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Abstract— Humans perceive and describe their surroundings
with qualitative statements (e.g., “Alice’s hand is in contact with
a bottle.”), rather than quantitative values (e.g., 6-D poses of
Alice’s hand and a bottle). Qualitative spatial representation
(QSR) is a framework that represents the spatial information
of objects in a qualitative manner. Region connection calculus
(RCC), qualitative trajectory calculus (QTC), and qualitative
distance calculus (QDC) are some popular QSR calculi. With
the recent development of computer vision, it is important
to compute QSR calculi from the visual inputs (e.g., RGB-D
images). In fact, many QSR application domains (e.g., human
activity recognition (HAR) in robotics) involve visual inputs. We
propose a qualitative spatial representation network (QSRNet)
that computes the three QSR calculi (i.e., RCC, QTC, and
QDC) from the RGB-D images. QSRNet has the following
novel contributions. First, QSRNet models the dependencies
among the three QSR calculi. We introduce the dependencies as
kinematics for QSR because they are analogous to the kinematics
in classical mechanics. Second, QSRNet applies the 3-D point
cloud instance segmentation to compute the QSR calculi. The
experimental results show that QSRNet improves the accuracy
in comparison to the other state-of-the-art techniques.

I. INTRODUCTION

Humans can perceive and discuss their surroundings ef-
fectively. Although the secrets for human cognition have not
been discovered, many researchers agree that the ability to
understand the environment on an abstract and qualitative
level plays an important role [1]. For example, in recogniz-
ing Alice’s activity of picking up a bottle, the qualitative
statement, “Alice’s hand is in contact with a bottle,” would
be more compact and effective than reasoning using the
quantitative 6-D poses (i.e., x, y, z, roll, pitch, and yaw)
of Alice’s hand and the bottle. In fact, within the field
of artificial intelligence (AI), qualitative representation and
reasoning has been developed as a crucial framework.

Qualitative spatial representation (QSR) is a framework for
representing spatial information about objects in a qualitative
manner (e.g., a qualitative relation of, “Alice’s hand is not
in contact with a bottle.”). QSR has many applications,
including geographic science and human activity recognition
(HAR) [2]. In particular, HAR is a very interesting domain
for QSR. This is because an accurate HAR system is
required when humans interact with various objects in a
small workspace. HAR is the study of how to make robots
recognize which activity a human is doing (e.g., recognizing
the activity of, “Alice is picking up a bottle.”). It is a crucial
ingredient for a successful human–robot collaboration. Many
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HAR studies have used QSR to represent key predicates (e.g.,
“Alice is holding a bottle.”) and human activities (e.g., “Alice
is picking up a bottle.”) [3]–[5]. In fact, we used HAR as
the main example domain for our work.

Several different QSR calculi have been used for HAR.
Different QSR calculi are specialized for representing the dif-
ferent qualitative relations. In terms of the popular QSR cal-
culi, region connection calculus (RCC) [2] has been proven
to be effective in qualitatively representing mereotopological
information among the objects (e.g., “A human hand is
disconnected from a bottle,” and, “The bottle is in a refrig-
erator.”). Qualitative trajectory calculus (QTC) [6] has been
used in representing relative motions among the objects (e.g.,
“A human hand is moving toward the bottle.”). Qualitative
distance calculus (QDC) is useful in representing how near
or far objects are [5].

When applying QSR, computing the calculi from visual
inputs (e.g., RGB-D images) is key. This is because many re-
cent applications involve visual inputs. This paper introduces
the qualitative spatial representation network (QSRNet),
which computes the above three popular QSR calculi (i.e.,
RCC, QTC, and QDC) from the RGB-D images. QSRNet
has a layered structure that is composed of a neural network
and a dynamic Bayesian network (DBN). The neural network
applies the instance segmentation to obtain 3-D point cloud
instance masks of the objects (see Figure 1(a)) and computes
several key metrics. The DBN captures useful dependencies
among the different calculi and computes QSR relations from
the key metrics. The dependencies have an analogy to the
kinematics in classical mechanics. Thus, we introduce the
dependencies as kinematics for QSR.

Our work has the following novel contributions. First,
we introduce the kinematics for QSR that models the de-
pendencies among the different QSR calculi. In the QSR
community, different calculi have been independently stud-
ied and are specialized for representing specific qualitative
relations. Thus, their dependencies have not been considered
before. Even a well-used software library called QSRlib [1]
computes the various calculi independently and it does not
consider the dependencies. However, we emphasize that there
are useful dependencies among the different QSR calculi.
For example, let us consider two calculi, RCC and QTC.
If, “The hand is not in contact with the bottle,” (an RCC
relation) and, “The hand is moving toward the bottle,” (a
QTC relation), it is reasonable to think that, “The hand will
be in contact with the bottle,” (another RCC relation) after
some time. By making the analogies that RCC corresponds
to the displacement and QTC corresponds to the velocity,
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(a) 3-D point cloud instance
masks of a hand and a bottle

(b) 2-D bounding boxes

(c) 3-D bounding boxes (d) 3-D mesh model
around a bottle’s 6-D pose

Fig. 1: Different ways to compute the QSR relations

we can model a kinematic relation between RCC and QTC.
A similar relation can be modeled for QDC and QTC.
Furthermore, we can formulate a DBN (which corresponds
to the DBN part of QSRNet) from the kinematic relations.
We show that our combined model, which considers the
kinematics for QSR, is more accurate than the previous
models that ignored the dependencies among the different
QSR calculi.

Second, QSRNet uses the 3-D point cloud instance masks
of the objects to compute the qualitative relations. The 3-
D point cloud instance segmentation (i.e., finding the 3-D
point cloud instance masks of the objects, see Figure 1(a))
is a relatively new research topic. We introduce that it can
be very effective for computing the various QSR relations.
Let us consider how the previous works computed the QSR
relations. [7] used 2-D bounding boxes (see Figure 1(b))
and [1], [4] used 3-D bounding boxes (see Figure 1(c))
of objects to acquire the QSR relations (e.g., “A hand is
in contact with a bottle,” if the bounding boxes for the
hand and a bottle overlap). The bounding boxes can be very
inaccurate for computing QSR calculi, especially for objects
with complex shapes. To resolve this, [3] first computed 6-
D poses of the objects and acquired the QSR relations by
placing accurate 3-D mesh models of the objects around the
6-D poses (see Figure 1(d)). However, the mesh models need
to be constructed a priori. Thus, this approach is not suitable
when we encounter objects of which we do not have the
mesh models. We emphasize that 3-D point cloud masks
can capture the accurate shape of objects and the instance
segmentation to compute the masks does not require a priori
construction of the object models.

This paper is organized as follows. Section II provides the
related background for this research. A detailed illustration of
the kinematics for QSR is presented in Section III. Section IV
presents QSRNet. The experimental evaluations are provided
in Section V. Finally, Section VI concludes the paper.

II. BACKGROUND

A. Region Connection Calculus (RCC)

RCC is very useful in capturing mereotopological relations
between the objects (e.g., “A human hand is in contact
with a bottle.”). In RCC, there are a finite number of
possible qualitative relations between any two given objects
or regions, A and B, in R3 space [2]. The RCC relations take
the objects’ geometric shapes into account, and it is very
effective in capturing the qualitative relations between the
objects of complex shapes (e.g., human hand, wine glass).

In our experiment, we used RCC-5, which has five possible
qualitative relations, as follows: A is disconnected from B
(DC(A,B)) (i); A is partially occluded by B (PO(A,B))
(ii); A is identical to B (EQ(A,B)) (iii); A is a proper part
of B, or the inverse (PP (A,B) or PPi(A,B)) (iv and v).
Figure 2 visualizes the five relations.

Fig. 2: RCC-5 relations.

B. Qualitative Trajectory Calculus (QTC)

QTC can represent the relative motions qualitatively (e.g.,
“A human hand and a bottle are moving toward each other.”)
[6]. Unlike RCC, QTC is defined for the representative points
of objects (e.g., the centers of a hand and a bottle) and does
not include the complete geometry of the object. Thus, the
QTC statement, “A hand is moving toward a bottle,” would
actually mean, ”The center of a hand is moving toward the
center of a bottle.” Note that this was not the case for RCC
because it considers the entire geometry of the object.

Let us assume that we are given two points, p1 and p2,
where p1 is the center of a hand and p2 is the center
of a bottle. When p2 is fixed, there can be three possible
movements for p1: i) p1 is moving toward p2 (represented
as – state), ii) p1 is moving away from p2 (represented as +
state), and iii) p1 is neither moving toward nor away from
p2 (represented as 0 state). Figure 3 visualizes the three
movements. As we consider relative motions in a 3-D space,
any velocity vector on the half spheres (or plane) in Figure 3
corresponds to the same relation.

(a) – state (b) + state (c) 0 state

Fig. 3: Three possible movements of p1, assuming p2 is fixed.

When both p1 and p2 are moving, we can represent the
relative motion with a 2-D tuple (e.g., (+, +)). The first entry
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represents p1’s relative motion while assuming that p2 is
fixed at the current location for some particular length of time
(we denote this fixed point as pfixed2 ). Thus, the first entry
represents p1’s motion with respect to pfixed2 . The second
entry represents p2’s relative motion assuming that p1 is fixed
(i.e., p2’s motion with respect to pfixed1 ).

In QTC, we can append other entries to the 2-D tuple from
above to represent other aspects of the relative motions. In
this paper, we represent QTC relations with a 3-D tuple.
The first two entries are the same as above. The last entry
represents how the distance between p1 and p2 changes,
without assuming one of them is fixed. Let d(t) be the
distance between p1 and p2 at time t ∈ [0,∞). Then, the
third entry has + state if d

dtd(t) > 0 (i.e., p1 and p2 are
moving away from each other), – state if d

dtd(t) < 0 (i.e.,
moving toward each other), and 0 state if d

dtd(t) = 0 (i.e.,
neither moving toward nor away from each other). Note that
for the third entry, we do not assume one of the two points
is fixed, as we did for the first and second entries. We are
considering the rate of the distance between the two points,
which are moving freely. Thus, the third entry conveys
different information from the first and second entries.

C. Qualitative Distance Calculus (QDC)

QDC can qualitatively represent how far the two objects
are apart [1], [5]. Similar to QTC, QDC is defined by the
representative points of the objects (e.g., the centers of a
hand and a bottle). QDC expresses the qualitative distance
relations between the two points depending on the defined
region boundaries. For example, let us allow five qualitative
relations of very close, close, commensurate, far, and very
far. Then, we can define two points as very close if their
distance is less than 0.5 m, close if the distance is greater
than or equal to 0.5 m but less than 1 m, and so on. The
QDC used in this paper is shown in Figure 4. Note that the
distance numerics in Figure 4 can be chosen arbitrarily by
users.

Fig. 4: An example of QDC with five qualitative relations

Even though QDC conveys a very simple concept of
distance relations with the regional boundaries, it is very
useful when it is paired with RCC [1]. When two objects are
in the DC relation in terms of RCC, RCC cannot provide
any information about how far apart they are. However, this
information can be useful in many cases. For example, even
though RCC tells us a hand and a bottle are disconnected, we

might want to have some idea of how near or far apart they
are from each other. By using QDC, we can qualitatively
represent how far apart they are.

III. KINEMATICS FOR QUALITATIVE SPATIAL
REPRESENTATIONS (QSR)

We first illustrate the kinematics for QSR. In this paper,
We consider the kinematic dependencies among the three
popular QSR calculi: RCC, QTC, and QDC. We make one
remark first. QTC and QDC are qualitative relations referring
to representative points of the objects. We will consider
the geometric centers of the objects. We do not need such
specification for RCC.

The following well-known kinematic equation is from
classical mechanics. It shows how to relate the displacement
and the velocity.

x(t2) = x(t1) +

∫ t2

t1

v(t)dt (1)

x(t) is the displacement and v(t) is the velocity at time t.
Note that for the discrete-time steps, the following equa-

tion is obtained:

x(Tk+1) = x(Tk) +

∫ Tk+1

Tk

v(t)dt ' x(Tk) + ∆T × v(Tk)

(2)

Tk and Tk+1 are discrete time steps. ∆T = Tk+1 − Tk
is the unit interval for the discrete time steps. In the last
approximation, we made an assumption that v(t) ' v(Tk)
for all t in [Tk, Tk+1].

The main idea of the kinematics for QSR is that RCC
and QDC represent the positional relations that are analo-
gous to the displacement. In contrast, QTC represents the
motions that are analogous to the velocity. For example, the
RCC statement DC(hand, bottle) represents a static and
a positional relation that, “The hand and the bottle are
not in contact.” A QDC statement close(hand, bottle) also
represents a static and positional relation that, “The two are
close”. A QTC statement ((−, 0,−), hand, bottle) represents
a dynamic motion that, “The hand is moving toward the
bottle.” Thus, we can come up with equations that are similar
to Eq. (1) and Eq. (2). This is why we introduce our idea as
kinematics.

Now, we elaborate on how to model the kinematics. We
model two types of kinematic relations: i) the kinematics
between RCC and QTC and ii) the kinematics between QDC
and QTC. To be more specific, we model two discrete-
time stochastic processes that correspond to Eq. (2). The
discrete time models can easily be represented as a DBN
model. Let us first consider the kinematics between RCC
and QTC. For example, if, “The hand is not in contact
with the bottle,” (i.e., in the DC relation) but, “The hand
is moving toward the bottle,” (i.e., in the (–, 0, –) relation),
it is reasonable to think that, “The hand will be in contact
with the bottle,” at some time. One caveat is that such a
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transition is not deterministic. For example, let us consider
the case in Figure 5 where, “objectA is not in contact with
objectB ,” initially at time t1. If “objectA is moving away
from objectB ,” it is probable that, “objectA is going to
remain to be not in contact with objectB ,” as in Figure 5(a).
However, there is also a chance, maybe with less probability,
that the two objects might overlap (i.e., in the PO relation)
depending on the geometries of the objects as shown in
Figure 5(b). Thus, the example shows that the kinematics that
relate RCC and QTC should be modeled stochastically, rather
than deterministically as it was in classical mechanics. The
following stochastic process models the kinematics between
RCC and QTC, and it corresponds to Eq. (2) in classical
kinematics.

R(Tk+1) ' IR(R(Tk), Q(Tk),WR(Tk)) (3)

IR is an operator that corresponds to the integral (i.e.,∫ Tk+1

Tk
· dt) in Eq. (2). R(Tk) is the RCC relation, and

Q(Tk) is the QTC relation at the time step Tk. Here, we
made an assumption that Q(t) remains as Q(Tk) for all t in
[Tk, Tk+1]. WR(Tk) governs the stochasticity of the process.

(a) Two objects move away and remain DC.

(b) Two objects move away but become PO.

Fig. 5: An example of non-deterministic dependency between
RCC and QTC relations (note: t2 > t1).

The kinematics between QDC and QTC can be modeled
in a similar way. For example, if there are two objects that
are moving away from each other (i.e., a QTC relation), it
is also reasonable to guess that the two objects are going
to be further apart (i.e., a QDC relation). This can also be
modeled as a stochastic process as shown.

D(Tk+1) ' ID(D(Tk), Q(Tk),WD(Tk)) (4)

ID is also an integral-like operator (different from IR in
Eq. (3)). D(Tk) is the QDC relation at the time step Tk.
WD(Tk) governs the stochasticity of the process.

In summary, we have modeled the kinematics among the
three QSR calculi with the two stochastic processes:

• The stochastic process in Eq. (3) models the kinematic
relations between RCC and QTC.

• The stochastic process in Eq. (4) models the kinematic
relations between QDC and QTC.

We combined three different QSR calculi, which have been
independently developed. We can model more dependencies
among the three QSR calculi other than the kinematic
dependencies. For example, by considering RCC and QTC,
it is reasonable to think that the motion of an object is more
likely to change when a human interact with it. Moreover, the
interaction is possible when the object is not disconnected
from the human (i.e., ¬DC). Thus, it is reasonable to say
that the QTC relation between the object and the human is
more likely to change when the object is not disconnected
from the human. This example models our intuition on the
dynamics of how the motions of objects would change (i.e.,
by interacting with a human). This is not included in the
current version of QSRNet, since we focus on modeling the
kinematic relations among the QSR calculi.

IV. QUALITATIVE SPATIAL REPRESENTATION NETWORK
(QSRNET)

In this section, we illustrate QSRNet, which works in three
steps. The first step is to perform 3-D point cloud instance
segmentation and to compute accurate 3-D point cloud masks
of the objects. The second step is to compute some key
metrics using the 3-D point cloud masks. The third step is to
compute the QSR relations from the computed key metrics.
The overall architecture of QSRNet is visualized in Figure 6.
The following subsections describe each of these three steps.

Note that RCC, QTC, and QDC represent the qualitative
relations between a pair of objects. We explain QSRNet with
an example pair of objects (e.g., a hand and bottle pair).
If there are more than two pairs of objects, QSRNet can
compute the RCC, QTC, and QDC relations for each object
pair (e.g., hand and bottle pair, hand and bowl pair). In this
case, we construct 3-D point cloud masks for all of the
objects in the first step. In the second step, we then compute
the metrics for each pair. In the third step, we compute the
QSR relations for each pair by using the metrics.

A. Instance Segmentation

In the first step, QSRNet computes the 3-D point cloud
masks of the objects (Figure 7(b)). The inputs are the RGB-
D images. Figure 7 shows an example input and output of
the first step. Figure 7(b) zooms in for a hand and a bottle.

We determine the 3-D point cloud masks as follows. First,
we compute the 2-D instance masks of the objects over the
RGB images only (not using depth images yet). We can
use any 2-D instance segmentation algorithm over the RGB
images, such as Mask R-CNN [8]. Next, for each of the 2-D
masks in the RGB images, we generate a 3-D point cloud
mask using the depth images. That is, for every pixel in
the 2-D mask, we use the corresponding depth value from
the depth images to generate a point in a 3-D space using
Eq. (5).1

x =
(u− cx)× d

fx
, y =

(v − cy)× d
fy

, z = d (5)

1This is the standard method of generating 3-D point clouds from RGB-
D images.
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Fig. 6: QSRNet architecture

(a) An example input. (b) An example output masks of a hu-
man hand and a bottle. Two metrics
(m1 and m2) from the second step
are superposed (zoomed in view).

Fig. 7: Input and output for the instance segmentation step.

In Eq. (5), x, y, and z are the coordinates in a 3-D space
with respect to the camera frame. u and v are the coordinates
of the pixel in the depth image. cx, cy , fx, and fy are the
intrinsic parameters of the depth camera.

If we use multiple RGB-D cameras from multiple view-
points, we can stitch together the object’s 3-D point cloud
masks from all of the cameras. Using multiple cameras
would make the 3-D point cloud masks (and also QSRNet)
more accurate. In addition, it can be helpful in scenarios
where visual occlusion (e.g., objects occluding each other) is
critical. However, we would like to emphasize that QSRNet
performs well even with a single RGB-D camera in most
cases. We used only one RGB-D camera for our experiment.

We could have used a different method for computing
the 3-D point cloud masks. For example, we could first
construct a 3-D point cloud map from the RGB-D images and
then apply an instance segmentation algorithm in [9], which
computes the 3-D point cloud masks of the objects directly
from a 3-D point cloud map. However, the direct instance
segmentation on a 3-D point cloud map is a relatively new
research topic, and it therefore often lacks labeled training
data for various robotics application domains including HAR.
The 2-D instance segmentation (i.e., computing the 2-D
instance masks over the RGB images), on the other hand,
is well-researched. It has many datasets available such as
Microsoft COCO dataset (for various objects) [10] and

DensePose dataset (for human body parts) [11]. Thus, we
emphasize that the method introduced in this subsection (i.e.,
using the 2-D instance segmentation for computing the 3-D
point cloud instance masks) can be effective.

B. Computing Metrics

In the second step, we compute five key metrics from the
objects’ 3-D point cloud masks. Figure 7(b) shows some of
the metrics with the masks of a human hand and a bottle.
The first metric (m1) is the distance between the masks.
Eq. (6) formally presents the distance. Here, dist(·) refers
to the distance between two points in a 3-D space. M1 and
M2 refer to two different point cloud masks (e.g., human
hand and bottle). Note that the masks consist of points and
they are small point clouds. p1 and p2 are the points in the
masks.

m1 = min({dist(p1, p2)| p1 ∈M1 and p2 ∈M2}) (6)

The second metric (m2) is the distance between the centers
of the two point cloud masks. The third metric (m3) is the
rate of change of m2; m2 and m3 are given by Eq. (7). Here,
c1 and c2 refer to the geometric centers of the two masks
M1 and M2 (i.e., c1 is the average point of M1).

m2 = dist(c1, c2), m3 =
d

dt
m2 (7)

The fourth metric (m4) is the rate of change of the distance
between the centers of the two masks, assuming that the
center of the first mask has been fixed for a short amount
of time. The fifth metric (m5) is the similar rate of change
except that we fix the center of the second mask. m4 and
m5 are given by Eq. (8). Here, cfixed1 indicates the center of
the first mask, assuming it has been fixed for some time.

m4 =
d

dt
dist(cfixed1 , c2), m5 =

d

dt
dist(c1, c

fixed
2 ) (8)

Note that all five metrics are for a pair of objects. Thus, if
we have multiple pairs of interest (e.g., hand and bottle pair,
hand and bowl pair), we compute the metrics for each pair.
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C. Computing QSR Relations

The third step computes the QSR calculi using the metrics
from the previous step. The third step is designed as a DBN.
The DBN models the kinematics for QSR. This is given
by the two discrete-time stochastic processes in Eq. (3) and
Eq. (4). We present the DBN model in Figure 8.

Fig. 8: DBN that models the kinematics for QSR.

In Figure 8, the nodes named R, Q, and D represent the
hidden states for the three QSR calculi relations. R is for
RCC, Q is for QTC, and D is for QDC. R, Q, and D at
the time step Tk correspond to the R(Tk), Q(Tk), D(Tk) in
Eq. (3) and Eq. (4), respectively. The gray nodes represent
the observations. For the observations, we use the metrics
computed in the second step of QSRNet.

There are three types of conditional probability
distributions in DBN, which are indicated with
red, green, and blue edges, respectively. The red
edges represent the observation models (representing
P (m̂(Tk)|R(Tk), Q(Tk), D(Tk))). Here, m̂(Tk) =
[m1(Tk),m2(Tk),m3(Tk),m4(Tk),m5(Tk)] is a
vector of the five metrics at the time step Tk. In
this paper, we assume the observation model follows
a multivariate normal distribution (i.e., m̂(Tk) ∼
N (µ(R(Tk), Q(Tk), D(Tk)),Σ(R(Tk), Q(Tk), D(Tk)))).

Let us consider the other conditional probability distri-
butions that are indicated in green and blue. The green
edges represent P (R(Tk+1)|R(Tk), Q(Tk)), and they model
the kinematics between RCC and QTC given by Eq. (3).
The stochastic process in Eq. (3) says that R(Tk+1)
would depend on R(Tk) and Q(Tk). It directly corresponds
to P (R(Tk+1)|R(Tk), Q(Tk)). The blue edges represent
P (D(Tk+1)|D(Tk), Q(Tk)), and they model the kinematics
between QDC and QTC given by Eq. (4) in a similar manner.

To compute the QSR relations online, we can perform
online filtering over the DBN with the observations computed
in the second step of the QSRNet. We can apply any of the
DBN online filtering algorithms from [12]. We refer to [12]
for more information on the DBN online filtering.

We make several remarks. First, the conditional probability
distributions can be learned from the data, if necessary. We
refer to [12] for the details on how to learn the conditional
probability distributions, as that is not the focus of this paper.
Second, the DBN model in Figure 8 is for the QSR calculi
between one pair of objects. If we want to compute the QSR
calculi for more than one pair, we can construct a DBN
model for each pair.

V. EVALUATIONS

A. Experimental Setting
For the experimental evaluations, we collected video

streams, where each video contains a human interacting with
various objects in a kitchen environment. The experimental
environment is shown in Figure 9. There are six objects:
a refrigerator, a dining table, a bottle of water, a bowl, an
apple, and a box of crackers. The human interacts with
the objects by performing five activities: open, close, pick,
place, and approach. The human could open or close the
refrigerator; pick up or place down the bottle of water,
the bowl, the apple, and the box of crackers; or approach
the refrigerator or the dining table. Note that these five
types of activities are the fundamental ones that have been
used in previous studies. For example, [1], [3] computed
QSR relations while a human performed opening, closing,
picking, and placing activities with five different objects. The
Opportunity Activity Recognition dataset used in [13] mostly
consists of opening and closing seven different objects.

Fig. 9: The experimental environment.

We collected more than 20 video streams and each video
was about 30 seconds in length. In each video, a human
performed activities in a random sequence. For example, one
of the videos contained a human performing the following
activities in a sequence: i) opening the refrigerator, ii) picking
up the bowl from the refrigerator, iii) placing the bowl down
on the dining table, iv) picking up the bottle, v) placing the
bottle in the refrigerator, and vi) closing the refrigerator. For
the videos, a human supervisor labeled the ground truth QSR
relations of object pairs.

Figure 10 shows four frames that were extracted from a
video while a human is picking up the water bottle. The
sequence of the frames are numbered. As one can see, the
objects were densely collocated to make the experiment more
interesting. We computed the RCC, QTC, and QDC relations
for the pairs listed in Table I; a total of 20 pairs were tracked.
The recognition was done with a frequency of 4 Hz.

TABLE I: Object Pairs Estimated for QSR Calculi

Object Pairs Object Pairs Object Pairs
human (torso), refrigerator human, dining table human, bottle

human, bowl human, apple human, cracker
hand, refrigerator hand, dining table hand, bottle

hand, bowl hand, apple hand, cracker
refrigerator, bottle refrigerator, bowl refrigerator, apple

refrigerator, cracker dining table, bottle dining table, bowl
dining table, apple dining table, cracker -
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Fig. 10: Four frames from a video.

B. Evaluation of QSRNet

1) QSRNet Comparison: We provide the experimental
results for QSRNet. First, we compare QSRNet with three
other studies, which are briefly introduced. [3] computed the
6-D poses, then applied accurate 3-D mesh models of the
objects to compute the QSR relations. We refer to [3] as
the “mesh model” method.2 [7] used 2-D bounding boxes of
the objects to compute the QSR relations. We refer to [7] as
the “2-D bounding box” method. “QSRlib” in [1] used 3-D
bounding boxes to compute the QSR relations.3

Before proceeding, let us briefly explain how the accuracy
rates in Table II (and all of the other tables) were computed.
For each calculi, we first computed the accuracy for each
pair of objects in Table I. For each pair, the accuracy was
a ratio between the total number of correct recognitions and
the total number of samples (i.e., total number of time steps).
For example, if we got correct recognition for 8,000 out
of 10,000 samples (i.e., time steps), the accuracy would be
8,000/10,000×100 = 80%. Then, for each calculi, Table II
shows the accuracies that are averaged over all pairs.

Table II compares the accuracies when applying QSRNet
and the other three studies for this experiment. For all three
calculi, the 2-D bounding box method shows the worst accu-
racy because the 2-D bounding boxes fail to capture the 3-D
information about the objects. For example, when computing
the RCC relations, two objects in a 3-D space might not
be in contact, even if the 2-D bounding boxes in the RGB
image overlap. In this case, the 2-D bounding box method
would incorrectly estimate that the two objects are in the
PO relation. Conversely, QSRlib uses 3-D bounding boxes;
hence, it has a better accuracy. However, 3-D bounding boxes
fail to capture the complex shapes of objects. 3-D point
cloud masks (used in QSRNet) or 3-D mesh models (used
in the mesh model method) can capture the detailed shapes
of objects more accurately. In fact, QSRNet and the mesh
model method had the best performance. In addition, they
show comparable accuracies for the three calculi.

Although QSRNet and the mesh model method performed
similarly well in Table II, the mesh model method has a

2 [3] computed the RCC relation only; however, we were able to use
the computed 6-D poses to compute the QTC and QDC relations easily.

3The bounding boxes were calculated from the viewpoint of camera.

TABLE II: Accuracy Comparisons

Different Estimators Accuracy

RCC QTC QDC
QSRNet 94.82% 90.65% 97.88%

Mesh model 93.16% 91.03% 98.04%
2-D bounding box 72.50% 71.69% 87.93%

QSRlib 86.91% 89.26% 95.49%

significant limitation. The mesh model method requires a
priori construction of the mesh models. Needless to say,
the construction of the mesh models can be a tedious job.
Furthermore, the mesh model method would not be able to
compute the QSR calculi correctly if the mesh models were
not constructed. A scenario can easily be designed where
this limitation is critical. For example, let us consider the
case where a human is interacting with a water bottle, a
bowl, an apple, and a box of crackers of different shapes
and sizes from the ones in Figure 11(a) (see Figure 11(b)).
The objects in Figure 11(a) were used to get the results
in Table II. We did not construct the mesh models for the
new objects in Figure 11(b); we only constructed the mesh
models for the objects shown in Figure 11(a). Even though
the human interacts with a new water bottle, the recognition
system needs to tell us that, “A human hand is in contact with
a bottle,” when the human is holding the bottle. QSRNet has
no problem performing this task. However, the mesh model
method can be highly inaccurate because the mesh models
we have are different from the new objects.

(a) Objects with mesh
models constructed

(b) New objects without
mesh models

Fig. 11: Two different sets of objects.

To verify this, the same experiment from above was
performed with the new objects in Figure 11(b). Again, we
did not construct the mesh models for the new objects and we
only have the mesh models for the objects in Figure 11(a).
Table III shows the accuracy rates. Compared to the results in
Table II, Table III shows little change for QSRNet. However,
the accuracy rates for the mesh model method decreased
much as expected. Especially, the mesh model method had a
hard time estimating the RCC relations correctly, because the
RCC relations are affected the most by the objects’ shape.

2) How Kinematics Helps QSR: QSRNet models the
kinematics among the different QSR calculi. We verify that
the modeling of the kinematics improves the accuracy. This
was achieved by comparing QSRNet with a comparison
model that does not use the kinematics.
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TABLE III: Accuracy Comparisons Using New Objects

Different Estimators Accuracy

RCC QTC QDC
QSRNet 93.57% 90.26% 98.03%

Mesh model 82.96% 90.06% 96.42%
2-D bounding box 75.31% 70.32% 86.84%

QSRlib 84.29% 88.55% 94.78%

Let us first explain the comparison model. In QSRNet,
the kinematics are modeled in the DBN. We can remove
the modeling of the kinematics by replacing the DBN with
three independent hidden Markov models (HMMs) (one
for each of RCC, QTC, and QDC relations). The hidden
variable of each of the HMMs represents the state of RCC,
QTC, or QDC relations, respectively. We can perform online
filtering over the HMMs, just like we do with the DBN
model. The online observations for the independent HMMs
are the same as that for the DBN model. In other words,
the online observations for the independent HMMs are the
metrics computed from the second step of QSRNet. Thus,
the comparison model is the same as QSRNet except for the
third step. In the third step, we replace the DBN with the
three independent HMMs. Figure 12 visualizes one of the
three independent HMMs in the comparison model. Though
Figure 12 visualizes only one HMM, the comparison model
has three independent copies of such HMM.

Fig. 12: An independent HMM (H represents one of the three
QSR calculi and m̂ represents the metrics).

Table IV provides the accuracy rates for applying QSR-
Net and the comparison model to our experiment. For all
three calculi, the accuracies of QSRNet are better than the
comparison model. This shows that the kinematics for QSR
helps to improve the model accuracy.

TABLE IV: Accuracy Comparisons with the Comparison
Model

Different Estimators Accuracy

RCC QTC QDC
QSRNet 94.82% 90.65% 97.88%

Comparison model 90.97% 89.71% 96.10%

VI. CONCLUSIONS

We present QSRNet, a new architecture for computing the
RCC, QTC, and QDC relations of the objects from RGB-D
images. QSRNet works in three steps. The first step uses a
neural network to construct the 3-D point cloud masks of the

objects from the RGB-D images. The second step computes
the key metrics using the 3-D point cloud masks. The third
step performs online filtering on a DBN, which models
the dependencies among the three QSR calculi (i.e., RCC,
QTC, and QDC). We use the key metrics as observations in
online filtering and compute the QSR relations. We validate
QSRNet through an experimental kitchen scenario.

In this paper, we used three popular QSR calculi: RCC,
QTC, and QDC. However, there are other useful QSR calculi
as well. For instance, the cardinal direction relation [1] and
ternary point configuration calculus (TPCC) [14] are good
QSR calculi for representing directional information. Future
efforts will focus on including other QSR calculi in QSRNet.
The code for QSRNet is provided on https://github.
com/sangukbo/qsrnet.
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