40.4 - 24.6
FR-T HeatNet RGB-only ✓ ✗ 87.1 40.0 50.2 - 25.9 22.9 12.8 8.5 25.0 27.4 68.3 - 36.8

TABLE II

ABLATION STUDIES FOR VARIANTS OF OUR HEATNET MODEL ON THE

FREIBURG THERMAL DATASET.

mIoU
Variant RGB T Domain

Discrim-
inator

Two-
Stage

Training

Day Night Both

V1 ✗ ✓ ✗ ✗ 68.1 57.0 62.6

V2 ✓ ✗ ✗ ✗ 68.3 25.1 46.7

V3 ✓ ✓ ✗ ✗ 67.9 33.7 50.8

V4 ✓ ✗ ✓ ✗ 70.5 43.2 56.9

V5 ✓ ✓ ✓ ✗ 70.6 56.3 63.5

V6 ✓ ✓ ✓ ✓ 70.8 59.0 64.9

were performed on our Freiburg Thermal dataset and are

listed in Tab. II.

We first study the impact of the image modalities on the

model performance without using domain adaptation or two-

stage training. We compare a unimodal RGB-only model

(V1) with a unimodal thermal-only model (V2) and the

multimodal variant trained both on RGB and on thermal

images (V3). All variants are trained exclusively on daytime

annotations provided by the RGB daytime teacher model.

We observe that the daytime-nighttime domain gap is the

smallest for V1, while V2 and V3 suffer from a larger domain

gap of the RGB modality, but achieve a higher daytime

performance.

Variants V4 and V5, are similar to variants V2 and V3,

but with an additional domain discriminator, indicating that

adding a domain discriminator loss to the overall training as

described in Sec. III-A greatly helps shrinking the domain

gap within the RGB image modality. Variant V6, with

active domain adaptation and two-stage training procedure

as described in Sec. III-A.1 shows the best performance in

both the daytime and the nighttime domain. We conclude that

our proposed two-stage training scheme by first carrying out

supervised training with two teachers and later fine-tuning

with domain adaptation leads to the best results and helps

aligning the feature representations between day and night

as best as possible.

VI. CONCLUSION

In this work, we presented a novel and robust approach

for daytime and nighttime semantic segmentation of urban

scenes by leveraging both RGB and thermal images. We

showed that our HeatNet approach avoids expensive and
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cumbersome annotation of nighttime images by learning

from a pre-trained RGB-only teacher model and by adapt-

ing to the nighttime domain. We further proposed a novel

training initialization scheme by first pre-training our model

with a daytime RGB-only teacher model and a nighttime

thermal-only teacher model and subsequently fine-tuning

the model with a domain confusion loss. We furthermore

introduced a first-of-its-kind large-scale RGB-T semantic

segmentation dataset, including a novel target-less thermal

camera calibration method based on image gradient align-

ment maximization. We presented comprehensive evaluations

on multiple datasets and demonstrated the benefit of the

complementary thermal modality for semantic segmentation

and for learning more robust RGB-only nighttime models.
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