
Extended Performance Guarantees for Receding
Horizon Search with Terminal Cost

Benjamin Biggs
Virginia Tech

babiggs@vt.edu

Daniel J. Stilwell
Virginia Tech

stilwell@vt.edu

James McMahon
US Naval Research Laboratory

Code 7130
james.mcmahon@nrl.navy.mil

Abstract—The computational difficulty of planning search
paths that seek to maximize a general deterministic value
function increases dramatically as desired path lengths increase.
Mobile search agents with limited computational resources often
utilize receding horizon methods to address the path plan-
ning problem. Unfortunately, receding horizon planners may
perform poorly due to myopic planning horizons. We provide
methods of incorporating terminal costs in the construction of
receding horizon paths that provide a theoretical lower bound
on the performance of the search paths produced. The results
presented in this paper are of particular value in subsea search
applications. We present results from simulated subsea search
missions that use real-world data acquired by an autonomous
underwater vehicle during a subsea survey of Boston Harbor.

I. INTRODUCTION

We address the problem of planning paths for mobile
search agents that seek to maximize search effectiveness in
finite time. We are specifically interested in situations where
the search area is large enough that exhaustive search is likely
not possible and the length of search paths precludes the
possibility of solving for optimal paths in real time. Our work
is inspired by subsea search applications where the scale of
the environment is orders of magnitude larger than the search
agent while the features being measured are equivalent to the
size of the agent. We provide numerical simulations of our
approach using real-world data acquired by an autonomous
underwater vehicle. Throughout this paper, optimal search
paths maximize a general deterministic value function.

We provide formal guarantees on the performance of
receding horizon approaches to informative path planning.
In a receding horizon approach to path planning, an agent
computes an optimal (e.g., maximizes information gain) path
that is sufficiently short that it can be computed in real-time.
An agent follows the first few steps of a short optimal path,
and then computes another short-horizon optimal path. The
agent does this iteratively until it has traversed a path that
has a desired length or the mission otherwise terminates.

*This work was supported by the Office of Naval Research via grants
N00014-18-1-2627, and N00014-19-1-2194. The work of J. McMahon is
supported by the Office of Naval Research through the NRL Base Program.

James McMahon is with the US Naval Research Laboratory, Code 7130,
Washington D.C., USA

Benjamin Biggs and Daniel Stilwell are with the Bradley Department of
Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA

Although each short-horizon path is optimal, the receding
horizon path constructed from a sequence of short-horizon
paths does not necessarily inherit the desirable properties
of the short-horizon paths. In essence, searching a large
area using receding horizon path planning methods, while
generally effective, can result in poor performance due to
myopic planning horizons that lead a search agent to become
trapped in local maxima/minima.

In prior work, we showed that a specific class of terminal
cost could be appended to the optimization problem that
would lead to useful lower bounds for informative path plan-
ning, and that for applications such as subsea mine-hunting,
which is the motivation for our work, a suitable terminal
cost is always available. Our approach in [1] addresses the
case that the short-horizon path is the optimal, but could
not be directly extended to the case that the short-horizon
path is sub-optimal, as would happen using many real-
time planning approaches, such sample-based planning (e.g.,
Monte-Carlo Tree Search). Herein, we specifically address
the case of sample-based planning that generates sub-optimal
short-horizon paths. We propose a specific terminal cost and
corresponding sufficient conditions for which the receding
horizon path inherits a sub-optimal property from the sub-
optimality of each short-horizon path.

Receding horizon path planning methods have their roots
in receding horizon control [2]–[4]. The methods proposed in
this work and in [1] are inspired by works in receding horizon
control such as [5]–[7] and [8]. Approaches to path planning
that incorporate terminal costs include [9], [10] and [11]. It is
shown in [11] that in order to converge to a goal location the
cost-to-go at each step should represent a bound on the cost
of the receding horizon trajectory plus the terminal cost at the
next iteration. In prior work [1], the authors perform a similar
analysis and prove that the existence of a feasible next-step,
cost-to-go combination with a reward greater than the cost-
to-go from the final location along the last path produced at
each planning step is sufficient to guarantee a lower bound
on the expected reward of the overall receding horizon path.
Neither [1] nor [11] addresses sub-optimal paths within the
planning horizon.

Approaches to informative path planning related to this
paper include [12]–[15], where the concept of algebraic re-

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 6741

dundancy is used to prune a search tree. These methods allow
for longer planning horizons, but do not utilize terminal costs.
In [16], the planning horizon is extended until the reward of
a path surpasses a threshold value, but no terminal cost is
appended. The methods in [17], [18] employ sampling based
methods to plan non-myopic search paths with guaranteed
convergence to the optimal search path in the case of [18]. In
contrast we use sampling based methods (Monte Carlo Tree
Search) within a short planning horizon and append terminal
costs in order to guarantee a lower bound on the performance
of search paths. Novel roll-out policies for Monte Carlo
Tree Search are presented in [19] in the context of subsea
search path planning. We use a slightly modified version of
Monte Carlo Tree Search within a short planning horizon and
incorporate terminal costs.

The organization of this paper is as follows. The problem
description is presented in Section II. The cost-to-go function
is defined and a path value function that includes the terminal
cost is presented in Section III. Sufficient conditions for
sub-optimality guarantees on the expected value of receding
horizon paths constructed with terminal costs are presented
in Section IV. Numerical experiments are described and
results are presented in Section V. Proofs are provided in
the appendices.

II. PROBLEM DESCRIPTION

We consider a search region G ⊂ R2. An n-length path
through the search region beginning at some initial location
p0 ∈ G is denoted γn(p0) and is composed of a sequence
of locations {p0, p1, . . . , pn}. A sequence is feasible if it can
be traversed by a mobile search agent. To be explicit, we
consider that the state of a mobile search agent at time t
may be represented by the tuple st = {pt, xt} where xt gives
all states of the mobile search agent excluding the position
states pt. We say that a state st is feasible from the state
st−1 if there exists an action a available to the search agent
such that applying a to the state st−1 results in the new state
st. An n-length path may then be represented as a sequence
of states γn(s0) = {s0, s1, . . . , sn}. The set of all feasible
n-length paths beginning at state s0 is denoted Γn(s0).

The value of a path is given by

J(γn(s0)) =

n∑
i=1

g(si, si−1, . . . , s0) (1)

where g is a non-negative function that returns the anticipated
value of the information gained while transitioning from one
state to the next. We assume that the value of information
gained while transitioning states is dependent on previously
executed state transitions. That is, g(si, si−1, . . . , s0) returns
the value of transitioning from state si−1 to si given all
previous state transitions. In essence, if a location has been
searched before then the reward for searching the location
again will likely be discounted.

In the context of search, the goal is to plan a path that
maximizes the amount of information gained while traversing
the path. The optimal path with respect to (1) is

γ∗n(s0) = arg max
γn(s0)∈Γn(s0)

Jn(s0) (2)

with value

J(γ∗n(s0)) = max
γn(s0)∈Γn(s0)

Jn(s0) (3)

For notational simplicity we define

g(si) , g(si, si−1, . . . , s0) (4)

and
Jn(s0) , J(γn(s0)) (5)

III. RECEDING HORIZON PATH PLANNING AND THE
Cost-to-Go FUNCTION

The process of planning an l-length receding horizon
search path is the following. The search agent solves for
an optimal path within an n-length planning horizon with
n � l. The agent then traverses the optimal n-length path
out to an m-length execution horizon with m ≤ n. The agent
repeats this process until it has traversed a path of length l.
Receding horizon path planning is generally effective, but it
is well known that receding horizon paths do not retain the
optimality property of the short paths used to construct them.
That is, only considering paths of length n that are myopic
with respect to the overall mission length l or the size of the
search region G can lead to undesirable behavior.

To address the problem of poor performance caused by
myopic planning horizons, we consider a path of length l�
n. The reward associated with the l-length path is

Jl(s0) =

l∑
i=1

g(si) (6)

where g(si) is the simplified notation for the same non-
negative function g as in (1). We note that the summation
on the right-hand side of (6) may be separated into 2 parts
and written as

Jl(s0) =

n∑
i=1

g(si) +

l∑
j=n+1

g(sj) (7)

We call the right-most summation in (7) the cost-to-go.
Notice that the first summation on the right-hand side of
(7) represents the value of the portion of a path that can
be computed optimally and the cost-to-go represents the
value of the remainder of the path that is normally ignored
during a planning step when planning a receding horizon
path. Therefore, the value of the optimal l-length path may
be represented as

J∗l (s0) = max
γn(s0)∈Γn(s0)

(
Jn(s0) + J∗l−n(sn)

)
(8)

Because we assume that the search agent has only suffi-
cient computational resources to compute n-length optimal

6742

paths, we assume that there exists a lower bound on the cost-
to-go.

Definition 3.1: A lower bound on the cost-to-go in 7 is the
function Bl(sn) that satisfies

Bl(sn) ≤ J∗l−n(sn) (9)

for all n ≤ l with Bl(sl) = 0, and for the infinite case where
l =∞, Bl(sk)→∞ as k →∞.

We assume that the lower bound on the cost-to-go may be
efficiently computed in real-time. Using this lower bound on
the cost-to-go, we define the value of an n-length path as

V(γn(s0)) =

n∑
i=1

g(si) +Bl(sn) (10)

For notational simplicity we define

Vn(s0) , V(γn(s0)) (11)

The optimal path with respect to (10) is now is now defined
as

γ∗n(s0) = arg max
γn(s0)∈Γn(s0)

Vn(s0) (12)

with value

V∗n(s0) = max
γn(s0)∈Γn(s0)

Vn(s0) (13)

Notice the similarity between (10) and (8). The intuition
behind (10) is the following. If the lower bound on the cost-
to-go may be found efficiently and approximates the value
of the optimal cost-to-go, then the value of an n-length path
with an appended terminal cost approximates the value of the
optimal l-length path. In practice though, it may be difficult
to efficiently approximate the value of the optimal cost-to-
go. As such, we do not seek to plan optimal paths, but
instead we seek to provide a lower bound on the value of
receding horizon search paths that approximates the value of
the optimal l-length path as nearly as is feasible.

IV. SUB-OPTIMALITY GUARANTEES FOR RECEDING
HORIZON PATH PLANNING WITH TERMINAL COSTS

In prior work [1] it was shown that appropriate use
of a terminal cost when planning receding horizon search
paths can guarantee a lower bound on the value of the
receding horizon search paths given that the path produced
at each planning step is optimal. We extend the main result
from [1] to the case that at each planning step the path
produced is nearly optimal. We also consider a multi-step
execution horizon m instead of the single step execution
horizon considered in [1]. One motivation for using an m-
step execution horizon is that some optimization methods
such as Monte Carlo Tree Search can generate better paths
when the planning time is longer. In other words, allowing
the search agent to complete multiple state transitions while
planning may allow for extended planning horizons that may
in turn benefit search performance.

In Proposition 4.1, we state a condition under which the
value of a receding horizon path constructed from near-
optimal paths is always bounded below by the lower bound
on the cost-to-go. We say that a path γ′n(sk) is nearly optimal
if the value of the path satisfies

V ′n(sk) ≥ V∗n(sk)− ε (14)

for some ε ≥ 0.
Proposition 4.1: Suppose the l-length receding horizon

path Pl is composed of m-step sequences along a sequence
of n-length near-optimal paths that seek to maximize (10)
satisfying (14). For every n-length near-optimal path

γ′n(sk) = {sk, s′k+1, . . . , s
′
k+n} (15)

suppose that there exists a set of states
{s̃k+n+1, . . . , s̃k+n+m} that are feasible from s′k+n

such that

Bl(s
′
k+n) + ε ≤

k+m∑
i=k+n+1

g(s̃i) +Bl(s̃k+n+m) (16)

then the RH path satisfies

J(Pl) ≥ Bl(s0) (17)

As ε increases, the existence of a set of feasible locations
satisfying (16) may be a difficult requirement to satisfy.
Therefore, in Proposition 4.2 we state a condition under
which the value of a receding horizon path is always no less
than the lower bound on the cost-to-go from the initial state
along the l-length receding horizon path. In Corollary 4.3
we show that the hypothesis of Proposition 4.2 can always
be satisfied given a terminal cost defined by the best path in a
set of readily available naive paths, such as mowing-the-lawn
paths that are used often for subsea applications. Corollary
4.3 also satisfies (16) given ε = 0.

Proposition 4.2: Suppose that at each planning step the
path γ′n(sk) satisfies

V ′n(sk) ≥ V ′n−m(sk) (18)

where V ′n−m(sk) is the value of the n−m steps not included
in the execution horizon of γ′n(sk−1) and that

V ′n(s0) ≥ Bl(s0) (19)

then the RH path satisfies

J(Pl) ≥ Bl(s0) (20)

If the best path in a set of readily available, naive paths
is used to determine the lower bound on the cost-to-go then
there always exists an n-length path at the next planning step
satisfying (18). Specifically (18) is satisfied because the first
m steps along the best naive path in the set of naive paths
used to determine the lower bound on the cost-to-go may be
appended to the remainder of the optimal n-length path from
the previous planning step guaranteeing the existence of an
n-length path satisfying (18).

6743

Let ΓKl−k−n(sk+n) be a set of K feasible naive paths such
as a set of mowing-the-lawn paths that are commonly used
in subsea applications.

Corollary 4.3: Given ΓKl−k−n(sk+n), let the lower bound
on the cost-to-go be defined

Bl(sk+n) = max
γ̃l−k−n(sk+n)∈ΓK

l−k−n(sk+n)
J(γ̃l−k−n(sk+n))

(21)
Then the inequality

Bl(s̃k+n) ≤
k+n+m∑
i=k+n+1

g(s̃i) +Bl(sk+n+m) (22)

is always satisfied.
The main benefit of Corollary 4.3 is the ability to leverage

strengths of distinct naive paths. For example, a greedy reced-
ing horizon planner is computationally efficient. Therefore,
an unbiased path such as a lawnmower path may be used
alongside a greedy planner that incorporates a terminal cost to
determine a lower bound on the cost-to-go from a given state.
Leveraging the strengths of several naive paths then allows
the receding horizon planner to more closely approximate the
value of (8) than would normally be possible with a single
naive path. This does not imply optimality of the receding
horizon path. Instead an improved lower bound on the cost-
to-go guarantees an improved lower bound on the value of
the receding horizon path produced.

V. NUMERICAL EXPERIMENTS

In order to verify the sub-optimality guarantees presented
in propositions 4.1 and 4.2, we employ a probabilistic im-
plementation of receding horizon control using Monte Carlo
Tree Search (MCTS). MCTS has been used to address a
wide variety of problems [20]. Theoretical analysis of the
classical upper confidence bounds applied to trees (UCT)
algorithm is provided in [21], [22]. The UCT algorithm is
designed to balance exploitation of best actions found so far
and exploration of other actions in an effort to ensure that the
algorithm has a small probability of choosing a sub-optimal
action if stopped prematurely and, given enough time, will
determine the best action. To estimate the value of a state
associated with a new leaf node the MCTS algorithm utilizes
a finite set of Monte Carlo simulations to provide an expected
value.

In this work, we utilize a basic implementation of MCTS
with minor modifications to highlight the effect of appending
a terminal cost to a receding horizon path. First, the UCT is
computed by normalizing the estimated reward to a factor of
a naively computed upper bound,

E
Bu(so)

+ C

√
ln(N)

n
(23)

where in this case we compute Bu(so) by summing the l
highest value cells at the start of the mission. Second, instead
of back-propagating the average reward of a Monte Carlo

Fig. 1: 150 x 150 cell sensor performance map of an envi-
ronment measured in the approaches to Boston Harbor using
side scan sonar on-board an unmanned underwater vehicle.
The data corresponds to an environmental characterization
metric which helps define how well the sonar will perform
during search and characterization missions [24]

simulation, we back-propagate the maximum value. Lastly, in
the experiments the search agent has three available actions:
move forward, turn left, turn right. While there is no incurred
penalty while performing a turn, the search agent does not
sample the cell when turning. This is to more closely mirror
the real-world application of subsea search where a search
sensor is less effective when not traveling in straight line
paths. To account for this in the MCTS planner, the roll-out
policy performs a biased sampling of random actions where
forward is sampled at a rate of 50% and the other two actions
are sampled both at 25%. We then compare the results of
a receding horizon MCTS planner with terminal costs to a
brute-force implementation which finds the optimal solution
to (12) using the same mission length, horizon, and execution
values: l, n, and m, respectively. Furthermore, we compare
the results to both MCTS and brute force implementations
where a terminal cost is not appended.

Throughout these numerical experiments, we leverage
strengths of simple lawnmower paths in the context of subsea
search [23] to compute a lower bound on the cost-to-go from
a given state. In contrast to prior work [1] where a horizontal
lawnmower path was used to determine a lower bound on the
cost-to-go, we use the higher reward between a horizontal
lawnmower path and a vertical lawnmower path starting from
a given state.

Figure 1 is the environment the search agent is tasked with
exploring. The map shows the reward for sampling a cell
given a characterization metric for a subsea search sensor,

6744

Fig. 2: Comparison of the resulting total accumulated reward
for each of the planning approaches described in this paper
where the mission length l is varied.

the data is real data collected from a 21” bluefin UUV in
the approaches to Boston Harbor (see [24] for a detailed
explanation on the performance estimation metric). Using this
environment we compare the planning results from receeding
horizon planners that utilize a n-step receeding horizon with
n = 6, and an m-step execution horizon of m = 3. The
MCTS performed 20 simulations per leaf node evaluation
and was given 4 seconds per step to plan (we planned for a
total of 12 seconds per cycle since 3 steps were performed
each cycle). For each experiment the starting position of the
search agent was randomly selected from one of the four
corners of the map. The mission length was set to values
ranging from 500 steps to 5000 steps. MCTS (MCTS-RH-
TC) experiments were conducted 40 times while the brute-
force (BF-RH-TC) method was conducted 4 (one for each
corner, the solution is deterministic so no additional trials
are required). We compare the results of a receeding horizon
planner with the terminal cost appended to the n-step path to
a planner not utilizing a terminal cost (BF-RH and MCTS-
RH, brute force and MCTS respectively). We also compare
the results to the initial lower-bound computation (LB, the
better of two naive lawnmower patterns starting from the
initial position) as well as a MCTS planner that searches for
the full-length path (otherwise using the same parameters
as the MCTS-RH and MTCS-RH-TC planners). Figure 2
shows the results of the experiments, figure 3 show the results
for l at 5000, namely to highlight how close the MCTS
results are able to mirror the optimal BF results. Figure 4a
and 4b show two representative trials of the MCTS planners
with and without the appended terminal cost respectively.

VI. CONCLUSIONS

We present theoretical extensions to prior work [1]. We
also present an easily satisfied sufficient condition to guar-
antee lower bounds on the value of receding horizon paths

Fig. 3: Results for the presented planners where the length l
is set to 5000.

constructed with terminal costs. We demonstrate the efficacy
of the proposed methods in the context of subsea search
by performing numerical experiments with real-world data.
Specifically, we demonstrate that the best solution from a
set of readily-available, naive solutions may be used to set
a desirable lower bound on the value of receding horizon
search paths. We also demonstrate that the receding horizon
search planner is capable of producing paths with rewards
significantly higher than the lower bound. Future work will
address extending the results presented in this paper to multi-
vehicle search.

A limitation of the contributions presented in this work is
a dependence on the existence of a naive paths that ensure
good search performance. This will likely be of particular
significance in extending this work to multi-vehicle search.
In the case of subsea search with a single agent, lawnmower
paths provide a desirable lower bound.

APPENDIX A
PROOF OF PROPOSITION 4.1

Proof: Consider the (n + m)-length path γ̃n(sk) =
{γ′n(sk), s̃k+n+1, . . . , s̃k+n+m} composed of an n-length
near-optimal path γ′(sk) = {sk, s′k+1, . . . , s

′
k+n} and a

feasible set of states {s̃k+n+1, . . . , s̃k+n+m} satisfying (16).
Then from equation (10) the value of γ̃n(sk) is

Ṽn+m(sk) =

k+n∑
i=k+1

g(s′i) +

k+n+m∑
i=k+n+1

g(s̃i) +Bl(s̃k+n+m)

(24)
or equivalently

Ṽn+m(sk) = V ′n(sk)−Bl(s′k+n) (25)

+

k+n+m∑
i=k+n+1

g(s̃i) +Bl(s̃k+n+m).

By hypothesis

Bl(s
′
k+n) + ε ≤

k+m∑
i=k+n+1

g(s̃i) +Bl(s̃k+n+m) (26)

such that
Ṽn+m(sk) ≥ V ′n(sk) + ε, (27)

6745

(a) (b)

Fig. 4: Representative Search Path Using MCTS-RH-TC (a) and MCTS-RH (b) . The grayscale values indicate the reward
for searching an area. The colored line represents the search path, the start at step 0 (dark blue) and the end at step 2500
(yellow).

and V ′n(sk) is bounded below by V∗n(sk)− ε yielding

Ṽn+m(sk) ≥ V∗n(sk). (28)

We note that (24) may be equivalently written as

Ṽn+m(sk) =

k+m∑
i=k+1

g(s′i) +

k+n∑
i=k+m+1

g(s′i) + (29)

k+n+m∑
i=k+n+1

g(s̃i) +Bl(s̃k+n+m).

That is, there exists some feasible n-length path γ̂n(s′k+m)
such that

V̂n(s′k+m) =

k+n∑
i=k+m+1

g(s′i) +

k+n+m∑
i=k+n+1

g(s̃i) +Bl(s̃k+n+m)

(30)
and

Ṽn+m(sk) =

m∑
i=1

g(s′i) + V̂n(s′k+m). (31)

Replacing left-hand side of (28) with the right-hand side
of (31) gives

k+m∑
i=k+1

g(s′i) + V̂n(s′k+m) ≥ V∗n(sk) (32)

where γ̂n(s′k+m) is not optimal and therefore

k+m∑
i=k+1

g(s′i) + V∗n(s′k+m) ≥ V∗n(sk) (33)

where subtracting V∗n(s′k+m) from both sides gives

k+m∑
i=k+1

g(s′i) ≥ V∗n(sk)− V∗n(s′k+m). (34)

Evaluating (34) at different values of k from k = 1 to
k = l −m in increments of m gives

m∑
i=1

g(s′i) ≥ V∗n(s0)− V∗n(s′m) (35)

2m∑
i=m+1

g(s′i) ≥ V∗n(sm)− V∗n(s′2m) (36)

...
l∑

i=l−m+1

g(s′i) ≥ V∗n(sl−m)− V∗n(s′l). (37)

And summing the inequalities in (35) gives

l∑
i=1

g(s′i) ≥ V∗n(s0)− V∗n(s′m) + V∗n(sm)− (38)

V∗n(s′2m) + . . .+ V∗n(sl−m)− V∗n(s′l).

Which, because in receding horizon path planning sm =
s′m,s2m = s′2m and so on, reduces to

l∑
i=1

g(s′i) ≥ V∗n(s0)− V∗n(s′l). (39)

We note that the summation on the left-hand side of (39)
represents the value of the l-length receding horizon path Pl

and that V∗n(s′l) = 0. Using these observations, we rewrite
(39) as

J(Pl) ≥ V∗n(s0). (40)

Finally, because V∗n(s0) ≥ Bl(s0), we conclude that

J(Pl) ≥ Bl(s0). (41)

6746

APPENDIX B
PROOF OF PROPOSITION 4.2

Proof: From (10), the reward attained while traversing
the first m-steps along a path may be represented by

k+m∑
i=k+1

g(s′i) = V ′n(sk)−
k+n∑

i=k+m+1

g(s′i)−Bl(s′k+n). (42)

Where
∑k+n
i=k+m+1 g(s′i) +Bl(s

′
k+n) is the value of an (n−

m)-length path remaining of γ′n(sk) after traversing the first
m steps. We use the notation

V ′n−m(s′k+m) =

k+n∑
i=k+m+1

g(s′i) +Bl(s
′
k+n) (43)

and write
k+m∑
i=k+1

g(s′i) = V ′n(sk)− V ′n−m(s′k+m). (44)

As in the proof for 4.1, we evaluate (44) at different values
of k from k = 1 to k = l −m in increments of m to get

m∑
i=1

g(s′i) = V ′n(s0)− V ′n−m(s′m) (45)

2m∑
i=m+1

g(s′i) = V ′n(sm)− V ′n−m(s′2m) (46)

...
l∑

i=l−m+1

g(s′i) = V ′n(sl−m)− V ′n−m(s′l) (47)

where summing the inequalities in (45) gives

l∑
i=1

g(s′i) = V ′n(s0)− V ′n−m(s′m) + V ′n(sm)− (48)

V ′n−m(s′2m) + . . .+ V ′n(sl−m)− V ′n−m(s′l).

By hypothesis V ′n(sk) ≥ V ′n−m(sk). Therefore, because in
receding horizon path planning sm = s′m,s2m = s′2m and so
on, (48) reduces to

l∑
i=1

g(s′i) ≥ V ′n(s0)− V ′n−m(s′l). (49)

We note that the summation on the left-hand side of (49)
represents the value of the l-length receding horizon path Pl

and that V ′n−m(s′l). Using these observations, we rewrite (49)
as

J(Pl) ≥ V ′n(s0), (50)

and from (19) we conclude that

J(Pl) ≥ Bl(s0). (51)

APPENDIX C
PROOF OF COROLLARY 4.3

Proof: Let γ̃∗l−k−n(sk+n) be a path in ΓKl−k−n(sk+n)
satisfying

γ̃∗l−k−n(sk+n) = arg max
γ̃l−k−n(sk+n)∈ΓK

l−k−n(sk+n)

J(γ̃l−k−n(sk+n)

(52)
such that

Bl(sk+n) = J(γ̃∗l−k−n(sk+n)). (53)

We recall that

J(γ̃∗l−k−n(sk+n)) =

l∑
j=k+n+1

g(s̃j) (54)

and note that
l∑

j=k+n+1

g(s̃j) =

k+n+m∑
i=k+n+1

g(s̃i) +

l∑
j=k+n+m+1

g(s̃j). (55)

Given that Bl(s̃k+n) is defined by the right-most summation
in (54), we write

Bl(s̃k+n) =

k+n+m∑
i=k+n+1

g(s̃i) +

l∑
j=k+n+m+1

g(s̃j). (56)

We note that
∑l
j=k+n+m+1 g(s̃j) represents the value of

a single path in the set of available paths used to define the
lower bound on the cost-to-go and as such may not represent
the highest valued naive path such that

l∑
j=k+n+2

g(s̃j) ≤ Bl(sk+n+m). (57)

Using (57) and (56) we write

Bl(s̃k+n) ≤ g(s̃k+n+1) + . . .+ g(s̃k+n+m) +Bl(sk+n+m)
(58)

which concludes the proof.

REFERENCES

[1] B. Biggs, D. J. Stilwell, H. Yetkin, and J. McMahon, “Performance
guarantees for receding horizon search with terminal cost,” in 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems
(iROS), IEEE, 2019.

[2] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert,
“Constrained model predictive control: Stability and optimality,” Au-
tomatica, vol. 36, no. 6, pp. 789–814, 2000.

[3] J. H. Lee, “Model predictive control: Review of the three decades
of development,” International Journal of Control, Automation and
Systems, vol. 9, no. 3, p. 415, 2011.

[4] D. Q. Mayne, “Model predictive control: Recent developments and
future promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[5] G. de Nicolao, L. Magni, and R. Scattolini, “On the robustness of
receding-horizon control with terminal constraints,” IEEE Transactions
on Automatic Control, vol. 41, no. 3, pp. 451–453, 1996.

[6] J. A. Primbs and V. Nevistić, “Feasibility and stability of constrained
finite receding horizon control,” Automatica, vol. 36, no. 7, pp. 965 –
971, 2000.

[7] A. Jadbabaie and J. Hauser, “On the stability of receding horizon
control with a general terminal cost,” IEEE Transactions on Automatic
Control, vol. 50, no. 5, pp. 674–678, 2005.

6747

[8] S. Liu and J. Liu, “Economic model predictive control with extended
horizon,” Automatica, vol. 73, pp. 180–192, 2016.

[9] J. Bellingham, A. Richards, and J. P. How, “Receding horizon control
of autonomous aerial vehicles,” in Proceedings of the 2002 American
Control Conference (IEEE Cat. No. CH37301), vol. 5, pp. 3741–3746,
IEEE, 2002.

[10] Y. Kuwata and J. How, “Three dimensional receding horizon control
for uavs,” in AIAA Guidance, Navigation, and Control Conference and
Exhibit, p. 5144, 2004.

[11] B. Mettler and O. Toupet, “Receding horizon trajectory planning with
an environment-based cost-to-go function,” in Proceedings of the 44th
IEEE Conference on Decision and Control, pp. 4071–4076, IEEE,
2005.

[12] M. P. Vitus, W. Zhang, A. Abate, J. Hu, and C. J. Tomlin, “On efficient
sensor scheduling for linear dynamical systems,” Automatica, vol. 48,
no. 10, pp. 2482–2493, 2012.

[13] N. Atanasov, J. Le Ny, K. Daniilidis, and G. J. Pappas, “Information
acquisition with sensing robots: Algorithms and error bounds,” in 2014
IEEE International Conference on Robotics and Automation (ICRA),
pp. 6447–6454, IEEE, 2014.

[14] N. Atanasov, J. Le Ny, K. Daniilidis, and G. J. Pappas, “Decentralized
active information acquisition: Theory and application to multi-robot
slam,” in 2015 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 4775–4782, IEEE, 2015.

[15] B. Schlotfeldt, D. Thakur, N. Atanasov, V. Kumar, and G. J. Pappas,
“Anytime planning for decentralized multirobot active information
gathering,” IEEE Robotics and Automation Letters, vol. 3, no. 2,
pp. 1025–1032, 2018.

[16] S.-H. Yoo, A. Stuntz, Y. Zhang, R. Rothschild, G. A. Hollinger, and
R. N. Smith, “Experimental analysis of receding horizon planning algo-
rithms for marine monitoring,” in Proc. Tenth International Conference
on Field and Service Robotics (FSR), vol. 113, pp. 31 – 44, 2016.

[17] G. A. Hollinger and G. S. Sukhatme, “Sampling-based robotic infor-
mation gathering algorithms,” The International Journal of Robotics
Research, vol. 33, no. 9, pp. 1271–1287, 2014.

[18] Y. Kantaros, B. Schlotfeldt, N. Atanasov, and G. J. Pappas, “Asymp-
totically optimal planning for non-myopic multi-robot information
gathering,” Proceedings of Robotics: Science and Systems (RSS),
Freiburg, Germany, pp. 22–26, 2019.

[19] H. Yetkiny, J. McMahon, N. Topin, A. Wolek, Z. Waters, and D. J.
Stilwell, “Online planning for autonomous underwater vehicles per-
forming information gathering tasks in large subsea environments,” in
2019 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 6354–6361, IEEE, 2019.

[20] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43,
2012.

[21] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,”
in European conference on machine learning, pp. 282–293, Springer,
2006.

[22] L. Kocsis, C. Szepesvári, and J. Willemson, “Improved monte-carlo
search,” Univ. Tartu, Estonia, Tech. Rep, vol. 1, 2006.

[23] S. Frolov, B. Garau, and J. Bellingham, “Can we do better than the grid
survey: Optimal synoptic surveys in presence of variable uncertainty
and decorrelation scales,” Journal of Geophysical Research: Oceans,
vol. 119, no. 8, pp. 5071–5090, 2014.

[24] J. McMahon, H. Yetkin, A. Wolek, Z. J. Waters, and D. J. Stilwell,
“Towards real-time search planning in subsea environments,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 87–94, IEEE, 2017.

6748

