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Abstract— This paper presents a multirotor control archi-
tecture, where Model Predictive Path Integral Control (MPPI)
and L1 adaptive control are combined to achieve both fast
model predictive trajectory planning and robust trajectory
tracking. MPPI provides a framework to solve nonlinear MPC
with complex cost functions in real-time. However, it often
lacks robustness, especially when the simulated dynamics are
different from the true dynamics. We show that the L1 adaptive
controller robustifies the architecture, allowing the overall
system to behave similar to the nominal system simulated with
MPPI. The architecture is validated in a simulated multirotor
racing environment.

I. INTRODUCTION

As multirotor aircraft continue to be integrated into our
daily lives, researchers are challenged by the demand to
automate complex tasks such as urban air transport, package
delivery, autonomous racing, indoor exploration, or landing
on a moving platform. These tasks often involve agile
maneuvers and require complex trajectory planning. Despite
recent advances, numerous challenges related to the problems
of online optimal trajectory planning and replanning remain
to be addressed.

Model predictive path integral control (MPPI) [1]–[3]
offers a framework to efficiently solve a finite horizon
nonlinear optimal control problem without restrictions on
the form of the state cost function. The method is sampling
based, and it leverages recent advances in GPU program-
ming. Thousands of trajectories are propagated forward in
parallel, and the optimal control is obtained by weight-
averaging the controls from these trajectories (with each
weight corresponding to the respective trajectory cost).

However, much like any simulation-based optimal control
algorithm, MPPI suffers a degradation of robustness when
the simulated dynamics are different from the true dynamics.
The true trajectory may diverge from the planned trajectory
because the control sequence optimized for the nominal
dynamics is applied to the off-nominal true dynamics. The
new initial state (for the purpose of MPC) can be significantly
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Fig. 1. Schematic of overall system architecture.

different from the previously planned state, thus rendering
the warm-started controls to be far from optimal or in the
worst case detrimental. A typical strategy to combat this issue
is to include a tracking controller on top of the trajectory
generator. For example in [4], iterative linear quadratic
Gaussian (iLQG) is applied on top of MPPI to steer the states
back to the planned trajectory. iLQG, however, requires a
smooth cost function and also requires successive lineariza-
tion of dynamics and cost function. Here we take a different
approach and improve robustness through augmentation of
an adaptive control element.

Among the various adaptive control methods, L1 adap-
tive control [5], [6] has been widely adopted due to its
attractive properties of fast adaption, guaranteed robustness,
and predictable transient response. These properties have
been verified — consistently with the theory — in multiple
manned and unmanned flight tests and simulations, on a
diverse array of aircraft, including fixed-wing aircraft [7]–
[13], multirotors [14]–[16], helicopters [17], and air-defense
missiles [18]. The L1 adaptive control law can be formulated
either as a standalone controller or as an augmentation of
a baseline controller. In the augmentation architecture, the
adaptive component can be conveniently disabled without
affecting the nominal closed-loop dynamics, facilitating a
distinctive comparison between the system behavior with
and without the adaptive control component. Since adaptive
control is a purely reactive control methodology, there is
an opportunity to incorporate the advantages of baseline
control algorithms that are capable of planning, such as MPC
algorithms.

Previously, in [19], an L1 controller was used as an
augmentation to a linear MPC, with a SISO linear reference
model describing the desired behavior of the vehicle position
response. While simpler to implement, a reference model
which neglects the underlying vehicle dynamics may result in
unrealistic desired behavior. Moreover, for certain systems,
it may be advantageous to implement nonlinear reference
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Fig. 2. Detailed control system architecture.

dynamics. By taking the nominal closed-loop dynamics
(baseline controller and plant) as the reference dynamics,
we explicitly account for the nonlinearity of the vehicle
response and compensate the uncertainties directly. To the
best of the authors’ knowledge, there has never been an ar-
chitecture where nonlinear MPC with complex cost function
is robustified using L1 adaptive augmentation, which is the
contribution of this paper.

II. ARCHITECTURE

The architecture — depicted in Fig. 1 — consists of
three components. The first component is MPPI, which acts
as a nonlinear MPC controller generating the optimized
trajectory and the feedforward control sequence. Due to the
recent advances in GPU programming, MPPI can replan
at a rate as fast as 50 Hz. The second component is the
baseline controller, which provides some robustification by
recomputing the attitude command to correct for position
and velocity deviation. The attitude command modification
is obtained through geometric control for multirotors, and
attitude tracking is achieved through a quaternion-based PD
controller. The third component is the L1 adaptive augmen-
tation. By defining the state predictor to be the same as the
MPPI nominal dynamics, the L1 augmentation compensates
for the mismatch between the nominal dynamics and the
true dynamics. Hence, the tuning effort on the actual hard-
ware can be reduced. A detailed architecture with all sub-
components and signal flows can be found in Fig. 2.

III. MULTIROTOR DYNAMICS

In this section, we describe the multirotor dynamics and
quantify its (lumped) uncertainties. As depicted in Fig. 3, let
the inertial basis vectors e1, e2, e3 be aligned with the North-
West-Up directions. Define the rotation matrix from the body
frame to the inertial frame to be RI

B ,
[
b1 b2 b3

]
.

Define the attitude kinematics matrix to be

Ω(ω) ,
1

2


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

 . (1)

The dynamics, with state vector X =
{
x, v, q, ω

}

Fig. 3. Inertial and vehicle coordinate systems.

and control vector δ =
{
δT δM

}
, are

ẋ = v m̄v̇ = b3T̄δT δT − m̄ge3 + ζ̄ (2)
q̇ = Ω(ω)q J̄ω̇ = M̄δMδM − ω × J̄ω + ξ̄,

where ζ̄ and ξ̄ are unknown forces and moments which
encapsulate exogenous disturbance forces, model uncertainty,
and unmodeled dynamics. Such uncertainties may include —
but are not limited to — unknown aerodynamics, misalign-
ment of the mass center, and parametric uncertainty. The
parameters m̄, J̄, T̄δT ,M̄δM correspond to mass, moment
of inertia, thrust control derivative, and moment control
derivative matrix respectively. These quantities are unknown
in practice and only their nominal values m, J, TδT , MδM

are available. The multirotor dynamics can be rewritten with
the nominal parameters and the lumped uncertainties (ζ and
ξ) as

ẋ = v v̇ =
TδT δT
m

b3 − ge3 +
TδT
m

RI
Bζ (3)

q̇ = Ω(ω)q ω̇ = J−1MδMδM + J−1MδMξ

with ζ = m
m̄TδT

RB
I ζ̄ +

(
mT̄δT
m̄TδT

− 1
)

RB
I b3δT and

ξ = M−1
δM

JJ̄−1ξ̄ +
(
M−1
δM

JJ̄−1M̄δM − I
)
δM −

M−1
δM

JJ̄−1
(
ω × J̄ω

)
. A similar uncertainty parameteriza-

tion can be found in [14].

IV. MPPI TRAJECTORY GENERATION

A. Review of MPPI

In this section, we provide a brief review of MPPI. Readers
are encouraged to see [20] for the stochastic Hamilton-
Jacobi-Bellman derivation, [1]–[3] for the information theo-
retic derivation, and [21], [22] for the stochastic optimization
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derivation. In this paper, we use the information theoretic
derivation.

Consider the discrete-time dynamics st+1 = F(st,vt),
where vt is a Gaussian distributed random control input
vt ∼ N (ut,Σ). We are interested in finding the mean
control sequence U =

{
u0,u1, . . .uT−1

}
that minimizes

the cost function

J(U) = E

[
φ(sT ) +

T−1∑
t=0

[
Q(st) + λuT

t Σ−1ut

]]
. (4)

Note that the state running cost, Q(st), and the terminal
cost, φ(sT ), can be arbitrarily complex. For each control
sequence realization Vm =

{
vm0 ,v

m
1 , . . .v

m
T−1

}
, define

S(Vm) to be the state-dependent portion of the cost

S(Vm) = φ(smT ) +

T−1∑
t=0

Q(smt ). (5)

Start from the initial condition s0. Given the control sequence
from the previous iteration Uk−1, simulate (thousands of)
trajectories in parallel, each with a different control sequence
realization Vm. The costs are collected for each rollout and
are mapped to the trajectory weights:

w(Vm) = exp
(
− 1

λ

(
S(Vm)−

T−1∑
t=0

uT
t,k−1Σ

−1vmt − ρ
))
(6)

The term ρ is included in order to prevent arithmetic under-
flow. The value of ρ is typically set to the minimum cost
among all sampled trajectories. This term does not affect
the solution because of the normalization (as will be seen in
the next step). The optimal control at each time step can be
approximated as

ut,k = ut,k−1 +
1∑M

m=1 w(Vm)

M∑
m=1

[
w(Vm)εmt

]
, (7)

where εmt = vmt −ut,k−1 and M is the number of samples.

B. Multirotor Application
To apply MPPI to a multirotor trajectory generation

problem, we propagate the kinematic equations and the
disturbance-free translational dynamics. The MPPI controller
treats the angular velocity as a command to be tracked by
the lower-level controller, where uncertainty and disturbances
in the rotational motion are compensated by the adaptive
control law. The sampled control inputs are thrust and
angular velocity: vt = [δT uω1

uω2
uω3

]T.
However, injecting discontinuous angular velocity is not

a realistic representation of the low-level controller. To
represent this effect, the sampled angular velocity is low-pass
filtered before it enters the attitude kinematics. In summary,
we define the MPPI states to be s =

{
x,v,q,ω

}
and

propagate the trajectories using the following equations:

ẋ = v v̇ =
TδT δT
m

b3 − ge3 (8)

q̇ = Ω
(

[ω1 ω2 ω3]T
)
q ω̇i =

uωi − ωi
τωi

, i = 1, 2, 3

After the trajectories are propagated and the optimal control
sequence is obtained through (6) and (7), the optimal control
sequence is simulated through (8) to obtain the reference tra-
jectory

{
xr(t), vr(t), qr(t), ωr(t)

}
. Additionally, the

reference acceleration sequence v̇r(t) is also saved to be
used in the baseline controller.

V. BASELINE CONTROLLER

We provide the procedure to obtain the baseline control
input δTBL and δMBL

. The procedure follows the geometric
control methods as in [23], [24], and [25].

A. Baseline Trajectory Tracking Controller
The desired specific force includes the feedforward term

v̇r from MPPI and feedback terms to correct for position
and velocity deviation:

fd = sat
amax

[v̇r + KP (xr − x) + KD(vr − v)] + ge3, (9)

where sat[·] is a function that clamps the acceleration to be
between [−amax,amax]. The baseline throttle command is
proportional to the norm of the specific force:

δTBL = (m/TδT )||fd||. (10)

Define the desired rotation matrix to be RI
D ,[

d1 d2 d3

]
. For a vehicle where all rotors are aligned

in a single plane, fd must be aligned with d3:

d3 = fd/||fd||. (11)

We obtain the reference heading ψr from qr and constrain
the local level projection of the vehicle’s nose to be

l1 = [cosψr sinψr 0]T. (12)

The other two components of the RI
D can be obtained using

the following relationships:

d2 = (d3 × l1)/||d3 × l1|| d1 = d2 × d3. (13)

At this point, the desired attitude RI
D is completely defined.

B. Baseline Attitude Controller
Define qd to be the quaternion representation of RI

D,
and define RI

R to be the rotation matrix representation of
qr. Since MPPI and the baseline controller run at different
rates, the calculation (9) - (13) may result in a discontinuous
attitude command. The following prefilter is recommended
in order to smooth the command

q̇c = Ω(ωc)qc (14)

ω̇c = Kωf

[
sat
ωmax

[K−1
ωfKqfQ̃(qd,qc)] + (RB

I RI
Rωr − ωc)

]
,

where Q̃(·, ·) is the quaternion error function [26]. The
filtered quaternion qc and angular velocity ωc become the
commands of the baseline PD attitude controller:

δMBL
= Kω

[
sat
ωmax

[K−1
ω KqQ̃(qc,q)] + (ωc − ω)

]
(15)

Since the sole purpose of the prefilter is to avoid feeding
discontinuous attitude commands to the baseline controller,
the prefilter gains Kqf and Kωf should be greater than the
baseline gains Kq and Kω .
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VI. L1 ADAPTIVE AUGMENTATION

The L1 augmentation implements a nonlinear reference
model [27], with estimation of both matched1 and unmatched
uncertainties [28]. The piecewise constant adaptive law
formulation has been chosen over the projection operator
formulation for its numerical robustness. The unmatched
uncertainty arises in the translational dynamics, since a
multirotor (with rotors aligned in a single plane) can only
provide linear acceleration along the body z-axis. Because
the uncertainties ζ, ξ, appear purely in the vehicle dynamics,
the kinematic part of (3) can be omitted and only the
dynamics are considered:

v̇ = −ge3 +
TδT
m

b3(δTBL + δTL1
+ ζm)

+
TδT
m

[
b1 b2

]
ζum (16)

ω̇ = J−1MδM(δMBL
+ δML1

+ ξm), (17)

where substitutions have been made for

ζ =

[
ζum
ζm

]
, δT = δTBL + δTL1

, δM = δMBL
+ δML1

.

In a more general form, the dynamics can be written as

ż = f
(
RI
B

)
+g

(
RI
B

)
(uL1 + σm) +g⊥

(
RI
B

)
σum, (18)

where

z =
[
vT ωT

]T
uL1 =

[
δTL1

δTML1

]T
σm =

[
ζm ξT

]T
σum = ζum

f(RI
B) =

[
−ge3 +m−1b3TδT δTBL

J−1MδMδMBL

]
g(RI

B) =

[
m−1b3TδT 03×3

03×1 J−1MδM

]
g⊥(RI

B) =

[
m−1b1TδT m−1b2TδT

03×1 03×1

]
Then the L1 state predictor is defined as

˙̂z = f + g (uL1
+ σ̂m) + g⊥σ̂um + Asz̃, (19)

where z̃ = ẑ − z and As is a Hurwitz matrix. For
simplicity, we assume ẑ(0) = z(0) and note that a non-zero
state predictor initialization error results in an exponentially
decaying term [29]. Define Φ , A−1

s (exp(AsTs)− I). The
piecewise-constant adaption law is[

σ̂m(iTs)
σ̂um(iTs)

]
= −

[
I4×4 04×2

02×4 I2×2

]
G(iTs)

−1Φ−1µ(iTs)

(20)
where Ts is the time step and where G(iTs) =[
g
(
RI
B

)
g⊥
(
RI
B

)]
and µ(iTs) = exp(AsTs)z̃(iTs) are

1For a system ż = f(z, t) + g(z, t)u + σ(t), the uncertainty, σ(t),
can be decomposed into matched and unmatched components, respectively
σm(t) ∈ span(g(z, t)) and σum(t) ∈ span(Null(g(z, t))).

evaluated at the i-th time step. The L1 control law compen-
sates only for the matched components of the uncertainty
within the bandwidth of the strictly proper stable filter C(s):

uL1
= −C(s)σ̂m, (21)

which serves to decouple the fast adaptation from the system
robustness [5]. The effects of the unmatched component are
estimated to improve the performance of the state predictor
but, for this application, it is not necessary to compensate for
the unmatched components directly; they can be indirectly
canceled by the baseline control law. Proofs regarding stabil-
ity and bounds on states and controls can be found in [27].

Remark 1. Define the (invertible) elementary column oper-
ator

E =

[
04×2 I4×4

I2×2 02×4

]
(22)

and let H = GE. Then

H =

[
m−1RI

BTδT 03×3

03×3 J−1MδM

]
, (23)

and we can directly obtain G−1 as

G−1 = EH−1 =


mbT

3T
−1
δT

01×3

03×3 M−1
δM

J

mbT
1T
−1
δT

01×3

mbT
2T
−1
δT

01×3

 (24)

Since TδT and MδM are known and the rotation matrix RI
B

is obtained from sensor/estimator feedback, the nullspace
component g⊥ can be directly obtained as well. Therefore,
no matrix inversion operations are needed to compute either
g⊥(t) or G−1(t).

Since the L1 adaptive augmentation is intended to be
implemented in a discrete-time environment, we formulate
the discrete version of the adaptation law as[

σ̂m,k
σ̂um,k

]
= −

[
I4×4 04×2

02×4 I2×2

]
G−1
k Φ−1µk. (25)

Here, (·)k is equivalent to (·)(kTs). The discrete version of
the control law can be written as

xf,k+1 = Afxf,k + Bf σ̂m,k uL1,k = −Cfxf,k,

where {Af ,Bf ,Cf} are the discrete-time state space ma-
trices defining the low-pass filter C(s), and xf is the filter
state. The discrete-time state predictor is propagated via

ẑk+1 = ẑk + [fk + gk (uL1,k + σ̂m,k)

+ g⊥k σ̂um,k + Asz̃k
]
Ts, (26)

where z̃k = ẑk − zk.

VII. RESULTS

The control architecture is evaluated in FlightGoggles, a
photorealistic quadrotor racing simulation environment based
on Unity and ROS [30]. The objective is to fly through the
designated gates in the correct sequence and finish the course
as fast as possible. We assume that the gate locations are
known a priori and that the state estimation is perfect. A
screenshot of FlightGoggles is shown in Fig. 4.
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Fig. 4. FlightGoggles multirotor racing simulation environment.

A. Cost Function and Parameters

The MPPI cost function is designed to aggregate the
following objectives:
• maintain the (3-dimensional) air corridor’s centerline;
• point the front of the multirotor toward the next gate;
• heavily penalize trajectories that violate the air corridor;
• maintain the commanded speed;
• give a bonus to trajectories that pass through gates.

The expression of the cost function is

Q(s) = 450M(x) + 250|mod(ψcmd − ψ)|+ 100001out(x)

+150
∣∣∣Vcmd −√v2

x + v2
y

∣∣∣− 150
∑

1gate(x),

(27)

where M(x) is the air corridor cost map look-up as shown
in Fig. 5. We select the planning horizon to be 1.5 s. Since
the units of δT and δM are arbitrary, we can conveniently
select TδT = 1.0 and MδM = I3×3 so that δT is in the unit
of Newtons and δM is in the unit of Newton-meters. This
can be done without loss of generality. The derivation of
the lumped uncertainties is still valid with the scaled values
of T̄δT and M̄δM . The rest of the parameters are shown in
Table I.

Fig. 5. Top view of the air corridor cost map.

B. Results

In the presence of disturbance, L1-MPPI is expected to
outperform the standalone MPPI. We verify this hypothesis

Fig. 6. Ground station visualization of simulation.

TABLE I
SIMULATION PARAMETERS

Nominal Plant
m 1.0 kg
J diag(4.9, 4.9, 4.9)× 10−3 kg m2

MPPI
Σ diag( 1.5 , 0.4 , 0.4 , 0.4 ) N, rps
M 7,200
λ 1.4

τω1 , τω2 , τω3 0.25 s

Baseline Controller
KP diag(6.0, 6.0, 6.0)
KD diag(4.0, 4.0, 4.0)
Kq diag(1.0, 1.0, 1.0)
Kω diag(0.15, 0.15, 0.15)
amax 15.0 m/s2

ωmax 2.0 rps

L1 Controller
Ts 2.5 ms
C(s) 15

(s+15)
I4×4

As −5.0I6×6

by modifying the vehicle dynamics simulation in the follow-
ing ways:

1) no modification other than the inclusion of aerodynamic
drag (since drag is not modeled in (8), some drag
compensation is expected in L1-MPPI — drag is also
included in all other test cases);

2) mass increase by 50%;
3) moment of inertia increase by 100% in all axes;
4) constant nose-up pitching moment disturbance of

0.1 Nm (equivalent to center of gravity offset);
5) reduction in motor thrust by 40% (reduction in both T̄δT

and M̄δM ).
Figure 6 shows a visualization for one of the runs. For each
case, we run the race 15 times. The average lap time is
shown in Fig 7. The bar graph is shown only if all 15 runs
are successfully completed. (The vehicle neither crashes nor
diverges.) The fact that not all cases are successful is also
shown in Table II.

Figure 7 and Table II show that L1 augmentation success-
fully reduces lap time. For the cases of extreme disturbances,
L1 augmentation successfully “saves” the vehicle that would
have crashed if only the baseline controller was employed.

Fig. 7. Average lap time for each simulation case.

VIII. CONCLUSION

In this paper, we proposed a multirotor control architecture
where MPPI acts as a nonlinear MPC controller, while
model uncertainty was compensated through an L1 adaptive
controller. It was shown in the quadrotor racing scenario that
inclusion of L1 augmentation improves performance and, in

7665



TABLE II
SUCCESS AND FAILURE FOR EACH CASE

Case L1 off L1 on
1) 3 3
2) 7 3
3) 3 3
4) 7 3
5) 7 3

the presence of large uncertainties, was imperative to the
success of the mission. Potential future work includes flight
testing, detailed analysis of robustness, and incorporation of
the control limits.
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