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Abstract— We present a novel approach to reduce the pro-
cessing time required to derive the estimation uncertainty map
in deep learning-based optical flow determination methods.
Without uncertainty aware reasoning, the optical flow model,
especially when it is used for mission critical fields such
as robotics and aerospace, can cause catastrophic failures.
Although several approaches such as the ones based on Bayesian
neural networks have been proposed to handle this issue, they
are computationally expensive. Thus, to speed up the processing
time, our approach applies a generative model, which is trained
by input images and an uncertainty map derived through a
Bayesian approach. By using synthetically generated images of
spacecraft, we demonstrate that the trained generative model
can produce the uncertainty map 100~700 times faster than the
conventional uncertainty estimation method used for training
the generative model itself. We also show that the quality of
uncertainty map derived by the generative model is close to
that of the original uncertainty map. By applying the proposed
approach, the deep learning model operated in real-time can
avoid disastrous failures by considering the uncertainty as well
as achieving better performance removing uncertain portions
of the prediction result.

I. INTRODUCTION

Optical flow estimation is useful for many visual per-
ception applications such as robot navigation, autonomous
spacecraft navigation and object detection/tracking. For ex-
ample, the optical flow computed via images of an orbiting
target acquired by a spacecraft chaser can be used to esti-
mate the relative translational and rotational velocity of the
target [1]. Since deep learning approaches have been used for
the optical flow estimation, the deep learning-based methods
now outperform the traditional estimators [2], [3].

Similar to other deep learning-based methods, it is often
difficult to fully interpret how the trained model produces
the estimate. Since it is not straightforward to decipher how
deep learning models produce decision outputs, they are not
yet reliable approaches for high-risk applications such as in a
space mission. In particular, if the model does not know what
it does not know (i.e., unknown unknowns), false predictions
can be obtained with high confidence and can eventually
cause catastrophic failures.

To tackle this issue there have recently been considerable
efforts in explainable AI, which can be roughly divided
into explaining the processing of the data, explaining the
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Fig. 1. Features of the proposed architecture: After the Bayesian op-
tical flow estimator is trained, the input images and their corresponding
uncertainty map produced by the Bayesian estimator are used to train the
generative model. The generative model learns how to map the input to
the corresponding uncertainty. As a result, while the non-Bayesian optical
flow estimator predicts the optical flow, the generative model can predict
its corresponding uncertainty map, which is 100~700 times faster than by
the conventional Bayesian model.

representation of the data, and creating explanation pro-
ducing systems [4]. However, most recent explanable Al
methods focus on explaining the processing of the data,
and in particular, creating a saliency (heat) map showing an
important portion of input data for making a decision [5]-[8].

Since such interpretable techniques generate the saliency
map representing the importance of each pixel for the final
decision, it would not be appropriate in the case where
the decision cannot be simply represented. For example,
in the case of a classification problem, we can derive the
saliency map showing how much each pixel contributes to
the classification result because the result can be simply
represented in a probability for each class. On the other hand,
in the case of the encoder-decoder network where the input
image is converted into another form of image that resembles
the input image (e.g., segmentation label [9], dense optical
flow field), it would be harder to represent how much a part
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of an input contributes to a given part of the predictions.

For this reason, the Bayesian deep learning frame-
work [10]-[13], which is widely used to capture uncertainty
of each prediction by placing a probability distribution over
the network weight, could be applied to optical flow estima-
tion [14] and segmentation [9]. However, this framework for
uncertainty estimation is computationally expensive which
makes it unsuitable for real-time tasks.

As shown in Fig. 1, we overcome this challenge by
employing a generative model for image-to-image trans-
lation [15]. In particular, given a pair of images and its
uncertainty map derived by any conventional uncertainty
estimation method such as Monte Carlo (MC)-dropout [10]
and deep ensemble [13], the generative model for the image-
to-image translation can learn the mapping between them.
The main contributions of this paper are summarized as
follows:

o« We show that the model uncertainty depends on its
input data. Based on this, we build the generative model
inferring the uncertainty with the input image.

o We establish that given input images, the generative
model can predict the uncertainty map, which is close
to the original uncertainty map used for training the
generative model.

o We validate that the generative model can derive the un-
certainty map 100~700 times faster than the Bayesian
network, which provides training data for the generative
model. It can allow the uncertainty map to be used in
a real environment.

The rest of this paper is organized as follows. Related work
is presented in Sec. II. In Sec. III, we modify FlowNet2 to
be used in a Bayesian framework so that we can validate
our approach to reduce the processing time to derive the
uncertainty map. Our approach to derive the uncertainty map
in real-time is presented in Sec. IV. Experimental validation
using synthetic spacecraft images is presented in Sec. V.

II. RELATED WORK

Optical flow represents the pattern of apparent motion
of objects, in a visual scene caused by the relative motion
between an observer and those objects. Various approaches
have been proposed for the estimation of optical flow. Sparse
optical flow provides the flow vectors of some image features
derived by feature extraction techniques, while dense optical
flow gives the vectors of all pixels [16]-[18].

Machine learning approaches have been applied to optical
flow estimation [2], [19]-[24]. The authors in [19] modeled
local intensity pattern and local optical flow with Gaussian
Mixture Models (GMM). The algorithm [20] was proposed
to estimate optical flow in difficult imaging conditions by us-
ing inertial estimates of the flow and combining them with a
classifier. EpicFlow [21] used a sparse-to-dense interpolation
relying on edge-aware geodesic distance to compute a sharp
dense correspondence field. In [22], Full Flow employed a
global optimization to optical flow estimation by treating
classical optical flow objective function as a Markov Random
Field (MRF). The epipolar constraint with a Convolutional

Neural Network (CNN) was considered to perform flow
matching for traffic participants in the context of autonomous
driving [23]. While most of these techniques worked well in
a controlled environment, they showed limited performance
for practical applications in terms of scale-up and accuracy.

Since FlowNet2, based on FlowNet [24], was proposed
in [2], such CNN-based optical flow estimation techniques
like PWC-Net [3] have started outperforming traditional opti-
cal flow estimation approaches. Although impressive perfor-
mance on many popular benchmarks have been achieved, the
deep learning-based optical flow estimators cannot explain
about their prediction results in a way that we understand.

If there is no capability of uncertainty aware reason-
ing [25] for mission critical tasks, erroneous predictions can
cause disastrous consequences. In such context, in order to
evaluate failure prediction scores by a deep spatio-temporal
CNN and Support Vector Machine (SVM), an introspective
perception framework was proposed to allow a drone to
learn what is not known to it [26]. In particular, in the
Bayesian deep learning framework that has been proposed
to handle the uncertainty in deep neural networks, two
types of uncertainties are considered in more detail — the
epistemic uncertainty accounts for uncertainty included in the
trained model, and the aleatoric uncertainty captures inherent
observation noise [11], [12].

While the aleatoric uncertainty can be directly estimated
by adding a separate branch to deep neural networks [12]
that estimates the parameters of a probability distribution for
this uncertainty, the epistemic uncertainty cannot be directly
captured in such a way because the uncertainty of the model
parameters is not considered. However, if such uncertainty is
discarded, for a given input substantially different to the one
used to train the model, the deep neural network can even
output highly confident incorrect prediction.

Although some methods based on Markov Chain
Monte Carlo (MCMC) such as Hamiltonian Monte Carlo
(HMC) [27] and Stochastic Gradient Langevin Dynamics
(SGLD) [28] have been proposed to derive the uncertainty,
such approaches struggle with large-scale problems using
high-dimensional deep neural networks. Recently, two ap-
proaches have been widely used to estimate such uncertainty.
MC-dropout was proposed to derive uncertainty by applying
dropout at test time to randomly sample the weights of
network [10]. Also, an ensemble technique using multiple
networks that are randomly initialized is presented [13].

In contrast with the existing methods of estimating the
uncertainty as exactly as possible [10], [13], [14], [27],
[28], the objective of our methods presented in this paper
is to derive the uncertainty map in real-time. It allows the
uncertainty information to be used for tasks performed in
a real environment. For example, the proposed real-time
uncertainty estimation can be helpful for spacecraft to detect
out-of-distribution input data having much higher uncertainty
than the training dataset, so that the spacecraft can make an
acceptable decision in real-time with non-machine learning-
based methods, rather than reaching clearly unreasonable
results derived by the imperfect training model.
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III. OPTICAL FLOW wiTH BAYESIAN DEEP
LEARNING

To validate our approach designed to reduce the processing
time required to derive the uncertainty included in optical
flow we employed FlowNet2, which is an end-to-end learn-
ing approach for optical flow estimation [2], [24], and modify
the network to adopt a Bayesian approach.

Given a dataset consisting of two consecutive image
frames separated in time and their corresponding true dense
optical flow, the model of FlowNet can be trained to pre-
dict the dense optical flow. The FlowNetS and FlowNetC
are encoder-decoder networks [29]. The encoder of the
network takes an input and generates its down-sampled
high-dimensional feature vectors. On the other hand, the
decoder uses the feature vectors and performs up-sampling
to compensate for the down-sampling. In these networks,
the encoder is a normal CNN with 6 convolutional layers,
and the decoder consists of translational convolutions and
concatenations to get more refined results.

If the simple encoder-decoder architecture of FlowNetS
is large enough, it would be enough to learn the mapping
between the consecutive input frames and ground truth
optical flow. However instead of using a large network and
proposing optimization techniques for it, the authors [24]
proposed more specialized architecture, FlowNetC which is
to create two separate processing streams for each input
frame. In FlowNetC after the two image features are sep-
arately produced they are combined by finding correspon-
dences of two feature maps using a correlation layer. In the
paper [24] the authors showed that FlowNetC overfits more
than FlowNetS, but it usually depends on the training dataset.

Although FlowNetS and FlowNetC showed that optical
flow could be derived in the framework of deep learning,
the performance of other traditional methods was still better
than that of FlowNet. Thus FlowNet2 [2] was proposed by
stacking FlowNetC, FlowNetS, and their minor variants, as
shown in Fig. 2. In the same vein, two network architectures
were newly proposed for FlowNet2. FlowNetSD represents
a small kernel version of FlowNetS to catch small displace-
ment between two images while FusionNet was used to
combine all of the results from other networks.

As we mentioned in the previous section, we apply a
Bayesian deep learning framework, which is to capture
the uncertainty of each prediction by placing a probability
distribution over the network weights w to the FlowNet2
model. The prediction for a new input image x* can be
written as follows

p(y*|z*, X,Y) = /p(y*|x*,w)p(w|X,Y) dw (1)

where X denotes training inputs (images), Y denotes their
corresponding outputs (optical flow), y* is the predicted
optical flow, and p(w|X,Y’) is the probability distribution
of the network weights.

In general, computing the posterior distribution p(w|X,Y")
is intractable, so a variational distribution g(w) is used to
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Fig. 2. Bayesian FlowNetS, FlowNetC, and FlowNet2 architectures.
FlowNet2 is a stacked architecture of FlowNetS, FlowNetC, and their
minor variants. In this paper, to derive the uncertainty by the MC-dropout
method, several dropout layers represented in red boxes are inserted to each
component of the FlowNet2.

approximate it by minimizing the Kullback-Leibler (KL)
divergence.

KL(g(w)[lp(w]X,Y)) 2

For every K; x K; dimensional convolutional layer 4,
the above variational distribution ¢(w;) whose variational
parameters are M; is used to approximate the posterior

distribution:
z; ; ~ Bernoulli(p;)

(3)
= M; - diag([2;, J]g )

where z; ; denotes Bernoulli distributed random variables
with the dropout probability p;. The dropout probability p;
can be optimized [10], but is fixed to 0.5 in this paper.

In [10], [11], the authors showed that the model with the
above definition approximates a Gaussian process (GP), and
that minimizing the loss function of its objective function is
equivalent to minimizing the KL divergence (2).

We train this model and collect the results by running the
prediction at multiple times. And then, we take the mean ,, ,,
of the samples for the optical flow results, and the variance

u , for its model uncertainty.

Hu,v = M ; M v,i

5 )
2 _ L 2
Oup = M ;(Nu,v,z /qu,v)

where ., ., ; denotes the i-th prediction result at (u,v) of M
tests.
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To implement this Bayesian scheme called MC-
dropout [10], we may need to locate the dropouts after
every convolutional layer. However, it is known that such
approaches provide too strong regularization, so that the
model learns very slowly [9]. Therefore, similar to the study
in [9], we insert each of three dropout layers before and
after the center of the encoder and decoder of all component
networks of FlowNet2 — FlowNetS, FlowNetC, FlowNetSD,
and FusionNet, like shown as red rectangles between layers
in Fig. 2.

IV. ACCELERATION oF UNCERTAINTY
ESTIMATION

As mentioned in the previous section, MC-dropout uses
the dropout at test time for the random sampling [10].
Ensembling in [13] employs multiple networks with random
weight initialization. These two approaches are commonly
used to estimate the uncertainty of deep neural networks, but
since they are based on sampling, they have the drawback
of an increased inference time. MHP (Multiple Hypotheses
Predictions)-WTA (Winner-Takes-All) loss in [14] could
avoid the multiple forward passes of the sampling-based un-
certainty estimation, but increasing the number of hypotheses
can result in rapid performance degradation.

Since the uncertainty estimation methods are characterized
by high computational cost, they are not suitable for mission
critical tasks that require reliable uncertainty information in
real-time. Under the assumption that the uncertainty depends
on the input, as we will see in Sec. V-B, we propose to
employ the generative model for image-to-image translation
called pix2pix [15], which is to translate one possible rep-
resentation of an image into another (e.g., black and white
photo to color, map to satellite image, sketch to object, and
segmented image to photo). As we described in Fig. 1, given
a pair of input images and its corresponding uncertainty map
derived by any method such as MC-dropout, ensembling, and
MHP, the pix2pix based on conditional generative adversarial
networks (cGANSs) can learn the mapping between them,
thus directly derive the uncertainty map faster than other
uncertainty estimation methods by a forward pass through
the network, given a new input image.

The GANSs architecture is composed of two deep neural
networks [30]: the generator network creates a plausible
candidate image from random noise vector while the dis-
criminator network evaluates it. That is, the generator net-
work tries to “fool” the discriminator network by producing
more realistic images, but the discriminator network aims to
distinguish well whether its input image is real or generated
(fake). The cGANs are a conditioned version of the GANs
— its generator and discriminator networks receive some
additional conditioning input image. Based on the input
image, cGAN learns the mapping from the input image to
another representation of the input image, as shown in Fig. 3.

We use a smaller version of U-net [33] for the generator
net (G, and a conventional CNN for the Pixel GAN discrimi-
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Fig. 3. cGANSs architecture for uncertainty estimation. The solid arrow
represents the training flow, and dotted arrow the prediction. Once the model
is trained, the uncertainty map can be directly derived from the input images
by a forward pass represented in the dotted arrow through the trained U-net.

Fig. 4. Example of the synthetic images, generated with open source 3D
creation suite Blender [31], from the 3D model of the Aura spacecraft [32].
To validate our architecture proposed to accelerate the uncertainty estima-
tion, these images are used to train the FlowNet2 with MC-dropout model.

nator network D [15] with the following objective functions.

Lecan(G, D) =E, 4 [logD(z,y)]
+ Ex,z[log(l - D(.Z‘, G(Jf, Z)))]

where cGANs learn a mapping from input images = and
random noise vector z to uncertainty map y, G : {z, 2z} —
y. Note that D is trained to detect the fake image from G as
well as possible. Unlike a traditional GAN, cGAN does not
take z from the latent space as input. Instead, the randomness
in cGAN stems from the use of dropout layers. In addition,
since GG should be able to create the output near the ground
truth uncertainty map, £, distance is added to the objective
function.

6))

L1(G) =Eqy,: [[ly — G(z, 2)|]1] (6)
Thus, the final objective function is
arg ming maxpLegan (G, D) + AL1(G) 7

where )\ is the weight of the £, loss (6).

Lo loss may be used in the above objective function,
but it is well known that it can cause blurry results [15].
Also, since the transposed convolution layers of the U-net
can produce checker board artifacts on the reconstructed
image, using upsampling before convolutional layers instead
of the transposed convolution may be helpful to avoid such
noise [34].
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V. EXPERIMENTAL RESULTS
A. Synthetic Data Preparation

Our proposed approach can be generally employed for
other datasets. However, to validate our proposed architec-
ture depicted in Figs. 1-3, we generated 26,400 sequential
pairs of realistic synthetic images of the Aura spacecraft
model [32] with various poses and different lighting con-
ditions by using the open-source 3D suite Blender [31].
Figure 4 shows three representative generated images. We
then divided the dataset into two groups: 80% of the data
are used as a training set, and the remaining 20% as a test
set.

B. Uncertainty Estimation and Interpretation

We trained our FlowNet2 with MC-dropout model using
our synthetic dataset and stochastic gradient descent (SGD)
with the learning rate of le-5. The uncertainty map generated
by the FlowNet2 with MC-dropout model was used to verify
our proposed approach to reduce the processing time to
derive the uncertainty map.

Figure 7 shows some prediction results with the uncer-
tainty map for the test dataset. The optical flow is represented
in the Middlebury color coding [35], in which the color
represents the direction of optical flow, and the smaller
vectors are represented in lighter color. With a careful
comparison between the original image and uncertainty map
in the figure, we can find that our trained model mostly has
high confidence in the interior parts of the images, but low
confidence around the image edge. This finding is confirmed
in other literature studies which show that capturing sharp
discontinuous optical flow occurred on motion boundary,
which is a subset of image edges, is challenging [21], [36]—
[38].

C. Evaluation of Accelerated Uncertainty Estimation

Our proposed method is based on the pix2pix generative
model to directly derive the uncertainty map from the input
images. To train the generative model we used the images
for training and testing FlowNet2 with MC-dropout model,
and the uncertainty maps obtained from 48 samples by the
trained FlowNet2 with MC-dropout model. The training was
performed with the Adam optimizer, the learning rate of 2e-
4, and A = 1000. The results are also shown in Fig. 7. The
comparison of the inference times to derive the uncertainty
map is represented in Table L.

TABLE 1

INFERENCE TIME COMPARISON
Case Time [s]
8 samples [10] 0.16
48 samples [10] 0.99
pix2pix trained by 48
samples from MC-dropout 0.0013

To evaluate how much the uncertainty derived by the
generative model for the pix2pix is accurate, we use a

—— MC Dropout
Estimation by Pix2Pix
—— Oracle

0.8

o
o

o
~

Normalized Average End Point Error

o
N

0.0 —

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Removed Pixels

Fig. 5. Sparsification plot of MC-dropout and pix2pix methods. The trained
FlowNet2 with MC-dropout model creates the uncertainty map, which will
be used for training the pix2pix generative model, as shown in Fig. 1.
Figure 3 shows that the pix2pix generative model predicts the uncertainty
map through the feed-forward network. In this plot, the “oracle” represents
true error, which is usually considered as ground truth uncertainty.

Fig. 6. Uncertainty map of out-of-distribution data derived by the proposed
uncertainty estimation

sparsification plot, which is widely used for this purpose [14].
If some parts of the input data with the uncertainty are grad-
ually removed, the error should be monotonically dropped.
Figure 5 shows that the average endpoint error (AEPE)
is decreased as each fraction of pixels with the highest
uncertainty is removed. The AEPE was derived by

AEPE = % Z \/(Uz‘ —ufT)?2 4+ (v; —vfT)?2  (g)

where (u$T, v&T) denotes the ground truth optical flow for

the predicted optical flow (u;, v;). It means the average of all
the distances in N pixels between the predicted and ground
truth optical flow.

The plot also shows that the uncertainty estimation derived
by the pix2pix generative model is quite similar to that of
the FlowNet2 with MC-dropout model used for training the
generative model.

Figure 6 also shows that the proposed uncertainty estima-
tion can be used to reliably detect out-of-distribution data.
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Fig. 7. Sample results of the FlowNet2 with MC-dropout and the uncertainty map by the pix2pix generative model - From left: first input image, predicted
optical flow, ground truth optical flow, uncertainty by the pix2pix generative model, uncertainty obtained from 48 sample predictions by the FlowNet2 with
MC-dropout, image parts with low and high uncertainty derived by the proposed generative model-based uncertainty estimation. The darker color in the

uncertainty map represents more uncertain prediction.

The images from CIFAR-10 dataset, which are quite different
from our training dataset, and their randomly translated
images were used for the inputs to the trained cGAN model.
Comparing with the Fig. 7, its uncertainty is clearly out of
the desired range of uncertainty acquired from the training
dataset.

VI. CONCLUSION

Deep learning-based optical flow estimators, which have
outperformed traditional optical flow methods, are useful
for many applications such as pose estimation and object
detection/tracking of drones, mobile robots, and spacecraft.
However, if the uncertainty included in the optical flow
estimation is not taken into consideration, it can lead to
very unreliable and inaccurate estimation results. Although
conventional uncertainty estimation methods output useful
uncertainty maps to handle this issue, they are computa-
tionally expensive. Thus, we presented a novel approach to
significantly improve the processing time required to derive
the uncertainty map by adapting the generative model that
was trained by the input data and uncertainty map derived by
applying the MC-dropout to a modified FlowNet2 network.

The experimental results showed that our approach was able
to obtain the uncertainty map 100~700 times faster than the
original FlowNet2 with MC-dropout, and that the obtained
uncertainty map was close to the original uncertainty map.
The proposed approach will help the trained model to avoid
disastrous failures and increase the performance in real-time.
Future work includes applying our approach to the pose
estimation of spacecraft and generalizing this approach to
other areas such as segmentation and regression.
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