
Planning for robust visibility-based pursuit-evasion

Nicholas M. Stiffler and Jason M. O’Kane

Abstract— This paper addresses the problem of
planning for visibility-based pursuit evasion, in con-
texts where the pursuer robot may experience some
positioning errors as it moves in search of the evader.
Specifically, we consider the case in which a pursuer
with an omnidirectional sensor searches a known envi-
ronment to locate an evader that may move arbitrarily
quickly. Known algorithms for this problem are based
on decompositions of the environment into regions,
followed by a search for a sequence of those regions
through which the pursuer should pass. In this paper,
we note that these regions can be arbitrarily small,
and thus that the movement accuracy required of the
pursuer may be arbitrarily high.

To resolve this limitation, we introduce the notion
of an ε-robust solution strategy, in which ε is an upper
bound on the positioning error that the pursuer may
experience. We establish sufficient conditions under
which a solution strategy is ε-robust, and introduce an
algorithm that determines, for a given environment,
the largest value of ε for which a solution strategy
satisfying those sufficient conditions exists. We de-
scribe an implementation and show simulated results
demonstrating the effectiveness of the approach.

I. Introduction

A number of important applications for autonomous
robots can be characterized as pursuit-evasion problems.
The essence of these tasks is for autonomous robots called
pursuers to systematically search a domain, possibly in
collaboration with humans, to locate one or more other
mobile agents called evaders. Solutions to such problems
have applications in environmental monitoring [1]–[3],
surveillance/patrol [4]–[6], disaster recovery [7], and colli-
sion avoidance [8]. Substantial effort has been devoted to
solving various forms of this problem. However, existing
algorithms often rely on very strong assumptions about
the pursuers’ sensing and movement abilities. Sensors
are generally assumed to detect the evaders without fail;
actuators are generally assumed to move the robot with
extreme precision. Consequently, solutions generated by
these algorithms are often brittle or even impossible to
execute successfully.

This paper aims to alleviate some of that brittleness
for one type of pursuit-evasion problem, the problem of
visibility-based pursuit-evasion, in which a pursuer tries
to detect an arbitrarily fast evader, using an idealized
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Fig. 1: Solution strategies from three visibility-based pursuit-
evasion algorithms in an example environment.

sensor with omnidirectional view (though that view can
still be obstructed by obstacles) and unlimited range.

One of the seminal works in visibility-based pursuit-
evasion by Guibas, Latombe, LaValle, Lin, and Motwani
provides a complete algorithm for this problem [9]. A
key contribution of that work that sets it apart from
earlier work on similar problems [10] is the visibility
cell decomposition that is introduced. The decomposi-
tion captures all of the critical information changes as
they relate to potential locations for the evaders to be
within the environment. This effectively allows for a
reformulation of the problem from a continuous search
to a discrete graph search on the cells. The authors then
introduce an algorithm that utilizes this visibility cell
decomposition to produce a path for the pursuer, defined
by a sequence of the cells that need to be visited in
order, that is guaranteed to locate the evader. We refer
to that algorithm, via the initials of the authors’ names,
as GL3M.

One may observe, however, that GL3M and other more
recent approaches that rely on the visibility cell decom-
position [11], can generate paths that require the pursuer
robot to move through cells that can be arbitrarily small.
For example, consider Figure 2, which depicts a conserva-
tive region shown in blue that is defined by rays extended
from two non-convex environment vertices. If one were to
decrease the angle at either of those vertices, the region
defined by those rays would become smaller; as that
angle approaches zero, the region’s size would approach
zero as well. If the pursuer robot has some potential for

Fig. 2: Visibility cells, as utilized by GL3M, may be arbi-
trarily small. [left] An example visibility cell. [center, right]
Sharper angles at the obstacle vertex generate smaller cells.
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inaccuracy in its movements —a real possibility, if not a
certainty, where robots are concerned— then that robot
may not be able to correctly execute pursuit strategies
that pass through such small cells.

The objective of this paper is to generalize the geomet-
ric approaches that utilize a visibility cell decomposition
of the environment to consider the robustness of the
generated paths, as measured by the amount of position
error those paths can tolerate in the pursuer robot
that executes them. Our approach builds upon GL3M
because that algorithm remains the definitive complete
algorithm for this basic problem. The underlying ideas
we introduce, particularly those in Section V, can be
generalized to other algorithms based on this sort of
decomposition [12]–[15].

After a brief review of related work (Section II), the
remainder of the paper is structured as follows:

1) In Section III, we introduce a new form of the classic
visibility-based pursuit evasion problem in which
the pursuer’s movements are subject to bounded
deviations of size at most ε from the intended
nominal path, and we define the notion of an ε-
robust solution strategy that succeeds in locating
the evader in spite of these errors.

2) In Section IV, we provide a concise overview of
GL3M, focused on mechanisms used there that our
algorithm leverages in this new context.

3) In Section V, we lay the foundation for an algo-
rithm that generates ε-robust solution strategies by
establishing some sufficient conditions under which
a pursuer strategy is ε-robust.

4) In Section VI, we describe an algorithm that deter-
mines, for a given environment, the largest value of
ε for which those sufficient conditions can be met,
and generates a path which achieves that level of
robustness.

5) In Section VII, we describe an implementation that
illustrates the effectiveness of this approach.

The paper wraps up with some closing discussion in
Section VIII.

II. Related Work

Pursuit-Evasion is an active research domain that
continues to generate significant interest as a specializa-
tion of the broader problem of search and target track-

ing. Pursuit-evasion problems are often characterized
by whether the problem is formulated as a differential
game [16]–[19], graph [20]–[23], probabilistic [24]–[26], or
geometric problem [9], [10], [27].

This paper is concerned with the geometric variant of
the problem where the pursuer(s) operate in a geometric
environment and attempt to detect the evader(s). There
are a number of results for the single pursuer variant
of the problem that range from providing theoretical
properties, such as completeness [9] and optimality [11],
to more restricted scenarios where there are limits on
the actuation and sensing capabilities of the pursuers.

A sampling of the literature yields the following results
which address such limitations: an evader is capable of
moving arbitrarily faster than the pursuer [9], bounded
velocity for both of the players [28] full visibility for both
players [29], limited visibility for both players [30], lim-
ited field of view for the pursuer [31], lack of a complete
map or localization ability for a pursuer [32], a pursuer
that relies on fixed orientations for its sensors [15].

The multi-pursuer variant has received significant in-
terest from the community [33]–[36] not only for broad
range of practical applications, but also because of the
need for good heuristics owing to the problem complexity
[37]. A common thread amongst much of the existing
work is an assumption that the pursuer(s) can reliably
execute the trajectories generated for them by the plan-
ner.

Existing threads of research on safety and robustness
in motion planning have focused on accounting for dy-
namic obstacles [38]–[43] or on sensing uncertainty [40],
[42], [43]. This paper addresses a related but distinct
problem in which the robustness of the plan is considered
in relation to the informative value of the realized trajec-
tory, rather than merely its ability to avoid collisions.

III. Problem Statement

This section formalizes the visibility-based pursuit-
evasion problem considered in this paper. First, we de-
scribe formal models of the environment, evader, and
pursuer (Section III-A), and then we describe the notion
of a robust solution to this problem (Section III-B).

A. Representing the Environment, Evader, and Pursuer

A single pursuer moves in search of an evader through
a simply connected polygonal region.1 The environment
is a closed and bounded set W ⊂ R

2, with a polygonal
boundary ∂W . Both the evader and pursuer are modeled
as points that can translate within the environment.

Let e(t) ∈ W denote the position of the evader at time
t ≥ 0. The path e is a continuous function e : [0, ∞) →
W , in which the evader is capable of moving arbitrarily
fast (i.e. a finite, unbounded speed) within W . Likewise
the pursuer’s path, p, is a continuous function p : [0, T ] →
W , in which T is a finite stopping time for the pursuer,
and p(t) ∈ W denotes the position of the pursuer at time
t ∈ [0, T ]. The function p is called a motion strategy for
the pursuer. The pursuer moves with a maximum speed,
defined without loss of generality to be 1.

It is assumed that both the evader and the pursuer
are informed of W but that the evader’s trajectory e is
unknown to the pursuer.

To detect the evader, the pursuer is equipped with a
omnidirectional sensor with unlimited range. The sensor
cannot, however, penetrate obstacles. For any point q ∈

1We assume, without loss of generality, that there is exactly one
evader. In this setting, any strategy that can guarantee to capture
one evader will also capture multiple evaders. If there are no evaders
at all, that same strategy can confirm this.
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W , let V (q) denote the visibility region at point q, which
consists of the set of all points in W that are visible from
point q. That is, V (q) contains every point that can be
connected to q by a line segment within W . Note that
V (q) is a closed set.

The time of capture for an evader following trajectory
e and a pursuer executing motion strategy p is defined
as the earliest time at which the evader’s position falls
within the pursuer’s visibility region:

tc(p, e) = min {t ≥ 0 | e(t) ∈ V (p(t))} .

Note that, if the pursuer never sees the evader, then
tc(p, e) is undefined.

The pursuer’s goal is to capture the evader regardless
of the trajectory taken by the evader. The following
definition formalizes this idea.

Definition 1: A pursuer motion strategy p is a solu-
tion strategy if there exists a finite worst-case time of
capture over all valid evader trajectories, denoted tc(p)
and defined as

tc(p) = max
e

tc(p, e).

That is, for a given pursuer motion strategy p, the time
tc(p) is the least upper bound for the time of capture,
considering any possible strategy e for the evader.

B. ε-robust Solution Strategies

We are particularly interested in the case where, due to
the usual exigencies of mobile robot actuation, the pur-
suer may be unable to execute assigned motion strategies
exactly. That is, for a given nominal path p̂ which the
robot intends to follow, the actual path p realized by the
robot may differ. We model this sort of inaccuracy using
a robustness parameter ε that quantifies the maximal
deviance from a given nominal path. Specifically, we
assume that the actual path stays within distance ε of
the nominal path. More formally:

Assumption 1: We assume that, though the actual
path p executed by the pursuer may differ from the
nominal path p̂, the following condition holds: At each
time t, the position p(t) achieved by the actual path is
within ε of the position p̂(t) achieved by the nominal
path:

||p(t) − p̂(t)|| ≤ ε,

for all t ∈ [0, T ].
Figure 3 illustrates this error model.
Our objective is to find motion strategies for the

pursuer that are guaranteed to find the evader in spite
of this sort of inaccurate execution.

Definition 2: A nominal path p̂ is an ε-robust solution
strategy if every actual path p satisfying the constraints
of Assumption 1 is a solution strategy.

Notice, for example, that every solution strategy is a
0-robust solution strategy. For larger values of ε, having
an ε-robust solution strategy is indicative of a strategy
that can be successfully executed by a pursuer robot
with a lower degree of accuracy in its movements. The

ε

p̂(0)
p(0)

p̂(t)

p(t)

p̂(T )

p(T )

Fig. 3: Parameterized visualizations for a nominal path p̂ and
a realized path p. A path p is ε-robust if ∀ t, 0 ≤ t ≤ T , the
robot following path p remains within ε of the nominal path
p̂.

Before After

Fig. 4: The shadows can be either cleared (green) or contam-

inated (purple) depending on whether an evader can, based
on the pursuer’s prior movements, be concealed within the
shadow. The above shows what would happen if a pursuer
(red) travels from the left of the environment to the center of
the environment.

remainder of the paper is concerned with algorithms
that, for a given environment, generate ε-robust solution
strategies for values of ε as large as possible.

IV. Review of GL3M

This section reviews the approach used by GL3M to
solve this pursuit-evasion problem in general, without re-
gard to robustness. We leverage and adapt these concepts
for our new ε-robust planning algorithm.

If the evader is not visible to the pursuer, then it
must be concealed in one of the finitely many regions
of the environment that are occluded from view. We call
these regions shadows (Figure 4). Though the shadows
themselves change continuously as the pursuer moves
through the environment, the cardinality of the shadow
set changes only when a shadow event occurs, i.e. a
shadow appears, disappears, splits, or merges with an-
other shadow.

Because the evader can move as quickly as it likes
within each shadow, the crucial piece of information
about each shadow for our pursuit-evasion problem is
just a single bit indicating whether or not the evader
might be hiding in that shadow. A shadow s is called
cleared at time t if, based on the pursuer’s motions up
to time t, it is not possible for the evader to be within
s without having been captured. A shadow is called
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Fig. 5: (left) Events describe how the shadows will change
when the pursuer crosses a conservative region boundary.
The visibility events are (A)ppear, (D)isappear, (S)plit, and
(M)erge.(right) The complete Pursuit-Evasion Graph is a
directed graph with shadow labels that update when the
pursuer crosses a cell boundary.

contaminated if it is not clear. That is, a contaminated
shadow is one in which the evader may be hiding. It will
be convenient to assign binary labels to each shadow, so
that a label of 0 means the shadow is cleared and a label
of 1 means the shadow is contaminated.

The shadow events induce the following changes to the
clear/contaminated status of a shadow:

• Appear: A new shadow can appear, when a pre-
viously visible part of the environment becomes
hidden — assign 0.

• Disappear: An existing shadow can disappear, when
a pursuer moves to a location from which that region
is visible — discard the label.

• Split: A shadow can split into multiple shadows,
when the pursuers move in such a way that a given
shadow is no longer path-connected — copy original
label to all new shadows.

• Merge: Multiple existing shadows can merge into a
single shadow, when previously disconnected shad-
ows become path-connected — 0 if and only if the
merging shadows were also 0, and 1 otherwise.

The basis of the GL3M algorithm —and of our exten-
sion to it— is that these labels fully capture the relevant
information about the pursuer’s progress in searching for
the evader. That is, a motion strategy p : [0, T ] → W

is a solution strategy if and only if, at time T , all of
the shadows are clear. This result is useful because it
confirms that, using this worst-case reasoning, we can
completely represent the pursuer’s progress in searching
for the evader by its current configuration and the cur-
rent shadow labels.

The GL3M algorithm employs a visibility cell decom-
position of the environment corresponding to the shadow
events that can occur, which discretizes the environment
into a collection of conservative regions, i.e. regions of the
environment in which the shadow cardinality and labels
remain the same provided the pursuer does not induce
another shadow event (Figure 5–left).

Based on this analysis of the changes to the shadow la-
bels, GL3M computes a solution strategy (without regard
for robustness) by forming and searching a graph, which
we call the pursuit-evasion graph (PEG). An example of
the PEG can be seen in Figure 5–right. Each node in
the PEG represents a region in the visibility cell decom-

position, coupled with a set of specific binary labels for
the shadows that exist in that cell. Directed edges in the
PEG connect nodes corresponding to adjacent cells, with
appropriate updates to the shadow labels as described
above.

V. Sufficient conditions for ε-robust

strategies

This section proves a sufficient condition for a solution
strategy to be ε-robust. Notice that if p̂ is a solution,
and p visits the same sequence of conservative regions
as p̂, then p is a solution as well. Unfortunately, if ε >

0, we cannot guarantee that this condition holds: any
time p̂ passes within distance ε of a conservative region
boundary, p has an opportunity to experience a shadow
event not experienced by p̂. Note that this is true even
when p̂ approaches a conservative region boundary that
it intends to cross. Our goal is to identify conditions for
p̂ under which p is nonetheless still a solution.

Recall from Section IV that the shadow labels change
when the pursuer’s motion induces a shadow event Λ ∈
{A(ppear), D(isappear), S(plit), M(erge)}. Each visibil-
ity event λ has a complementary visibility event, denoted
λ−1 that is triggered if the pursuer were to cross from
the opposite direction. In general,

• Appear events A are complementary to Disappear
events D, and vice versa.

• Split events S are complementary to Merge events
M , and vice versa.

This leads to the following result.
Lemma 1: If the path p is a solution strategy, where

λ1 · · · λkλk+1 · · · λK is the sequence of shadow events
induced by p, then any path p′ which generates a event
sequence of the form λ1 · · · λkλ−1

k λkλk+1 · · · λK —that is,
with λ−1

k λk inserted after λk— is also a solution strategy.
Proof: By case analysis. For the backtracking tran-

sition λkλ−1

k λk, we must consider the event type of λk,
along with the clear/contaminated labels of any shadows
that are affected by the event λk. Thus 8 distinct cases
arise:

(a) if λk is an appear event,
(b) if λk is a disappear event for a clear shadow,
(c) if λk is a disappear event for a contaminated shadow,
(d) if λk is a split event for a clear shadow,
(e) if λk is a split event for a contaminated shadow,
(f) if λk is a merge event for two clear shadows,
(g) if λk is a merge event for one clear and one contam-

inated shadow, and
(h) if λk is a merge event for two contaminated shadows.

For each of these cases, we verify that a backtracking of
this nature does not affect the state of the search. Details
for each case appear in Figure 6.

Notice that repeated applications of Lemma 1 can ac-
count for actual paths that introduce multiple instances
of this sort of backtracking, as illustrated in Figure 7. To
formalize this idea, we first delineate the class of paths
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Fig. 6: Cases for the proof of Lemma 1.
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Fig. 7: Beginning with an empty label, first there is an A
event that produces a 0 label that then S into a 00 label.
This is equivalent to the sequence ASS−1A−1AS. Note that
there are multiple events that are backtracked. First a split,
A✘✘✘SS−1A−1AS = AA−1AS, and then an appear, ✘✘

✘

AA−1AS =
AS.

for which this sort of temporary backtracking is the only
change in the event sequence that can occur.

Definition 3: A nominal path p̂ that induces a con-
servative region sequence r1, . . . , rm is called ε-region-
sequence-preserving (ε-RSP) if, for each ri, the portion
of p̂ within ri travels

• no closer than ε to any vertex of ri, and
• no closer than ε to any boundary segment of ri

except the boundary segments shared between ri

and ri−1 and between ri and ri+1.

The intuition is that an ε-RSP path stays at least ε

distance away from the conservative region boundaries,
except those that are crossed by p̂. We can now show
that ε-RSP is indeed a sufficient condition for ε-robust.

Theorem 1: If p̂ is ε-RSP, then p̂ is also ε-robust.
Proof: Consider a continuous deformation f from p̂

to p, under which f(0) = p̂, f(1) = p, and for each α ∈
[0, 1], f(α) is a possible actual path under error bound ε

for p̂. Let Λ(α) represent the sequence of shadow events
experienced by the path f(α). Notice that, because f is
continuous, Λ is a piecewise-constant function. Moreover,
changes in Λ occur at values of α where the path adds
or eliminates a single-step backtracking pair. Lemma 1
ensures that, if the path before each such change is a
solution, then the resulting path after the change is also
a solution. Thus, by induction on the number of changes,
conclude that p is a solution.

As a consequence, the algorithm in the next section
ensures that the paths it generates are indeed ε-RSP, for
as large an ε as possible.

VI. Algorithm Description

This section presents an algorithm that computes an
ε-RSP pursuer strategy through an environment, for
as large an ε as possible. We begin by describing a
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C

Fig. 8: Given a region sequence R = ABC, notice that the
most robust nominal path through region B is influenced by
curves belonging to A and C. Specifically, the path through B
should turn to avoid the diagonal blue segments (which are
avoid segments). That is, the path through B is impacted by
the existence of other regions, both before B and after it.

subroutine which, given a starting point p and a sequence
of conservative regions R = (r1, . . . , rn), computes a
path through those regions. We then outline a complete
algorithm that utilizes the aforementioned subroutine
to explore progressively larger sequences of conservative
regions, culminating in the pursuer either clearing the
environment, or determining that no such sequence ex-
ists.

A. Computing ε-robust Subpaths

First, we consider the problem of generating a subpath
through a single conservative region ri ∈ R in a given
sequence. The challenge is that the most robust nominal
path through conservative region ri may, and often times
will, be affected not just by the geometry of ri, but
also by that of other regions in the sequence. Figure 8
illustrates such a scenario. As a result, we cannot simply
generate paths along the medial axis of each cell in
isolation.

Instead, we must identify the boundary curves and
boundary vertices that may impact p̂ as it traverses
through each region ri. Given this collection of elements,
we can generate the appropriate subpath through each ri

by computing and walking along the medial axis induced
by this entire element set.

To determine the relevant curves and vertices that
affect the subpath through ri, which we term avoid

elements, we begin by including all of the vertices of ri

along with the boundary curves of ri except for the curve
from which the robot enters from ri−1 and the curve from
which the robot exits to ri+1.

Then we identify indices k1 and k2, with k1 < i < k2,
for which every boundary segment in rk1

, . . . , rk2
is either

a curve that p̂ must cross or a curve that p̂ must avoid.
That is, we walk alternatingly forward (i.e. increasing k2)
and backward (decreasing k1) until reaching values of k1

and k2 for which, if either were extended any further, a
curve would be added that must be avoided by one in
one step but crossed in another step. Figure 9 illustrates
the process.

After finding appropriate values for k1 and k2, we
extract the segments from rk1

, . . . , rk2
that must be

avoided for the path through ri to satisfy the ε-RSP
conditions, and compute their medial axis. We then walk

1

2 3

4
5

6

p̂

Fig. 9: Given R = 123456, when computing k1, k2 for ri = 2,
notice that k1 = 1 and k2 = 3 is maximal because of the blue
boundary which is an avoid curve from k1 which necessitates
that p̂ cross it in region 4.

through this graph, from its (necessarily unique, because
the regions are convex) entry point to ri from ri−1 to
its exit into ri+1. Note that a special case occurs when
ri−1 = ri+1, wherein the entrance and exit curves are
the same. In this case, we instead select a path along
the medial axis graph from the combined entrance/exit
curve, to the interior point of ri at the center of its largest
enclosed circle; the robot’s path would enter ri, travel to
this center point, and then depart along the same path.

Finally, the full path visiting regions r1, . . . , rn is then
recoverable by concatenating all of the subwalks for each
individual ri. For each each subwalk, we compute its
nearest approach to any of its avoid segments, denoted
εi. By construction, the full walk is then (mini εi)-RSP
and thus (mini εi)-robust. Once this bound is found, the
length of full path can be optimized by ‘cutting corners’
to reduce the clearance across the path down to this lower
bound.

B. Forward Search

Finally, the overall planner at the top level performs
a forward search over sequences of conservative regions.
The search algorithm maintains a priority queue of search
nodes. Each search node Si contains the following infor-
mation:

• PEG node sequence N(Si) = n1 . . . nk denoted as Ni.
• A path p̂ through Ni, denoted as p̂i.
• An ε for which p̂i is ε-RSP.

The priority queue is seeded with a search node consist-
ing of a region sequence containing the initial region, an
empty path, and the corresponding ε. The search nodes
in the queue are ordered according to the ε-robustness
of p̂; in the case of a tie, the secondary criterion is path
length, with shorter length preferred.

At each iteration, the search extracts the highest-
priority node Si from the queue, constructs new search
nodes S′ by appending a new adjacent conservative re-
gion to the end of Ni and computing (using the approach
from Section VI-A) the corresponding p̂′ and ε′, and
inserting this new search node S′ = (N′, p̂′, ε′) into the
queue.

To accelerate the process, prior to insertion into the
queue, we apply a pruning operation that determines
whether the search node can be safely discarded. The
pruning strategies are very similar to those that appear
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Fig. 10: (left) An ε-robust nominal path (black) through an
environment. (right) A collection of actual paths that remain
within ε of the nominal path(black).

Visibility Decomposition Strategies

Fig. 11: Scenario where the ε-robust (green), GL3M (blue),
and Optimal (magenta) strategies traverse through different
regions.

in our prior work [11]. We employ the Cycle-Free and
Regression pruning strategies which for a search node
Si ensures that a PEG sequence Ni is cycle free and
that there is no regression, in terms of discernible labels,
during the search. Additionally, we provide the following
strategy to prune provably suboptimal nodes: Given two
search nodes Sj and Sk: If Rj = (R1, . . . , ra, rb) , Rk =
(r1, . . . , ry, rz) where 1 ≤ a < b , 1 ≤ y < z have ra = ry

and rb = rz, and p
j
b = pk

z AND either

• ε(Sj) > ε(Sk) or

• ε(Sj) = ε(Sk) and dist(Sj) < dist(Sk).

Then Sk can be pruned. Intuitively, if two search nodes
culminate with the pursuer generating the same visibility
event and they share the same shadow label if one can
provably reach that area with a lower epsilon or perhaps
with the same epsilon but faster, then any future strategy
that builds on the suboptimal strategy with forever be
suboptimal had the search chosen to just expand the
other search node. Thus it can be discarded.

The search terminates when either a search node Si

reaches the top of the queue whose path p̂i is a solution
strategy (success), or the queue becomes empty (no
solution exists).

VII. Case Studies

This section presents some results for an implemen-
tation of the algorithm described in Section VI. There

are two primary characteristics that we were interested
in investigating: a) How robust is the computed plan to
actuation error, namely what kinds of actual paths are
realizable as solution strategies when given an ε-robust
nominal path, and b) How does an ε-robust solution
strategy compare to the complete and optimal strategies?

Figure 10 presents a scenario where the actual path
deviates from the nominal path by no more than ε and
serves as an illustration for the kind of error tolerance
that the ε-robust strategy compensates for. Note that the
actual path contains several intermediary (event–event
complement) pairs that do not affect the result.

Due to the search prioritizing clearance (ε-robustness)
before optimizing the path, it is possible for the nominal
path p̂ to visit a sequence of conservative regions that
differs from the complete algorithm and the optimal
algorithm as seen in Figure 11. In scenarios where the
sequence of conservative regions is the same, the ε-
robust strategy behaves very similarly to the optimal
solution. Note however that the optimal solution is, by
construction, only 0-robust and is particularly prone
to errors when there is a sudden change in direction
(See Figure 1). These are accounted for in the ε-robust
strategy.

VIII. Conclusion

This paper presents a measure of the robustness of
a pursuer motion strategy for a class of visibility-based
pursuit-evasion problems that accounts for motion un-
certainty by the pursuer. A set of sufficient conditions is
provided, and these conditions are leveraged into an algo-
rithm for computing a solution strategy that maximizes
this clearance measure.

The most direct avenue for future research is an
extension of this work, which considers only sufficient
conditions for ε-robustness, into a study on the necessary
conditions. The current measure is restricted to defor-
mations that maintain an equivalent event sequence, up
to some possible temporary backtracking. However, it
may be possible for the actual path to deviate from the
nominal path more severely while remaining a solution
strategy — some events impact the correctness of the
solution, others do not. We would seek to understand how
these kinds of adjacently permissible interactions would
affect the overall robustness of a pursuer motion strategy.

This work specifically considers a holonomic drive pur-
suer. An investigation into how the idea of ε-robustness
can be adapted to non-holonomic systems is another
avenue for future work.
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