
Localization Uncertainty-driven Adaptive Framework for Controlling
Ground Vehicle Robots

Daniel Kent1, Philip K. McKinley2 and Hayder Radha1
1Department of Electrical and Computer Engineering
2Department of Computer Science and Engineering

Michigan State University, East Lansing, Michigan, USA
(kentdan3@egr.msu.edu, mckinley@cse.msu.edu, radha@egr.msu.edu)

Abstract— Modern localization techniques allow ground ve-
hicle robots to determine their position with centimeter-level
accuracy under nominal conditions, enabling them to utilize
fixed maps to navigate their environments. However, when
localization measurements become unavailable, the position
accuracy will drop and uncertainty will increase. While research
and development on localization estimation seeks to reduce
the severity of these outages, the question of what actions
a robot should take under high localization uncertainty is
still unresolved, and can vary on a platform-by-platform and
mission-by-mission basis. In this paper, we exploit localization
uncertainty measures to adapt system control parameters in
real time. Offline, we optimize non-linear activation functions
whose control parameters and relevant weights are trained
and learned using Evolutionary Algorithm (EA). Subsequently,
in real time, we apply the optimized adaptation functions to
the controller look-ahead distance and intermediate linear and
angular velocity commands, which we identify as the most
sensitive to localization error. Evolutionary runs are conducted
in which a simulated target vehicle is tasked with following a
randomly generated path while minimizing cross-track error,
with time varying localization uncertainty added. These runs
produce situation-dependent weights for parameters to the
adaptation functions, which are transferred to the physical
platform, a 1:5-scale autonomous vehicle. In simulation, our
system was able to reduce cross-track error, which in certain
cases exceeds 250 centimeters on non-adapted systems, to
below 15 centimeters on average using EA-derived weights
and parameters applied to our proposed adaptation system.
Evaluation on the physical platform demonstrates that without
the adaptation module in place, the platform is unable to
successfully follow the path; with the adaptation module, the
platform automatically adjusts its velocity and look-ahead
distance to compensate for localization uncertainty.

Index Terms — autonomous vehicle, localization, path
planning, uncertainty, evolutionary robotics, Robot Op-
erating System

I. INTRODUCTION

The capabilities of automated ground vehicle robots have
advanced significantly over the past two decades, with many
companies planning to release automated vehicles commer-
cially in the near future. However, a question highly relevant
to autonomous vehicles remains unanswered: What actions
are appropriate for a vehicle to take when its localization
uncertainty exceeds acceptable thresholds? For autonomous
vehicles, centimeter-order uncertainty is required to safely
utilize lane center information for path planning purposes [1].

However, the appropriate action under a given level of uncer-
tainty will depend on the specific platform and environment.

Solutions to this problem attempt to maintain acceptable
localization estimates when world-referenced positioning is
reduced or unavailable. Localization results from Global
Navigation Satellite System (GNSS) alone are generally
not used for automated vehicle navigation, as commonly
encountered environs such as tunnels and urban canyons can
reduce the accuracy of or even outright block GNSS posi-
tioning capabilities. Inertial Navigation Systems (INS) fuse
the global-frame localization results from GNSS with local
odometry and sensor data, such as Inertial Measurement Unit
(IMU) data, to produce a continuous localization estimate
through the use of Kalman filters [2], factor graphs [3], or
other techniques. Since local sensor and odometry data is
subject to process and sensor noise, causing the estimate to
lose accuracy over time, typically these errors are periodi-
cally corrected with global reference data such as that from
GNSS. However, if GNSS is denied or otherwise unavailable,
the localization errors will continue to grow unbounded. If
localization uncertainty exceeds a certain point, successfully
following paths defined in the global reference frame be-
comes difficult and potentially hazardous, if not impossible.
While much research has focused on reducing localization
uncertainty and error, and a limited body of work addresses
localization uncertainty on platforms that are permitted to
explore their environments [4], there is limited research
on adapting to localization uncertainty into path-following
platforms with limited capacity for error.

In this paper, we investigate the application of evolutionary
search to determine how robot platforms should respond to
high localization uncertainty, as well as whether a non-linear
activation function can effectively adapt the system in such
situations. In the process, we determine what adaptations,
if any, reduce operational error during periods of high
localization uncertainty, and at what level(s) of uncertainty
each adaptation activates. The target platform for this study,
shown in Figure 1, is a 1:5-scale vehicle based on an open
platform developed for the study of autonomous driving [5].
Evolutionary runs conducted using a simulation model of
this vehicle revealed sets of adaptation parameters that each
performed better under intermittent uncertainty, than a non-
adaptive system; indeed, in some cases the non-adaptive sys-

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 7079

tem was unable to perform path following at all. Experiments
on the physical platform confirmed these results under actual
changes in localization uncertainty.

Fig. 1. MSU EvoRally, a 1:5-scale vehicle constructed at Michigan State
University, based on AutoRally, an open platform developed by researchers
at Georgia Tech [5].

This work contributes two specific ideas: (1) the use of
non-linear adaptation functions as specific implementations
for localization uncertainty that can be applied to system
inputs, parameters, and outputs in real time, and (2) the use
of EAs to evaluate these adaptations for applicability and
determine their optimal values. The adaptation equations can
be applied to a variety of different platforms and platform
components, and the EA scales well to an increasing number
of these adaptation parameters.

The remainder of this paper is organized as follows. Sec-
tion II provides background on the localization problem and
evolutionary robotics. Section III describes the experimental
setup, including details of the MSU EvoRally platform, the
evolutionary search framework, the localization uncertainty
model, and the specific parameters exposed to evolutionary
pressures. Section IV presents the results of the evolution
runs, and Section V describes validation on the physical
vehicle. Finally, Section VI draws conclusions and discusses
possible future directions.

II. BACKGROUND AND RELATED WORK

We begin by providing background on the localization
problem and evolutionary search as applied to robotics.

A. Localization in Ground Vehicle Robots

Precision localization is an important function for ground
vehicle robots; with centimeter-level accuracy, ground vehi-
cle robots can navigate previously mapped lanes on road-
ways [1], which simplifies lane keeping down to a path
following problem. Aqel et al. [6] point out that while
several techniques fulfill the accuracy requirement, each has
trade-offs. For example, Real-Time Kinematic (RTK) GNSS
and other differential GNSS techniques can reduce standard
satellite navigation uncertainty to centimeter or millimeter
range, but require an unobstructed view of the sky. Inertial
Navigation Systems (INSs) can provide short-term dead
reckoning estimates using accelerometers in the absence of

other data, but are prone to drift over long periods of time.
Lidar can report precise distances to surrounding objects,
which can be used for lidar map-based localization [7] or
for odometry generation through Simultaneous Localization
and Mapping (SLAM) [8]. However, these methods may
not work well for areas with few vertical features [9].
Cameras can be used to generate odometry information, but
substantial compute power is needed to process the images,
and this approach is sensitive to environmental conditions
such as weather. Moreover, monocular camera odometry
could contain a non-static scale uncertainty that can cause
errors in the visual odometry estimate [10]. Even if multiple
techniques are fused, localization errors can arise if one
or more technique is subject to high uncertainty, or if a
technique becomes unavailable due to equipment failure.

Given the potential vulnerabilities of all localization sys-
tems, it is important that ground vehicle robots have the
ability to detect increases in localization uncertainty and
respond appropriately. While many techniques are able to
report uncertainty, the appropriate response will vary by
platform, application, and mission. For instance, probabilistic
approaches have been shown to be effective in mapping
uncertain environments, but primarily target robotic plat-
forms that are permitted to explore their environments, such
as interplanetary rovers [4]. In this paper, we explore the
potential role of evolutionary algorithms (EAs) as a means to
find parameter values for adapting to localization uncertainty
on platforms required to follow specific paths with high
precision.

B. Evolutionary Robotics

Modern robots are highly complex; a small change to a
parameter of a single subsystem might produce significant
changes in performance. For example, a small adjustment of
gain in a controller on a robot could cause the entire system
to exhibit undesirable behavior, such as oscillatory motion
around the desired control signal. The optimal value for this
gain could in turn be influenced by other factors in other
subsystems. Tuning a robot’s parameters can be a tedious,
manual task, which has driven research on alternative ways
to find optimal, or at least suitable, sets of parameters.

Researchers in the field of evolutionary robotics (ER) [11]
have sought to harness the search capabilities of EAs in
designing the control and morphology of robots. By oper-
ating in an open-ended manner, unconstrained by human
preconception and bias, these algorithms can find unconven-
tional solutions to problems as well as reveal situations that
might cause the system to fail [12], [13]. In order to avoid
damage to physical robots, evolution is usually conducted in
simulation. A typical approach uses a genetic algorithm (GA)
to optimize characteristics (e.g., controller parameters, sensor
configurations) of the robot. Each individual in a population
represents a possible software/hardware configuration of the
target platform, whose performance is evaluated with respect
to a fitness function. Those individuals with high fitness
are selected to pass genes to the next generation. Over
generations, performance of the task improves and eventually

7080

plateaus, yielding one or more potential solutions, which
can then be tested in physical robots. Differences between
simulated performance and actual performance, referred to as
the reality gap [14]–[17], are analyzed and used to modify
the simulation models. The process is repeated until a
satisfactory solution is produced.

EAs are not the only optimization method that can be used
to optimize parameters for robotics applications. In addition
to classical methods, machine learning-based techniques
such as gradient descent and reinforcement learning (RL)
have been used to develop and optimize control systems.
However, gradient descent-based algorithms are difficult to
parallelize [18], and RL techniques typically use gradient
descent to optimize parameters, whereas EAs are much
more conducive to decentralized evaluation. While RL can
incorporate EAs to perform parameter search [19], we opted
to use EAs directly to discover optimal parameters.

C. Evo-ROS

Evolutionary approaches have yielded effective designs
for terrestrial, aquatic, and aerial robots [11]. However, ER
robots and their environments tend to be relatively simple,
due in part to the high computational cost of evolutionary
runs. Moreover, using simplified models increases the reality
gap. Recently, Silva et al. [20] addressed this issue and
pointed out the benefits of using tools from the mainstream
robotics community in ER simulations. For example, an
increasing number of robotic systems and autonomous ve-
hicles utilize software infrastructures based on the Robot
Operating System (ROS) [21]; an advantage of ROS is that
code developed and tested for a simulated robot can be
deployed and executed directly on the corresponding physical
robot.

Simon et al. [22] recently developed Evo-ROS, which
extends evolutionary search to robots whose software in-
frastructure is based on ROS. Evo-ROS currently uses the
Gazebo physics-based simulator, which is often coupled with
ROS and provides tested models of many commercially-
available hardware components, although other simulators
could be used. Evo-ROS has previously been applied to
increase robustness of ground vehicle robots by optimizing
sensor placement and redundancy in the presence of com-
ponent failure and damage [22]. In addition to optimizing
physical characteristics of the platform, Evo-ROS can be
used to optimize software components and parameters. For
example, Langford et al. [23] combined Evo-ROS with
novelty search [24] in order to optimize the throttle controller
on EvoRally, the target platform of the current study.

III. EVOLUTIONARY PROCESS AND DESIGN

Our experiments were conducted in two stages. The first
stage constituted Evo-ROS runs with the simulated robot in
order to find weights for adaptation parameters based on
simulated localization uncertainty. In the second stage, we
tested those parameters on a physical robot platform to de-
termine how these adaptation parameters affect performance

and whether the evolved adaptation produced a system that
was more robust to localization uncertainty.

A. Ground Vehicle Platform

Although the proposed approach is applicable to many
autonomous vehicles, the demonstration system in this study
is the MSU EvoRally vehicle shown in Figure 1. EvoRally is
based on the open-source AutoRally platform developed at
Georgia Tech; Goldfain et al. have published a comprehen-
sive description of their system’s hardware and software [5].
The vehicle’s chassis is borrowed from a gas-powered 1:5
scale remote-controlled truck; the engine is replaced with
an electric motor, and many mechanical components are
replaced with stronger versions to accommodate the weight
of computing equipment and sensors. A custom compute box
houses a quad-core processor, 32GB RAM, 2TB SSD, and a
GPU for real-time image processing. Sensors include a high-
precision IMU, RTK GNSS, Hall-effect rotation sensor on
each wheel, and two front-facing machine vision cameras;
the completed vehicle weighs 46 lbs and has a top speed
of 60 mph. Our platform was built with similar hardware
specifications as the one described in [5], with changes made
to attach and integrate a different GNSS receiver, among
other modifications. For the Evo-ROS simulation of the
vehicle, we reused and expanded simulation code developed
by the Georgia Tech group.

As noted above, the vehicle’s software infrastructure is
based on ROS, where individual functions are realized as
separate executables, enabling us to easily exchange compo-
nents such as controllers with off-the-shelf or experimental
software. For this study, we replaced the default ROS navi-
gation stack and implemented the platform’s path following
software as a two stage controller. The first controller stage
utilizes a Pure-Pursuit based algorithm implemented previ-
ously by the Autoware project [25]. The algorithm takes an
input path and converts it into a desired linear and angular
velocity, or twist, based on a point on the path chosen in
front of the platform; the distance to this point is known
as the look-ahead distance, and the chosen point the look-
ahead point. In the second stage, this twist is converted into
platform-specific throttle, steering, and braking commands
using a proportional-integral-derivative (PID) controller. The
traditional Pure Pursuit algorithm computes the look-ahead
point deterministically using either a fixed look-ahead dis-
tance, or a simple varying look-ahead distance that depends
on a measure such as current vehicle speed [26]. Similarly,
even though the twist command output from the Pure Pursuit
algorithm is derived from the vehicle’s current position and
is implicitly sensitive to localization error, traditional PID
controllers do not incorporate localization uncertainty as a
parameter used to calculate platform-specific commands.

While PID controllers may not be as robust for path
following as other types of controllers, such as Model Pre-
dictive Control (MPC) controllers, our PID-based controller
is adaptable to different platforms, and only requires modifi-
cation of the specific output commands and tuning the gains
of the PID controller. In addition, MPC-based controllers for

7081

ground vehicles incorporate similar parameters such as look-
ahead distance [27] that could be adapted in real time using
our proposed method and optimized using EAs. While this
two-stage control method works well when the measured
and/or estimated position is accurate, inaccurate localiza-
tion data can result in poor path following performance,
potentially putting at risk the vehicle, its surroundings, or
bystanders.

B. Adaptation, Evolution, and Fitness Parameters

To address localization uncertainty, we first identified
three specific parameters in our system that were the most
sensitive to localization uncertainty: the configured look-
ahead distance within the pure pursuit module, as well as the
output linear and angular velocity commands. We developed
a novel uncertainty adaptation module that could adjust the
look-ahead distance and velocity commands in real time
based on the estimated uncertainty into the two-stage control
algorithm explained above. As shown in Figure 2, the un-
certainty adaptation module reads in the current localization
uncertainty, and uses it to adjust system parameters in real
time. Without the uncertainty adaptation module, the direct
output of the pure pursuit module is used as the input of
the twist controller, with the look-ahead distance remaining
fixed. With the module in place, the localization uncertainty
as computed by the localization subsystem is used to adjust
the look-ahead distance and reduce the commanded linear
and angular velocities as localization uncertainty increases.

Fig. 2. Software flow diagram showing Uncertainty Adapter node adjusting
data and parameters across multiple controller subsystems. Thick lines
indicate flows that are active when the Uncertainty Adapter module is
enabled, and dashed lines indicate flows that are active when the Uncertainty
Adapter module is disabled.

The specific equations we developed for adapting system
parameters are based on a Rectified Linear Unit (ReLU)

TABLE I
ADAPTATION PARAMETERS (GENES) FOR EVOLUTION

Equation Minimum Maximum
Wx 1 0 10
Wθ 2 0 10
Ox 1 0 1
Oθ 2 0 1
Lb 3 Lmin Lmax
Lmin 3 0.5 Lmax
Lmax 3 Lmin 10
WL 3 -5 5
OL 3 0 1

activation function, and was partially inspired by formu-
lations of non-linear activation in the field of machine
learning [28][29]. The model function appears in Equation 1.
The function takes in a nominal parameter value, x, and an
uncertainty measure, σx, and outputs an adjusted parameter
value, x̂. This function in its basic form has two parameters
that are fixed: the weight, or slope, of the activation function,
Wx; and the offset, or minimum activation level, Ox. The
equation can also be clamped between certain values if
necessary, shown as xmin and xmax. Equation 1 can be
modified for multiple types of parameters and data on a
variety of robot platforms.

x̂ = clamp{xmin,xmax}(x×(1−Wx)×relu(σx−Ox)) (1)

Given our identification earlier of the three target parame-
ters (look-ahead distance L, output linear velocity command
V`, and output angular velocity command Vθ), we imple-
mented three equations, which appear as Equations 2, 3,
and 4. Each of the twist adaptation equations require the
weight and offset parameters to be determined. The look-
ahead equation by contrast has five parameters; in addition
to the weight and offset parameters, the minimum, maxi-
mum, and base look-ahead parameters must be determined.
Importantly, the weight for the look-ahead is scaled such
that it can take positive or negative values, and the EA is
restricted to choosing base, minimum, and maximum look-
ahead distances between 0.5 and 10 meters. Combined, the
three equations yield nine parameters (a.k.a. genes that are
subject to evolution using the EA; these are listed in Table
I.

L̂ = clamp{Lmin,Lmax}(L× (1−Wl)× relu(||Σ||F −Ol))
(2)

V̂` = clamp{0,V`}(V`×(1−WV`)×relu(||Σ||F−OV`)) (3)

V̂θ = clamp{0,Vθ}(Vθ×(1−WVθ)×relu(||Σ||F−OVθ)) (4)

Our objective is to employ a measure of the localization
uncertainty to adapt the values of the linear velocity, angular
velocity, and look-ahead distance in real time. Here, we
employed the Frobenius norm ||Σ||F of the localization
covariance matrix Σ as a measure of uncertainty that guides
our adaptation framework. It is possible that other, poten-
tially more-complex, measures of uncertainty might be more
effective in this optimization problem. This particular aspect
of our work is left for further investigation.

7082

The fitness function we used for our EA takes the average
cross-track error, eavg, and distance along the path d the
adapted system is able to travel and calculates a fitness using
Function 5

f(d, eavg) = d× npdf(eavg, 0.25)

npdf(0, 0.25)
(5)

where npdf(a, σ) is the value of the probability distribution
function (pdf) for a zero-centered Gaussian pdf with standard
deviation σ evaluated at a. We used the Gaussian pdf to
calculate the fitness components from the cross-track error
in order to ensure the function was smooth and to minimize
the penalty for small amounts of cross-track error. The EA
was configured with a population size of 50 evolved over the
course of 25 generations. Genes were randomly uniformly
initialized subject to a 7.5% mutation rate and a 5% crossover
rate. We executed the EA 5 times with different random
number generator seeds in order to capture potential variation
in optimal sets of parameters.

C. Paths

A simulated path is generated as a semi-random set of
straight paths and curves, each segment of which has equal
length. Segments are allowed to turn left if the previous
segment is heading in the positive X direction or the negative
Y direction, or right if the previous segment is heading in
the positive X direction or the positive Y direction. These
turning restrictions prevent the path from turning in on
itself and guarantees that the robot cannot skip segments
without incurring a significant cross-track error, which can
be detected by an evaluation module. For this initial study,
we kept the path fixed; this path is shown in Figure 3. Future
work will vary the path once per EA run, and later may vary
per generation to further challenge population members.

Fig. 3. A specific path used in simulation during EA, with start and end
points marked. Grid size is 10 meters square.

D. Simulating Odometry and Uncertainty

To reduce the computational complexity of the simulation,
we developed a simplified approximation of an INS that uses
the simulated robot’s ground truth position and orientation,
and adds a time-dependent amount of Gaussian noise to the
ground truth X and Y positions and the platform orientation.

TABLE II
TABLE OF RESULTS

Run Fitness Distance Avg. Cross-Track Error
1 71.992 112.5m 0.152m
2 60.992 85.25m 0.141m
3 62.635 112.25m 0.196m
4 71.604 88.2m 0.220m
5 69.367 80.2m 0.266m
Baseline 4.641 14.8m 0.380m

The noisy position is then reported to the simulated platform
along with an uncertainty estimate, represented as a 3x3
Gaussian covariance matrix, based on the amount of time-
dependent noise added to the simulation. We model uncer-
tainty this way, as it is possible to obtain similar types of
uncertainty estimates with a Kalman-based filter, such as an
open-source software implementation developed by Moore
and Stouch for ROS [30]. While localization uncertainty
may not necessarily be Gaussian outside of simulations,
the performance of Gaussian-based localization filters is
sufficient to achieve centimeter-level accuracy using low-cost
sensors [31]. Future work may involve more challenging as-
sumptions about the noise model for localization uncertainty.

E. Simulation Monitoring

During the evaluation of each population member in the
EA, the simulation monitors and records average cross-
track error and distance for fitness evaluation. To reduce
the time spent simulating invalid or unsuitable genomes, the
maximum cross-track error is monitored, and if it exceeds 2.5
meters, the simulation ends. Once the the simulation reaches
240 simulated seconds, the simulation ends.

IV. RESULTS OF EVOLUTIONARY SEARCH

A. Path Following Performance

The evolutionary runs discovered several sets of param-
eters that were able to successfully adapt the system to
periods of high localization uncertainty. As shown in Table
II, the top genome, which came from run 1, was able to
follow 112.5 meters of the path in 240 simulated seconds,
with an average cross-track error of 0.152 meters. By con-
trast, a simulated non-adapted system with fixed look-ahead
distance of 2.65m and deterministic forward and angular
commands was unable to follow the path for the full 240
seconds, instead exceeding the 250cm threshold during a
period of high localization error. The specific parameters
varied between different genomes; some genomes chose a
positive weight for the WL parameter, while others chose a
negative weight, corresponding to an increase and decrease in
look-ahead distance, respectively, as localization uncertainty
increases. Figure 4 shows an example of the improvement in
path following behavior. Figure 5 reveals that the EA-derived
parameters causes the system to reduce the output forward
and angular velocity commands when uncertainty increases.

Early development of our adaptation functions used strictly
linear equations, which resulted in reductions in forward
and angular velocity commands even when uncertainty was

7083

Fig. 4. Example of path-following performance of non-adapted (blue) and
adapted controller in simulation, using results from run 1. Grid size is 1
meter square.

low. The introduction of the non-linear ReLU function as
the basis for our adaptation functions eliminated the steady-
state forward and linear velocity errors. In addition, the
offset values determined by the EA serve as a threshold that
can measure how sensitive each parameter is to localization
error.

B. Evaluation of Fitness Function Effectiveness

Figure 6 plots the average and maximum fitness for
one of the evolutionary runs, demonstrating the objective
improvement of the fitness. Based on this result as well
those in Table II., we conclude that the fitness function
effectively guided the EA toward a suitable set of adaptation
parameters that reduced the platform’s average cross-track
error as the uncertainty increased and decreased throughout
the simulations. Despite the fitness function not factoring
in maximum cross-track error, the adapted systems’ maxi-
mum cross-track error stayed well below the 250 centimeter
threshold. EAs that incorporate multi-objective optimization
could be explored in the future to determine if a trade-off
exists between average and maximum cross-track error for
our application.

V. VALIDATION ON PHYSICAL ROBOT

To validate that a controller with evolved adaptation pa-
rameters performed adequately on a physical robot, we tested
path following on the EvoRally platform at the MSU Spartan
Mobility Village, a 330-acre space with natural areas as well
as winding and intersecting streets. The vehicle was config-
ured to utilize a graph-based localization filter as an input
to the controller to smooth localization results. The GNSS-
derived position covariance matrix was used as the input to
the adaptation module, with differential GNSS measurements
obtained in real time from the Michigan Department of
Transportation’s Continuously Operating Reference Station
(CORS) network. A course was defined using a series of
GNSS waypoints that roughly formed a square in a parking
lot, as shown in Figure 7. The location of each waypoint
was surveyed with RTK GNSS using an RTK fix solution
for accuracy; tape was laid out on the path for our benefit,
but was not used by EvoRally’s cameras for path following.

Fig. 5. Forward velocity command profile (top) and steering command
(bottom) of adapted controller under uncertainty. Large shifts in angular
velocity command occurred as simulated GNSS position became highly
noisy.

During testing, the GNSS solution provided by the plat-
form’s GNSS receiver fluctuated between RTK fix, RTK
float, and Single-Point Positioning (SPP). RTK Fix has
the smallest covariance, and SPP has the largest. These
conditions provided us an opportunity to evaluate the robot’s
performance under dynamic localization conditions, without
the need to introduce artificial noise.

When the adaptation module was not activated and the
GNSS solution was other than RTK fix, the vehicle deviated
significantly from the path, often requiring us to perform a
manual takeover of the vehicle in order to avoid an accident.
When the adaptation module was activated, the platform
automatically stopped if the localization solution was SPP,
would drive at full or near-full speed with a short look-
ahead distance when the solution was RTK fix, and would
drive at slower speeds with a longer look-ahead distance
when the solution was RTK float, as shown in Figure 8.
In summary, our localization adaptation module was able to
successfully adapt to actual, changing GNSS fix qualities,
without our having explicitly programmed this behavior in

7084

Fig. 6. Average and Maximum fitness scores achieved over the course of
the EA for Run 1.

Fig. 7. Photo of course with approximate positions of GNSS waypoints
marked in white tape.

response to changes in GNSS fix type. Despite the difference
in the simulated versus actual paths, the adaptation module
performed well, which suggests that the reality gap may be
small.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we investigated the application of evolution-
ary search to the problem of adaptation in the presence of
localization uncertainty, developed a set of non-linear adap-
tation equations to modify system parameters and outputs
in response to localization uncertainty, and optimized the
parameters using an EA. These techniques improved the
path following performance of a simulated ground vehicle
robot and were successfully applied to the corresponding
physical platform, the MSU EvoRally vehicle. The use of
non-linear activation functions to adapt robots for localiza-
tion uncertainty, as well as the use of an EA to evaluate
and adapt robot platforms for localization uncertainty, may
have application to other robot platforms that rely on highly
accurate localization results for path planning purposes.

This work can be extended in several ways. First, since
GNSS uncertainty is often location-dependent, with higher
lateral uncertainties occurring in natural or urban canyons,

Fig. 8. Top: Logged commanded and adapted forward velocity on the
platform during testing. Bottom: Logged commanded and adapted angular
velocity on the platform during testing. Note the increase in uncertainty,
which occurred due to GNSS solution changing from RTK fix to RTK
float.

we plan to integrate into our simulator more realistic models
of GNSS noise as well as location-dependent noise. Second,
we plan to combine Evo-ROS with novelty search, as in [23],
to create challenging scenarios that drive evolution. Such an
approach would generate a series of tests that vary the path
and the time-based and location-based uncertainty; evolving
against these scenarios would likely produce a more robust
solution. Parameters chosen might include specific path
sequences as well as points on the map where localization
uncertainty is increased. Third, since localization uncertainty
affects obstacle avoidance, future testing will include obsta-
cles and additional adaptation parameters related to obstacle
avoidance. Finally, we also plan to evolve parameters for
other types of ground vehicle robot platforms such as full-
scale automated vehicles.

ACKNOWLEDGEMENTS

This work has been supported in part by the U.S. Na-
tional Science Foundation under grant DBI-0939454, by
the U.S. Air Force Research Laboratory under agreements

7085

FA8750-16-2-0284 and FA8750-19-2-0002, and by the MSU
Foundation Strategic Partnership Grants (SPG) program. We
would like to thank Brian Goldfain of the Georgia Institute
of Technology for the design and documentation of the
AutoRally platform, and for providing technical assistance
with hardware and software used in this research. We also
thank Glen Simon, Jared Clark and Jonathon Fleck for the
development of Evo-ROS and the construction of the MSU
EvoRally platform. We thank Steven Yik, who provided
assistance in fabricating parts for the robot; without his
timely assistance this paper would not have been possible.

REFERENCES

[1] M. Schreiber, C. Knöppel, and U. Franke, “Laneloc: Lane marking
based localization using highly accurate maps,” in 2013 IEEE Intelli-
gent Vehicles Symposium (IV). IEEE, 2013, pp. 449–454.

[2] P. Goel, S. I. Roumeliotis, and G. S. Sukhatme, “Robust localization
using relative and absolute position estimates,” in Proceedings of
the 1999 IEEE/RSJ International Conference on Intelligent Robots
and Systems. Human and Environment Friendly Robots with High
Intelligence and Emotional Quotients (Cat. No. 99CH36289), vol. 2.
IEEE, 1999, pp. 1134–1140.

[3] F. Dellaert, “Factor graphs and GTSAM: A hands-on introduction,”
Georgia Institute of Technology, Tech. Rep., 2012.

[4] C. Olson, “Probabilistic self-localization for mobile robots,” IEEE
Transactions on Robotics and Automation, vol. 16, no. 1, pp. 55–66,
2 2000.

[5] B. Goldfain, P. Drews, C. You, M. Barulic, O. Velev, P. Tsiotras, and
J. M. Rehg, “Autorally: An open platform for aggressive autonomous
driving,” IEEE Control Systems Magazine, vol. 39, no. 1, pp. 26–55,
2019.

[6] M. O. Aqel, M. H. Marhaban, M. I. Saripan, and N. B. Ismail, “Review
of visual odometry: types, approaches, challenges, and applications,”
SpringerPlus, vol. 5, no. 1, p. 1897, 2016.

[7] M. Bosse and R. Zlot, “Continuous 3d scan-matching with a spinning
2d laser,” in Proceedings of the 2009 IEEE International Conference
on Robotics and Automation. IEEE, 2009, pp. 4312–4319.

[8] H. Alismail, L. D. Baker, and B. Browning, “Continuous trajectory
estimation for 3d slam from actuated lidar,” in Proceedings of the 2014
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2014, pp. 6096–6101.

[9] S. Pang, D. Kent, X. Cai, H. Al-Qassab, D. Morris, and H. Radha,
“3d scan registration based localization for autonomous vehicles-a
comparison of ndt and icp under realistic conditions,” in Proceedings
of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall).
IEEE, 2018, pp. 1–5.

[10] B. M. Kitt, J. Rehder, A. D. Chambers, M. Schonbein, H. Lategahn,
and S. Singh, “Monocular visual odometry using a planar road model
to solve scale ambiguity,” in Proceedings of European Conference on
Mobile Robots, 2011.

[11] S. Nolfi, J. Bongard, P. Husbands, and D. Floreano, “Evolutionary
robotics,” in Handbook of Robotics, B. Siciliano and O. Khatib, Eds.
Springer, 2016.

[12] “Awards for human-competitive results produced by genetic and
evolutionary computation,” competition held as part of the annual
Genetic and Evolutionary Computation Conference (GECCO), spon-
sored by ACM SIGEVO. Results available at http://www.human-
competitive.org.

[13] A. J. Ramirez, A. C. Jensen, B. H. C. Cheng, and D. B. Knoester,
“Automatically exploring how uncertainty impacts the behavior of dy-
namically adaptive systems,” in Proceedings of the 26th International
Conference on Automated Software Engineering, Lawrence, Kansas,
November 2011, pp. 568–571.

[14] R. A. Brooks, “Artificial life and real robots,” in Proceedings of the
First European Conference on Artificial Life. MIT Press, Cambridge,
MA, 1992, pp. 3–10.

[15] N. Jakobi, “Running across the reality gap: Octopod locomotion
evolved in a minimal simulation,” in Proceedings of the First European
Workshop on Evolutionary Robotics. Paris, France: Springer-Verlag,
1998, pp. 39–58.

[16] J. C. Bongard and H. Lipson, “Once more unto the breach: Co-
evolving a robot and its simulator,” in Proceedings of the Ninth
International Conference on the Simulation and Synthesis of Living
Systems, Boston, Massachusetts, USA, 2004, pp. 57–62.

[17] S. Koos, J. B. Mouret, and S. Doncieux, “Crossing the reality gap
in evolutionary robotics by promoting transferable controllers,” in
Proceedings of the 2010 ACM Genetic and Evolutionary Computation
Conference. Portland, Oregon, USA: ACM, 2010, pp. 119–126.

[18] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized
stochastic gradient descent,” in Advances in neural information pro-
cessing systems, 2010, pp. 2595–2603.

[19] D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette, “Evolutionary al-
gorithms for reinforcement learning,” Journal of Artificial Intelligence
Research, vol. 11, pp. 241–276, 1999.

[20] F. Silva, M. Duarte, L. Correia, S. M. Oliveira, and . A. L. Christensen,
“Open issues in evolutionary robotics,” Evolutionary Computation,
vol. 24, no. 2, pp. 205–236, 2016.

[21] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in IEEE ICRA Workshop on Open Source Software, vol. 3,
no. 3.2, Kobe, Japan, 2009.

[22] G. A. Simon, A. J. Clark, J. M. Moore, and P. K. McKinley, “Evo-
ROS: Integrating evolution and the Robot Operating System,” in
Proceedings of the Genetic and Evolutionary Computation Confer-
ence Companion (Workshop on Evolutionary Computation Software
Systems), Kyoto, Japan, July 2018, pp. 1386–1393.

[23] M. A. Langford, G. A. Simon, P. K. McKinley, and B. H. C. Cheng,
“Applying evolution and novelty search to enhance the resilience
of autonomous systems,” in Proceedings of the 14th International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems, Montreal, Quebec, Canada, May 2019.

[24] J. Lehman and K. O. Stanley, “Exploiting open-endedness to solve
problems through the search for novelty,” in Proceedings of the
Eleventh International Conference on Artificial Life (ALIFE XI).
Cambridge, MA, USA: MIT Press, 2008.

[25] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and
T. Hamada, “An open approach to autonomous vehicles,” IEEE Micro,
vol. 35, no. 6, pp. 60–68, 2015.

[26] S. F. Campbell, “Steering control of an autonomous ground vehicle
with application to the DARPA urban challenge,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2007.

[27] G. V. Raffo, G. K. Gomes, J. E. Normey-Rico, C. R. Kelber, and
L. B. Becker, “A predictive controller for autonomous vehicle path
tracking,” IEEE Transactions on Intelligent Transportation Systems,
vol. 10, no. 1, pp. 92–102, 2009.

[28] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is the
best multi-stage architecture for object recognition?” in Proceedings
of the 2009 IEEE 12th International Conference on Computer Vision.
IEEE, 2009, pp. 2146–2153.

[29] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International Con-
ference on Machine Learning (ICML-10), 2010, pp. 807–814.

[30] T. Moore and D. Stouch, “A generalized extended Kalman filter
implementation for the robot operating system,” in Proceedings of
the 13th International Conference on Intelligent Autonomous Systems
(IAS-13). Springer, July 2014.

[31] Y. Zhuang, Q. Wang, M. Shi, P. Cao, L. Qi, and J. Yang, “Low-
power centimeter-level localization for indoor mobile robots based
on ensemble Kalman smoother using received signal strength,” IEEE
Internet of Things Journal, 2019.

7086

