
Tensor Action Spaces for Multi-agent Robot Transfer Learning

Devin Schwab1, Yifeng Zhu2, Manuela Veloso1

Abstract— We explore using reinforcement learning on single
and multi-agent systems such that after learning is finished we
can apply a policy zero-shot to new environment sizes, as well
as different number of agents and entities. Building off previous
work, we show how to map back and forth between the state
and action space of a standard Markov Decision Process (MDP)
and multi-dimensional tensors such that zero-shot transfer in
these cases is possible. Like in previous work, we use a special
network architecture designed to work well with the tensor
representation, known as the Fully Convolutional Q-Network
(FCQN). We show simulation results that this tensor state and
action space combined with the FCQN architecture can learn
faster than traditional representations in our environments.
We also show that the performance of a transferred policy
is comparable to the performance of policy trained from
scratch in the modified environment sizes and with modified
number of agents and entities. We also show that the zero-
shot transfer performance across team sizes and environment
sizes remains comparable to the performance of training from
scratch specific policies in the transferred environments. Finally,
we demonstrate that our simulation trained policies can be
applied to real robots and real sensor data with comparable
performance to our simulation results. Using such policies we
can run variable sized teams of robots in a variable sized
operating environment with no changes to the policy and no
additional learning necessary.

I. INTRODUCTION

Reinforcement learning (RL) has recently made major

strides thanks to the use of deep RL methods. Deep RL has

been used to learn policies for various tasks from Atari to

robot control [1], [2], [3], [4], [5], [6], [7], [8]. Through these

many successes, it has been shown that deep reinforcement

learning (RL) can deal with high-dimensional state inputs,

represented as tensors (e.g. images). However, these policies

are typically fixed to the environment they were trained in

and cannot adapt to situations where the number of agents

changes after training. In many real world problems such

as RoboCup robot soccer [9], it is necessary for agents to

be adaptable to such changes. Additionally, many systems

are trained in a limited laboratory environment. We would

like policies and agents that can adapt to a larger or smaller

environment after training is finished.

In this paper we specifically focus on the problem of zero-

shot transfer. That is a policy learned with a set number

of agents and entities in a set size environment can be

applied without changes or additional learning when the

number of agents and entities change or the environment

1Devin Schwab and Manuela Veloso are with Carnegie Mel-
lon University, Pittsburgh, PA, USA dschwab@anderw.cmu.edu
mmv@cs.cmu.edu

2Yifeng Zhu is with University of Texas, Austin, Austin, TX , USA. The
work was done during the visit at CMU. yifeng.zhu@utexas.edu

size changes. To zero-shot transfer across changes to number

of agents and entities, we use a transformation of the raw

state and action space of a Markov Decision Process (MDP)

into an abstracted one, such that both state and actions

are multi-dimensional tensors. This new space is designed

so that new policy parameters do not need to change. To

facilitate zero-shot transfer across environment sizes we use a

special network architecture, Fully Convolutional Q-Network

(FCQN), that uses only convolutions and deconvolutions.

This allows an arbitrary sized input tensor to produce a

proportionally sized action tensor output.

In this paper, we specifically look at domains where

multiple robots or agents are performing a task in which

spatial positioning is important. Using a properly designed

tensor state and action space gives us two advantages:

1) Spatial information can be preserved through the entire

policy network.

2) For a fixed environment size, the dimensionality of the

state and action space remains fixed even as the number

of agents and other entities in the environment vary.

Rather than using a standard flat action space, where the

spatial relationships between state and actions are lost, we

can use a tensor for both states and actions allowing those

relations to be preserved. By designing the tensors in such a

way that the dimensionality stays fixed, despite changes in

the number of agents, it is easier to do zero-shot transfer of

single and multi-agent policies, as the policies do not need

to learn additional parameters to deal with the additional

inputs/outputs.

As mentioned, we utilize Fully Convolutional Q-Networks

(FCQN), a network containing only convolutions and decon-

volutions [10] to our tensor-based state and action encoding.

Such layers preserve spatial information, and allow for

arbitrary sized inputs. We show that such an architecture,

combined with using tensors as the action space can allow

for:

1) Faster convergence of policies tasks where spatial

positioning is important.

2) Can be used as state and action space dimensionality

changes due to environment size changes, thus allow-

ing for zero-shot transfer across different environment

sizes.

In the rest of the paper, we formalize the requirements

for transforming back-and-forth between a standard state and

action representation and a tensor representation. We present

a specific pair of position-based mapping functions. We

explain how the FCQN is utilized with our representation.

We explain how policy learning and zero-shot transfer is

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 5380

done in both a single and multi-agent context. We present

an empirical analysis across a pair of test environments,

showing that the tensor representation and FCQN archi-

tecture allows for faster training and that policies can be

transferred, zero-shot, across environment sizes and team

sizes with minimal difference in performance as compared to

training policies from scratch in the changed environments.

Finally, we show that these policies, despite being trained

purely in simulation function with comparable performance

on a set of real robots. We test on a robot system designed

for the SSL RoboCup Competition [9].

II. RELATED WORK

The DQN Atari paper kicked off a long line of work

utilizing images as state representation for deep reinforce-

ment learning (RL) [1], [2]. Images, a special case of multi-

dimensional tensors, can encode large amount of information

without the need for intensive feature engineering. In this

work we do not limit ourselves to environments that naturally

have image observations, instead we explore how different

observations can be mapped to an image-like, tensor-based

representations.

Tensor-representations have been used for states and ac-

tions in the game of Go [7], as the game board can be easily

treated as a 2D-tensor. However, such works did not explore

how other environments could be mapped to and from such

a representation in order to speed up learning and facilitate

transfer.

The concept of tensors for both states and actions was

briefly introduced under the name “Image Action Space

MDP (IAS-MDP)” [10]. We build off of this work, focusing

on generalizing the functions that map back-and-forth be-

tween the original state-action space the tensor state-action

space. We give a specific mapping for environments where

positions play an important role in success. Unlike this

previous work, we also apply the learned policies to real

world robots and sensor data.

Like in the IAS-MDP work [10], we utilize the Fully Con-

volutional Q-Network (FCQN) architecture, which contains

only convolution and deconvolution layers [11]. Removing

fully connected layers allows learners to take advantage

of translational invariance of the convolutional layers so

that experience can be generalized to other areas of the

state-tensor. Secondly, this allows a single set of policy

weights to be applied to different size input tensors with no

additional training. We present additional empirical evidence

beyond what is shown in [10], showing that this architecture

combined with the tensor representation can not only train

faster than a standard representation, but also has comparable

policy performance after transfer to that of a network trained

from scratch in the transferred environment.

We also explore learning multi-agent policies and how the

tensor-based representation can facilitate transfer across team

sizes. Most prior work on multi-agent transfer are adaptations

of single agent transfer techniques to multi-agent scenarios

including: object oriented MDPs, task mappings, experience

sharing, and supervision from more experienced agents [12],

[13], [14], [15]. Here we focus on representations that allow

for easy transfer.

III. METHODOLOGY

The concept of mapping functions that map back-and-

forth between standard state action spaces and our tensor

representation is first introduced. Then a specific transforma-

tion for MDPs with position features is described. Finally,

an explanation of how single and multi-agent policies in

the tensor-based state and action space can be learned and

represented by the Fully Convolutional Q-Network (FCQN)

architecture is given.

A. Mapping MDPs to Tensor-based MDPs

1) Markov Decision Processes: An MDP is a set of

states s ∈ S and actions a ∈ A, with an associated transition

distribution p(st+1|st, at) specifying the probability of

transitioning from state st to st+1 under action at. Given a

reward function f(s, a) ∈ IR and a discount factor γ ∈ [0, 1),
the goal of learning is to optimize for the parametric policy

πθ(s) → a with parameters θ with respect to the cumulative

discounted reward Eπθ
[
∑∞

t=0 γ
tr(st, at)|at = πθ(st), st+1

∼ p(·|st, at), s0 ∼ p(s)], where p(s) is an initial

state distribution. Alternatively, we can maximize

an action-value function Qπ(st, at) = r(st, at) +
Eπ [Q(st+1, ·)|st+1 ∼ p(·|st, at)], so that the optimization

goal is: J(θ) = Ep(s) [Q
π(s, a)|a ∈ πθ(s)].

Generally, an MDP has some set of entities, X , which

are either agents or objects relevant to the task. Each entity

will have some set of features, ∀x ∈ X,F x, associated with

it. These generally have semantic meaning such as position,

velocity, etc. The state is typically a vector concatenating

these features, S =
[

F 0;F 1, · · ·
]

. In this standard represen-

tation, changing the number of entities or features changes

the dimensionality of the state vector.

Assume a high-level action space consisting of both dis-

crete actions, ad ∈ Ad, and parameterized actions, ap(y) ∈
Ap where y is an entity in the environment [16]. The action

set is the combination of both types: A = Ad∪Ap. A discrete

action may be something like “move left”. A parameterized

action may be “pass ball to y”, where parameter y is another

agent on the team. Parameterized actions can be treated as

discrete actions by grounding the parameters, allowing any

discrete action reinforcement learning algorithm to learn a

policy. The number of entities also affects the action dimen-

sionality, by changing the number of possible groundings.

2) Tensor-based States and Actions: The goal is to map

from a feature based state S to a new state space St that has

a fixed dimensionality regardless of the number of entities in

the environment. Additionally, a new action space At must be

constructed that can map back to the original action space

A. If the dimensionality of either S or A change, then a

policy π learned in S and A will require a reparameterization.

This need for new parameters will prevent zero-shot transfer.

Instead, by construction St and At using tensors that have

fixed dimensionality regardless of number of entities, a pol-

icy πt learned in St and At will require no new parameters to

5381

Fig. 1: Example transformation to the tensor-based state and action representation functions. For a 5x5 grid world with 2

entities: agent 0 and object 0. (a) The feature based state, each entity have 2 features. (b) The tensor based state using the

position φ mapping. (c) Example Q-value output from a policy network. (d) Result of creating the one-hot action tensor

by marking the argmax of the Q-values. (e) Results of mapping the action tensor back to the original parameterized action

space via ψ, which results in ap with parameter object 0 being chosen.

work, regardless of number of entities. Additionally, by using

tensors, we can take advantage of network architectures that

better uses spatial information in a task.

Let φ : S → St be an injective mapping function, where

St is a multi-dimensional tensor with fixed dimensionality

regardless of the number of entities in the environment. Many

environments, such as Atari and grid-worlds, can be naturally

represented as an image, which has these properties.

Let ψ : At → A be a surjective mapping function, which

maps from our new tensor action space back to the original

MDP action space. At is also a multi-dimensional tensor

with fixed dimensionality regardless of number of entities in

the environment.

Given these mapping functions we can then choose to

learn a policy πt : St → At instead of a policy π : S → A.

Figure 1 shows how this tensor based representation relates

to the original MDP. A traditional MDP policy maps directly

from (a) to (e) in the figure. Whereas, our approach first

transforms from (a) to (b), then learns a policy mapping from

(b) to (d), and is then transformed back to the original action

space (e).

3) Optimality of Policies in the Tensor Space: Because

φ is injective, the new tensor state space is still fully

observable. The ψ mapping is surjective, meaning that it is

always possible for the policy to select every action available

in the original action space. Therefore, the optimal policy in

this new tensor representation will have the same value as

the optimal policy in the original MDP representation. The

new representation has a fixed dimensionality regardless of

number of entities, yet can still represent a policy equal in

value to the optimal policy in the original state and action

space.

B. Position Based Mappings

In the rest of the paper we consider tasks where all entities

have position features and give a specific pair of mapping

functions φ and ψ.

1) MDP Environments: For spatially orientated tasks

there is an “environment”, which is implicitly encoded in

the MDP transition function (e.g. no transitions to positions

outside the environment, Euclidean space, etc.). An environ-

ment, E, can be defined for an MDP, where the environment

has some spatial dimensions D, where E ∈ IRD. All

entities must exist inside the environment bounds. To be

observable, entities must have positions in the environment:

pxi = (pxi

1 , · · · , p
xi

D) ∈ E. If we assume finite environments,

then pi ∈ [emin
i , emax

i]. For the rest of the formulation we

will assume that positions are discrete or can be discretized

while keeping the task solvable.

2) Position based φ and ψ Mappings: Assume each

xi ∈ X has a position and a single feature fxi representing

information such as an ID number or team affiliation. We can

construct a tensor zj of dimensionlity D, that spans the full

environment E. Positions in the tensor corresponding to an

entity’s position will take the feature value f , and all other

positions will get a default value. Mathematically:

zj(k1, · · · , kD) =

{

fxi

j k1 = pxi

1 , · · · , kD = pxi

D

cdefault otherwise

s.t.

xi ∈ X,

fxi

j 6= cdefault,

(k1, · · · , kd) ∈ E
(1)

Because every position in the environment has a corre-

sponding position in the tensor, entities can be added and

removed without affecting the dimensionlity, only the values

in the tensor.

Most environments have multiple features for each entity.

We can construct one zj tensor for each feature type and

then stack them along a new dimension to give us a full

state: St = z1 × · · · × z|Fx|. This includes all of the infor-

mation in the original state, but with a fixed dimensionality

D + 1, where the first D has size equal to the span of the

environment and the final dimension has size equal to the

number of feature types.

For 2D environments, this is like a multi-channel 2D

image. Figure 1 from (a) to (b) shows an example of mapping

a 5×5 grid world with 2 feature types to this representation.

5382

Actions can be represented as a one-hot, D + 1 dimen-

sional tensor. The first D dimensions have size equal to the

environment, and the final dimension is equal to the number

of action types: |Ap|+ |Ad|. To select a discrete action, the

agent marks it’s own position in the action tensor. To select

a parameterized action, it marks the parameter’s position in

the action tensor. This action space will be larger than the

original action space. Actions that do not have a matching

action in the original action space can be mapped to a “do

nothing” action or a similar default action. Figure 1 part

(d) shows an example of an action tensor where action ap is

selected with parameter corresponding to object 0’s position.

3) Policy Learning with Tensor Representations: Agents

can use any RL algorithm that learns an action-value func-

tion. We could directly learn an action-value function that

takes the state and an arbitrary action tensor as an input:

Qπ(sT , aT). However, we are using a one-hot action tensor,

so there are |AT | actions for the agent to choose from.

Therefore, we can learn an action-value function which has

an output equal in size and dimensions to AT . An argmax

is applied to this Q-value tensor to get the one-hot action

tensor required by ψ. Figure 1 (c) shows an example Q-value

tensor output. Part (d) shows how the argmax transforms this

dense tensor into the 1-hot action tensor required by the ψ
mapping.

4) Fully Convolutional Q-Networks (FCQN): We use a

Fully Convolutional Q-Network (FCQN), which has no fully

connected (FC) layers, only convolutions and deconvolu-

tions [10]. With a tensor represention, FCQN architecture

has multiple advantages compared to networks with an

FC layer. 1) (de)convolutions take advantage of locality 2)

(de)convolutions take advantage of translational invariance

and 3) (de)convolutions can accept any size input and output

a proportionally sized output. Locality and translational in-

variance can allow an agent to generalize experiences across

positions in the state-space. By accepting any size input,

we can also do zero-shot transfer across environment sizes.

Figure 2 shows an outline of this architecture.

C. Multi-agent Policies

With the above framework, we can learn policies that

do not require new parameters when the number of agents

in an environment changes. Therefore, we can learn multi-

agent policies and perform zero-shot transfer across team

sizes. Each agent will evaluate its own copy of the policy

network to choose its own actions based on its state, which

will include information about its own position as well as

masking channels like those used in [10].

To coordinate, we use an averaging layer as described

in [17], as we can average across any number of agent

inputs and receive a fixed size output. In theory any set of

differentiable aggregation functions can be used (e.g. sum,

average, products), so long as the function can output a fixed

size output for any size input. To remove the need to find

new weights for added agents, all agent policies use the

same weights. Adding or removing an agent simply adds

or removes a copy of the shared network weights.

IV. EMPIRICAL RESULTS - SIMULATION

We first train and test our policies in simulation, hypoth-

esizing that the FCQN and tensor representation can:

1) Speed-up learning compared to standard representa-

tions

2) Perform zero-shot transfer across team sizes with min-

imal change in performance

3) Perform zero-shot transfer across environment sizes

with minimal change in performance

A. Environment Descriptions

We use two different environments for our experiments:

Passing and Take-the-Treasure1. Passing and

Take-the-Treasure are grid world environments first

used in [10]. Both are grid worlds with standard moves,

as well as a do nothing action and a pass ball/throw trea-

sure to location action. Passing has a single controlled

agent with the goal of passing to an environment controlled

entity marked as a teammate as quickly as possible. The

environment also contains environment controlled opponents

which block passes. Take-the-Treasure has a team of

learning agents against a team of fixed policy environment

controlled opponents. The agent team starts with treasure

and must keep the treasure holder from being captured by

the opponents for as long as possible.

B. Hyperparameters and Network Architecture

The Passing FCQN network is shown in figure 2. Skip

connections were used between all matching sized pairs of

conv/deconv layers. All hidden layers use ReLU activations.

Below is the network structure for Passing using state

features and fully connected layers. c(8,4,64) represents

a convolution layer with an 8 × 8 filter, a stride of 4, and

64 channels. f(512) represents a fully connected layers

whose output size is 512 hidden units. maxpooling(3,3)

represents a max pooling layer which has (3,3) as the

size of the pooling window. All hidden layers use ReLU

activations. The network structure is: f(256), f(256),

f256, and f(|A).

The Passing network with the tensor state input and the

FC layers is: c(12,4,32), c(5,1,32), maxpooling

(3,3), c(5,1,512), flatten, then we have the dueling

layer which has a value stream as f(2048), f(1), and

an advantage stream as f(2048), f(|A|). All hidden

layers use ReLU activations. Take-the-Treasure uses

the same network architecture.

All networks were trained using the Double DQN algo-

rithm [18] and the Adam optimizer with hyperparameters

shown in table I. We used ǫ-greedy exploration with epsilon

decayed linearly from ǫstart to ǫend.

C. Learning Performance

Figures 4a, 4b shows the training curves for an FCQN.

There are also baseline curves of network with fully con-

nected layers applied to the tensor representation, and a

1Code and environment details https://github.com/
tensor-state-action-spaces/tensor-state-action-env

5383

40× 40× 2

Agent0

19× 19× 32

15× 15× 32
5× 5× 32

1× 1× 128 AveragingLayer 1× 1× 256

5× 5× 32
15× 15× 32

19× 19× 32

40× 40× 2

10× 10× 2

adap
Agent1

1× 1× 128

Agent2
1× 1× 128

Fig. 2: FCQN network architecture with multi-agent averaging layer. Red: max-pooling. Blue: bilinear upsampling

Name Value

Passing learning rate 1× 10
−5

Take-the-Treasure learning rate 1× 10
−4

ǫstart 0.99

ǫend 0.1

ǫ decay steps 1,000,000
Passing replay mem size 1,000,000
Take-the-Treasure replay mem size 1,200,000

TABLE I: Hyperparameters used during training and evalu-

ation

Initial State Forming Wall Wall Formed Surrounding

background opponent teammate treasure holder

Fig. 3: Frames from the Take-the-Treasure domain.

Teammates learn to form a walls and surround treasure

holder to block the opponents from reaching the treasure

holder.

dueling network architecture using a state vector and discrete

action space [19]. For each evaluation point, ǫ was set

to zero and 100 episodes were run. For Passing we

evaluate the average reward during testing because it is a

single agent environment. For Take-the-Treasure we

evaluate episode length, as we care about the whole team

performance, not individual agent performance. This whole

procedure was repeated from scratch 10 times in order to

get the shaded error bars. Both the FCQN and the fully-

connected network have approximately 3.5 million weights.

In both Passing and Take-the-Treasure the

FCQN with tensor representation converges significantly

faster than either the tensor representation with FC layers

or the standard representation with a dueling architecture. In

fact, the other representations fail to learn a meaningful pol-

icy on Take-the-Treasure within the allocated training

steps. This demonstrates that the combination of FCQN and

tensor representation can lead to significant speed-ups in

some tasks. Note that for Passing, a reward of 1.0 is the

best possible outcome, showing that we can indeed learn an

optimal policy.

Take-the-Treasure was trained with 3 agents vs 3

opponents on a 10x10 environment. The teammates learn

a coordinating policy, where the treasure holder runs from

opponents, while teammates form walls or surround the

holder to block opponents. Figure 3 shows a small sequence

of this behavior.

(a) Passing training curve

(b) Take-the-Treasure training curve

Fig. 4: Average training performance.

D. Zero-Shot Transfer Across Team Sizes

We trained one Passing network with a team size

of 3 vs 3 opponents on a 20x20 environment and one

Take-the-Treasure network with 3 agents and 3 oppo-

nents on a 10x10 grid. Figures 5a and 5b show the average

reward achieved by the policy as it transfers across team size

and opponent team size. Brighter is better.

For Passing, performance is fairly consistent across

both the numbers of opponents and the number of teammates.

Only when there are large number of opponents, such that

few passing opportunities occur, do we see a major difference

in performance. For Take-the-Treasure, we see good

transfer performance, when the team sizes are equal or the

agent team is larger. This is expected, as 1) the randomly

chosen starting state is less likely to have the treasure holder

already surrounded by opponents and 2) it is easier for more

opponents to out maneuver the teammates.

1) Performance of Transfer vs Trained from Scratch:

While the transferred policy has similar performance before

and after transfer, it may actually perform poorly vs a policy

trained directly with the new team size. We trained policies

from scratch on different team sizes for 500,000 steps and

5384

(a) Passing transfer as team sizes vary.

(b) Take-the-Treasure transfer as team sizes
vary.

Fig. 5: Performance of transferred policy as team sizes vary.

The brighter the cell the better the average performance.

compared this policy performance vs the zero-shot transfer

performance of the policy from the previous section. We

evaluate the relative performance defined as (RT −RS)/RS

where RT is the average reward/episode length for the

transferred policy and RS is the average reward/episode

length for the trained from scratch policy.

Table II shows the statistics for relative transfer

performance on Passing and Take-the-Treasure.

Passing was evaluated for every team size combination

from Figure 5a. Take-the-Treasure was evaluated

across 7 different team size combinations.

Passing transferred performance is only slightly

worse on average, with a small standard deviation.

Take-the-Treasure has a larger standard deviation, but

on average the transferred policies actually slightly outper-

form the from scratch policies. Likely, it is more difficult for

the agent to learn in a larger environment. Not only is the

state and action space larger, but the rewards are more sparse

due to agents being more spread. Conversely, by training in

a smaller environment and then transferring, the agent gets

faster feedback and has less state-action space to explore

while training, but can then apply what it has learned directly

in the now larger environment.

Min Max Mean ± Std Dev Metric

Passing -0.25 0.2 -0.03 ± 0.07 Reward
Take-the-Treasure -0.11 0.26 0.14 ± 0.31 Episode Length

TABLE II: Relative performance of policies transferred to

different team sizes vs policies trained from scratch with

those team sizes.

E. Zero-Shot Transfer Across Environment Sizes

Table III shows the average transferred policy performance

as environment size changes. Each new size evaluated the

transferred policy over 100 independent episodes. Passing

was trained on a 20x20 grid and then evaluated as height and

width were varied independently from 20 to 40 with steps

of 5. Take-the-Treasure was trained on a 10x10 grid

and transferred to grids of different heights and width varied

independently from 10 to 20 in steps of 2.

Just like when transferring across number of agents in the

environment, we see that transferred performance is rela-

tively consistent as environment size changes. This is despite

never seeing any training data from the new environment

sizes.

Mean ± Std Dev Metric

Passing 0.89± 0.03 Rewards
Take-the-Treasure 84.67± 6.55 Episode Length

TABLE III: Performance of transfer across environment

sizes.

V. EMPIRICAL RESULTS - REAL ROBOT

In the previous section we used simulations of the grid

world environment Take-the-Treasure as our test do-

main. In this section, we apply these grid world policies as

a high-level decision making policy on a real robot system.

First we explain the hardware system. Then we explain how

these low-level continuous states and actions are used with

our high-level Take-the-Treasure policy and tensor

state-action spaces. Finally, we give evaluation results for

running these policies on the real robot system.

A. Hardware Setup

We test our simulation trained policies using robots de-

signed for Small Size League (SSL) RoboCup [9]. Figure 6

shows a picture of these robots. The robots are controlled

via radio at 60 Hz and can move omni-directionally.

Robot positions and orientations are detected via a stan-

dard SSL overhead camera system and AprilTags [20]. Fig-

ure 7 shows an overview of the field setup. New detections

are published at 60Hz.

B. State and Action Mappings

We use the policies trained in simulation with no addi-

tional learning performed on the real robots. We run on

a field size of approximately 5m by 3m. Positions are

discretized into a grid with cells being approximately the

diameter of a robot (i.e. 18cm by 18cm), leading to a 28×17
tensor state. The continuous positions from the cameras are

discretized to this grid and used to construct the tensor

representation using the mapping described previously. Ori-

entation is ignored as the robots can move omni-directionally.

The environment tracks who controls the treasure and which

team each robot belongs to and adds this information to the

tensor state.

The move actions are translated to continuous desired

positions in real-world coordinates and used as set points

of a PID controller running at 60Hz. Passing the treasure

updates the internal environment state of who currently has

the treasure.

New decisions are made by the agents and opponents at

a fixed 5Hz, regardless of whether the robot has finished

executing the previous decision. Unlike in simulation, where

an action is guaranteed to execute to completion before a

5385

new action is chosen, in the real world system, an agent may

not end up at the requested position by the time of the next

decision. However, because the policy is deterministic, it is

only possible for a new controller setpoint to be chosen if at

least one of the robots has moved in the tensor representation.

C. Evaluation

We ran 30 runs of 3 vs 3 robots collecting the number

of steps taken in each episode. Like in simulation each

episode starts with random initial positions of all the robots.

Table IV shows the results of these experiments compared

to simulation results.

We can see that despite the policies only training in

simulation with perfect action execution and no noise on

the input state, the policies have only a slight drop in

performance when executed on the real robot hardware. This

is despite noise in the computer vision detections, imperfect

action execution and asynchronous execution of the agent

actions.

Fig. 6:

Take-the-Treasure

running on SSL RoboCup

robots. Yellow robots are

opponents. Highlighted

robot currently has the

treasure.

Computer

Camera
Images

Robot
Commands

Fig. 7: System overview.

Mean ± Std Dev

Real Robot 71.2± 17.7

Simulation 76.13± 15.6

TABLE IV: Real-robot Take-the-Treasure policy per-

formance. 3 vs 3 robots on a 28× 17 grid corresponding to

roughly a 5m by 3m real world environment.

VI. CONCLUSION

We have presented a general framework for transforming

standard state and action representations into a tensor-based

representation. The tensor representation can be designed for

easy zero-shot transfer by making the dimensions invariant to

the number of agents. We have formalized a specific mapping

function for spatial environments with position information.

Future work will explore other mapping functions for dif-

ferent environment types. Using the FCQN architecture, we

show empirically that we can learn single and multi-agent

policies faster than standard representations while supporting

zero-shot transfer across team sizes and environment sizes

with minimal change in performance compared to training

from scratch. Finally, we demonstrated that our abstract,

high-level tensor representation is applicable to real robot

execution and real sensor data.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” 2013. [Online]. Available: http://arxiv.org/abs/1312.5602v1

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[3] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,
Y. Tassa, D. Silver, and D. Wierstra, “Continuous control with
deep reinforcement learning,” Internal Conference on Learning

Representations, 2016. [Online]. Available: http://arxiv.org/abs/1509.
02971v5

[4] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap,
T. Harley, D. Silver, and K. Kavukcuoglu, “Asynchronous methods
for deep reinforcement learning,” 2016. [Online]. Available: http:
//arxiv.org/abs/1602.01783v2

[5] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner,
I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis, “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.
[Online]. Available: http://dx.doi.org/10.1038/nature16961

[6] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., “Mastering
chess and shogi by self-play with a general reinforcement learning
algorithm,” arXiv preprint arXiv:1712.01815, 2017.

[7] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
p. 354, 2017.

[8] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. Mc-
Grew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, et al.,
“Learning dexterous in-hand manipulation,” The International Journal

of Robotics Research, vol. 39, no. 1, pp. 3–20, 2020.
[9] The RoboCup Federation, “RoboCup,” 2017. [Online]. Available:

http://www.robocup.org/
[10] D. Schwab, Y. Zhu, and M. Veloso, “Zero shot transfer learning for

robot soccer,” AAMAS, 2018.
[11] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks

for semantic segmentation,” in The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), June 2015.
[12] F. L. Da Silva and A. H. R. Costa, “Transfer learning for multiagent

reinforcement learning systems.” in IJCAI, 2016, pp. 3982–3983.
[13] G. Boutsioukis, I. Partalas, and I. Vlahavas, “Transfer learning in

multi-agent reinforcement learning domains,” in European Workshop

on Reinforcement Learning. Springer, 2011, pp. 249–260.
[14] A. Taylor, I. Duparic, E. Galván-López, S. Clarke, and V. Cahill,

“Transfer learning in multi-agent systems through parallel transfer,”
2013.

[15] D. Garant, B. C. da Silva, V. Lesser, and C. Zhang, “Accelerating
multi-agent reinforcement learning with dynamic co-learning,” Tech-
nical report, Tech. Rep., 2015.

[16] M. Hausknecht and P. Stone, “Deep reinforcement learning in param-
eterized action space,” in Proceedings of the International Conference

on Learning Representations (ICLR), May 2016.
[17] S. Sukhbaatar, a. szlam, and R. Fergus, “Learning multiagent

communication with backpropagation,” in Advances in Neural

Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, Eds. Curran Associates, Inc.,
2016, pp. 2244–2252. [Online]. Available: http://papers.nips.cc/paper/
6398-learning-multiagent-communication-with-backpropagation.pdf

[18] H. v. Hasselt, A. Guez, and D. Silver, “Deep reinforcement
learning with double q-learning,” CoRR, 2015. [Online]. Available:
http://arxiv.org/abs/1509.06461v3

[19] Z. Wang, T. Schaul, M. Hessel, H. v. Hasselt, M. Lanctot, and
N. d. Freitas, “Dueling network architectures for deep reinforcement
learning,” 2015. [Online]. Available: http://arxiv.org/abs/1511.06581v3

[20] M. Krogius, A. Haggenmiller, and E. Olson, “Flexible layouts for fidu-
cial tags,” in Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), 2019.

5386

