
Multi-Robot Task Allocation with
Time Window and Ordering Constraints

Elina Suslova and Pooyan Fazli

Abstract— The multi-robot task allocation problem comprises
task assignment, coalition formation, task scheduling, and
routing. We extend the distributed constraint optimization
problem (DCOP) formalism to allocate tasks to a team of robots.
The tasks have time window and ordering constraints. Each
robot creates a simple temporal network to maintain the tasks
in its schedule. The proposed layered framework, called L-
DCOP, forms efficient coalitions among robots to accomplish
the tasks more efficiently as a result of their collective abilities.
We conduct extensive experiments to assess the performance of
the proposed algorithm and compare it against a benchmark
auction-based approach. The results show that L-DCOP in-
creases the task completion rate and task completion frequency
by 1.7% and 10.1%, respectively, and reduces the task execution
time by 52.5% on average.

I. INTRODUCTION

Multi-robot systems provide robust, flexible, and efficient
solutions for tackling real-world applications, such as search
and rescue [1], patrol and monitoring [2], [3], and distributed
servicing tasks [4], [5]. Multi-robot task allocation (MRTA)
is a challenging problem that involves task assignment,
coalition formation, task scheduling, and routing. MRTA aims
to recruit the best single or multiple robots to accomplish the
tasks while optimizing the performance metrics. In variants
of the MRTA problem, limitations are imposed on both robots
and tasks, such as capability; capacity; and temporal, spatial,
hard, and soft constraints [6]. Constraints reduce the possible
solution set for the task allocation problem. The goal of this
work is to address the MRTA problem with time window and
ordering constraints on the tasks.

Tasks and robots are spatially distributed in the environ-
ment. In order to complete as many tasks as possible while
satisfying their time window and ordering constraints, each
robot must be provided with a schedule to complete the
maximum number of tasks in the minimum time. Moreover,
by forming teams or coalitions [7], [8], robots can achieve
such tasks more efficiently as a result of their collective
abilities.

There are various reasons for forming coalitions among
robots to complete the tasks [1]. First, the task workload
may be high, so a single robot may not be able to perform
the given task within the specified time window. Second,
coalition among robots leads to faster completion of tasks;
therefore, the robots will have enough time to attempt other
tasks in the environment. Third, the travel distance to the
task may be too long for a single robot to reach the task in

Elina Suslova and Pooyan Fazli are with the Department of Computer
Science, San Francisco State University, San Francisco, CA 94132, USA
{esuslova,pooyan}@sfsu.edu

time and complete it individually within the specified time
window. Hence, it is critical that the processes of coalition
formation are managed effectively among robots.

The distributed constraint optimization problem (DCOP)
is a powerful framework for modeling many real-world
problems involving collaborative multi-agent systems [9].
In DCOP, agents coordinate through local communication
to choose values in a distributed manner that optimize the
team’s global objective function. Despite the vast literature
on DCOP, we are unaware of any work that has extended
these models to handle tasks with time window and ordering
constraints. Thus, the contributions of the paper are as
follows:
• We present a layered iterative DCOP framework, called

L-DCOP, to address the multi-robot task assignment and
scheduling problem with time window and ordering
constraints.

• The proposed framework facilitates coalition formation
among robots to maximize the task completion rate and
frequency while minimizing the average task execution
time.

• We empirically evaluate the performance of L-DCOP
against a benchmark auction-based method and show
that our algorithm increases the task completion rate
and task completion frequency by 1.7% and 10.1%,
respectively, and reduces the task execution time by
52.5% on average.

II. BACKGROUND AND STATE OF THE ART

Centralized approaches [10] are able to find optimal so-
lutions for the MRTA problem. However, MRTA is an NP-
hard problem [11], and as the number of robots or tasks
increases, the problem becomes intractable. For this reason,
approximated or greedy methods [12] are used extensively
to solve the MRTA problem. Centralized methods suffer
from a single point of failure, poor scalability, and need
to generate a new global solution every time the attributes
of the environment, tasks, and robots change. On the other
hand, decentralized approaches are more robust to unreliable
communication and robot failures and can repair the solution
locally, however, they do not guarantee optimality. Below,
we will discuss the two common classes of decentralized
methods addressing the MRTA problem.

A. Market-based Approaches

Market- and auction-based approaches [13] are popular
methods for distributed task allocation in multi-robot sys-
tems. An auctioneer announces a task, and each robot uses

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 6909

its local information to compute a bid, which is an estimate
of the robot’s expected cost or utility of performing the task.
The auctioneer collects the bids and selects the winning robot
that will be responsible for executing the task. McIntire et
al. [14] introduced an iterated sequential single-item auction
algorithm to allocate tasks with ordering constraints. Nunes
et al. [15] extended the previous work to accommodate tasks
with both time window and ordering constraints. Despite the
vast literature on market-based approaches, we are unaware
of any work that has extended these methods to integrate
coalition formation to handle the task allocation problem
with time window and ordering constraints.

B. DCOP-based Approaches

DCOP algorithms rely on local message passing between
robots to find solutions but do not, to our knowledge,
currently handle tasks with time window and ordering con-
straints. Farinelli et al. [16] used the DCOP framework and
the max-sum algorithm to coordinate low-power embedded
devices in a decentralized manner. Ramchurn et al. [1] used
DCOP for task allocation in the search and rescue domain.
They introduced fast max-sum, which is a more efficient
and robust variation of the max-sum algorithm, to solve
the task allocation problem and facilitate coalition formation
among various types of agents: ambulance, fire brigade, and
police agents. As with a real-world disaster scenario, tasks
have deadlines and are spatially distributed, and agents must
synchronize their arrival time at victim locations. In addition,
previous work [17], [18] improved the DCOP model to reduce
the communication overhead among the agents in the rescue
domain.

III. PROBLEM STATEMENT

Let R = {r1, r2, ..., r|R|} be a finite set of robots and
K = {k1, k2, ..., k|K|} be a finite set of tasks with time win-
dow and ordering constraints. The time window constraint
specifies the time interval within which a task needs to be
performed. In particular, the time window determines the
earliest start time (EST) and the latest finish time (LFT) of
the task. For example, suppose a task must be performed
between 9:00 am and 2:00 pm. Each task may have one
or more predecessor and successor tasks. More precisely,
executing a task is possible only if all the predecessor tasks
are completed first. ki ≺ kj denotes that ki precedes kj , or
ki must be completed before any robot can start executing
kj . Each task has a location (L) associated with it, and a
robot must be present at the location to execute the task. The
initial locations of robots and tasks are chosen randomly on
the map. Moreover, each task has a duration (D) and a type
(τ). Each robot can perform only one task at a time, and
robots are heterogeneous in the sense that each robot can
execute only predefined types of tasks. Robots can perform
each task individually or form teams or coalitions. When
multiple robots Cki ⊆ R collaborate on one task ki, the
task duration Dki is divided by the number of robots, Dki

|Cki
| ,

and robots in the coalition contribute to the task equally.
Furthermore, robots in a coalition do not have to work on

a task simultaneously; they are allowed to perform the task
partially and then move to their next assigned task, leaving
the rest to other robots in the coalition.

In brief, there are tasks in the environment whose loca-
tions, durations, types, time windows, and orders are given
to the set of robots. Each robot’s duty is to go to its assigned
task’s location, perform the task completely or partially, and
then move to the next assigned task on the map. Tasks are
allocated and scheduled before the execution is started.

In order to assess the performance of the algorithms,
we define three evaluation metrics: 1) task completion rate
(TCR), 2) task completion frequency (TCF), and 3) average
task execution time (ATET). The evaluation metrics are
defined as below:

1) TCR = |K̂|
|K| × 100,

2) TCF = |K̂|
m ,

3) ATET = 1
|K|

|K|∑
i=1

ETki ,

where |K̂| is the number of completed tasks, |K| is the total
number of tasks, m or makespan is the latest finish time
of the last task, and ETki is the execution time of task
ki. We believe that TCF is a better metric than makespan
to assess the performance in the MRTA problem because
different solutions do not always complete an equal number
of tasks. One algorithm may schedule and complete more
tasks, resulting in a higher makespan, and another algorithm
may complete fewer tasks, resulting in a lower makespan.
The goal is to maximize the task completion rate (TCR) and
task completion frequency (TCF) and minimize the average
task execution time (ATET).

IV. PROPOSED APPROACH

We present L-DCOP, a layered iterative DCOP framework,
to form coalitions of robots to accomplish a set of tasks that
are constrained by time windows and have dependencies with
other tasks. The overall scheme of the approach is shown in
Figures 1–4.

A. Precedence Graph

Tasks K are given to the set of robots R through a
precedence graph. The precedence graph GP = (K, EP) is
a directed acyclic graph (DAG) with nodes K corresponding
to tasks and edges EP representing the ordering constraints
between the tasks. A directed edge eij ∈ EP indicates
that task ki should be completed before performing task
kj or in other words ki ≺ kj . Figure 1 shows a sample
precedence graph with eight tasks. The precedence graph is
divided into layers, such that there is no ordering constraint
between the tasks in each layer. Hence, each layer contains
a set of tasks that can be executed independently. Initially,
tasks in the first layer are allocated through iterations of the
DCOP formulation detailed in the following sections. After
assigning the tasks in the first layer, they are removed from

6910

Task 1
D=4

EST=1 LFT=10

Task 2
D=12

EST=0 LFT=8

Task 3
D=2

EST=4 LFT=13

Task 4
D=2

EST=3 LFT=13

Task 5
D=4

EST=4 LFT=12

Task 6
D=8

EST=3 LFT=15

Task 7
D=2

EST=7 LFT=17

Task 8
D=5

EST=2 LFT=18

Layer 1 Layer 2 Layer 3

Fig. 1: Precedence graph. Each box represents a task
with ID, earliest start time (EST), latest finish time (LFT),
and duration (D). Edges show the ordering constraints.

x1

x2

x3

x4

f1

f2

f3

x1

x2

x3

x4

f4

f5

f6

x1

x2

x3

x4

f7

f8

1st Layer Factor Graph 2nd Layer Factor Graph 3rd Layer Factor Graph

Fig. 2: Factor graphs. The variable nodes X represent the
robots R (shown by circles), and the function nodes F
represent the tasks K (shown by squares).

ST1 FT1
D = 2

[1,8] [3,10]

ST5 FT5
D = 2

[4,10] [6,12]

ST4 FT4
D = 2

[3,11] [5,13]

ST4 FT4
D = 2

[3,11] [5,13]

ST5 FT5
D = 2

[4,10] [6,12]

ST7 FT7
D = 2

[7,15] [9,17]

Layer 1 Layer 2 Layer 3

TT
 =

3

TT = 6

TT = 1

TT = 1

TT = 2

TT =
7

ST4 FT4

ST5 FT5ST4 FT4

ST5 FT5

FT1ST1 ST7 ST7

Fig. 3: The simple temporal network (STN) formation for robot 2. The STN contains the time points (ST: start time, FT:
finish time), duration (D), travel time (TT), and time window and ordering constraints of the four tasks assigned to robot 2.
Task 1 is executed, and then there is a choice of completing task 4 or task 5 first. Task 7 is done at the end of the schedule.

r1

r2

r3

r4

k1

k1

k3

k2

k2

Layer 1

Time

r1

r2

r3

r4

k1

k1

k3

k2

k2

Layers 1 and 2

k6

k5 k4

k5

k6

Time

r1

r2

r3

r4

0 5 10 15

k1

k1

k3

k2

k2

Layers 1, 2, and 3

k6

k5 k4

k5

k6

k7

k8

Time
0 5 10 150 5 10 15

Fig. 4: Final schedules for robot 1 to 4. R is the set of robots, and K is the set of tasks.

the precedence graph, and the tasks in the next layer are
allocated through DCOP. This process continues until all the
tasks in the precedence graph are assigned.

B. Distributed Constraint Optimization Problem

Distributed constraint optimization problem (DCOP) pro-
vides a powerful framework to model multi-robot collab-
oration and coordination problems [9]. DCOP generalizes
the distributed constraint satisfaction problem (DisCSP). In
DisCSP, the constraints are all hard, meaning that the solution

must satisfy all of them. However, real-world problems often
contain soft constraints too, which need to be satisfied as
much as possible. DCOP handles both types of constraints.

A distributed constraint optimization problem (DCOP) is
formally defined by a tuple 〈R,X ,D,F〉, where:

• R = {r1, . . . , r|R|} is a finite set of robots.
• X = {x1, . . . , x|X |} is a finite set of variables, where
|X | = |R| in our problem.

• D = {Dx1 , . . . ,Dx|X|} is a set of finite domains for the
variables in X , with Dxi

being the domain of variable

6911

xi.
• F = {f1, . . . , f|F|} is a finite set of cost functions,

where |F| = |K| in our problem. Each cost function
is defined over a set of variables: fi :

∏
x∈Xfi

Dx →
R+

0 ∪ {+∞}, where infeasible assignments have +∞
utility and Xfi ⊆ X .

To follow the DCOP formulation, each variable xi ∈ X is
assigned to a robot ri ∈ R, who has the sole responsibility
for the variable’s value. In our problem, each robot controls
exactly one variable. The domain Dxi

of each variable xi
consists of the tasks that the corresponding robot ri is
capable of doing. Each task kj is represented as a cost
function fj . The function fj shows the cost of accomplishing
the corresponding task with different numbers of robots
Ckj ⊆ R, from no robot to the coalition of all the robots
capable of doing task kj . Each robot knows only about
the functions in which it is involved. We compute the cost
function fj for task kj as follows:

fj = α× max
ri∈Ckj

(m(ri, kj))+

(1− α)×
∑
ri∈Ckj

tt(Lri , Lkj),
(1)

where m(ri, kj) is the latest finish time of the last task in
robot ri’s schedule if task kj were to be assigned to the
robot, tt(Lri , Lkj) is the time it takes for robot ri to travel
from its current location to task kj’s location, and α is a
hyperparameter set to 0.7 in our experiments. The objective
is to find a complete value assignment for the variables of
X (denoted by x) that minimizes the following global cost
function:

x∗ = argmin
x

|F|∑
j=1

fj(xfj), (2)

where xfj is the partial value assignment for the variables
of Xfi ⊆ X .

C. DCOP Representation: Factor Graph

There are different ways to represent a DCOP problem.
The factor graph [19] is a bipartite cyclic graph chosen to
represent the problem. In the factor graph Gϕ = (X+F , Eϕ),
the variable nodes X represent the robots (shown by circles
in Figure 2), and the function nodes F represent the tasks
(shown by squares in Figure 2). An undirected edge eij ∈ Eϕ
between a variable node xi and a function node fj indicates
that robot ri is capable of performing task kj . Each robot
has a local view of the factor graph that includes only its
immediate neighbors. Figure 2 shows three factor graphs for
the three layers of the precedence graph in Figure 1.

D. Solving DCOP: Max-Sum Algorithm

Solving DCOP exactly is NP-hard [20], and for this reason
approximate methods such as max-sum [16] are used to solve
the optimization problem. The max-sum algorithm is an
incomplete inference-based method that iteratively performs
message passing on the factor graph corresponding to the

DCOP. In each iteration, every variable node sends messages
to all the function nodes that it connects to (Equation 3), and
every function node sends messages to all the variable nodes
that it is connected to in the graph (Equation 4).
• The message from variable xi to function fj is

qi→j(xi) = βij +
∑

k∈Mi\j

sk→i(xi), (3)

where qi→j is the message sent from variable node xi
to function node fj , βij is a scalar chosen such that∑
xi
qi→j(xi) = 0, and Mi is the set of indices of all

the function nodes connected to variable node xi in
the factor graph.

• The message from function fj to variable xi is

sj→i(xi) = min
xfj
\i
[fj(xfj) +

∑
k∈Nj\i

qk→j(xk)], (4)

where sj→i is the message sent from function node
fj to variable node xi, Nj is the set of indices of all
the variable nodes connected to function node fj , and
xfj\i ≡ {xk | k ∈ Nj \ i}.

This process continues until the messages converge or a
fixed number of iterations is reached. Each robot ri then
selects the best task by aggregating the cost values received
from its neighboring robots through the adjacent function
nodes:

x∗i = argmin
xi

∑
j∈Mi

sj→i(xi). (5)

It may be the case that there are more tasks than robots in
a layer of the precedence graph, or a task is not assigned to
any robot. The max-sum algorithm is run on each layer for a
fixed number of iterations so that all the tasks in the layer are
processed. The algorithm processes and allocates the tasks
in the precedence graph layer by layer. Max-sum has a time
complexity of O(dl) [9], where d = maxDxi

∈D |Dxi | is the
size of the largest domain (i.e., the largest number of tasks
a robot may perform), and l = maxri∈R |Nri | is the largest
number of neighboring robots.

E. Managing Schedules: Simple Temporal Networks
To maintain a schedule for the tasks, each robot creates

a simple temporal network (STN) [21]. An STN is a graph
Gσ = (T , Eσ) in which nodes represent the start time (ST)
or finish time (FT) of the tasks, and edges show the duration
(D) of a task or travel time (TT) between two tasks. The
start time of a task ki should be scheduled in the interval
[ESTki , LFTki−

Dki

|Cki
|], and the finish time should be scheduled

in the interval [ESTki +
Dki

|Cki
| , LFTki].

Each robot ri uses its STN to calculate the cost of a task
kj if the task were to be assigned to the robot. The robot’s
corresponding variable node xi uses this value to initiate the
message with the function node fj :

α×m(ri, kj) + (1− α)× tt(Lri , Lkj). (6)

6912

Whenever a new task is assigned to a robot, the robot
checks every possible position in the corresponding layer of
the STN to insert the task. To find a solution and a valid
schedule for the STN, all the tasks should be assigned start-
time and finish-time points that fulfill the tasks’ time window
and ordering constraints and lead to the lowest makespan.
The Floyd-Warshall algorithm is used to solve the STN in
O(n3) polynomial time, where n is the number of time points
in the network. Figure 3 demonstrates the gradual formation
of the complete STN for robot 2 for the sample precedence
graph of Figure 1. Figure 4 shows the final schedule for each
robot after solving their associated STNs.

V. EXPERIMENTS AND RESULTS

A. Experimental Setup

We generate random precedence graphs using the method
presented by Melancon et al. [22]. The map used in the
experiments is a 100 × 100 grid in a 2D coordinate plane.
We set our scheduling time frame (TF) to be 5000 steps,
meaning that all the scheduled tasks must be completed
within a fixed number of steps. Tasks are generated with
a set of parameters, including location (L), time duration
(D), earliest start time (EST), latest finish time (LFT), and
type (τ). The time percentile (TP) detailed below determines
the EST of a task in the scheduling time frame. Tasks are
distributed randomly throughout the map. For each task, the
time duration is sampled uniformly from one of the three
different integer intervals. Short task durations are sampled
from SH = [100, 300], long task durations are sampled from
LO = [800, 1000], and other task durations are sampled from
the full interval FU = [100, 1000]. The EST and LFT of each
task are sampled uniformly from the following intervals:

EST = [0, TF × TP], (7)

LFT = [EST + D, TF]. (8)

We define three different time percentiles (TP) for the EST
of tasks. In the first case, we assign the EST of all tasks
to be scheduled within the initial 25% of the scheduling
time frame. This setting provides the most flexible time
window constraints, giving sufficient time for each task to
be performed and allowing robots to schedule and complete
more tasks. In the second case, we assign the EST of all
tasks to be within the initial 50% of the scheduling time
frame. This setting provides more restricted time window
constraints for the robots compared to the previous case. In
the third case, we assign the EST of all tasks to be within the
initial 75% of the scheduling time frame. Using this setting,
robots face the most restricted temporal constraints for the
tasks.

We define two types of tasks in the environment and
randomly assign a type to each task to identify whether
the task can be performed by a certain robot. Each robot
is randomly assigned to perform one of the two types of
tasks or both. We make sure that there is at least one
robot for each type of task. Our experiments also examine
another parameter, the number of robots involved in the

MRTA problem. For each experiment, we use 4, 6, or 8 robots
to complete the tasks. In addition, we consider a different
number of tasks, i.e., 10, 15, and 25 in the experiments.

In summary, we conducted the experiments with the
following settings:
• number of robots: 4, 6, and 8
• number of precedence graphs per setting: 25
• number of tasks per precedence graph: 10, 15, and 25
• scheduling time frame: 5000 steps
• EST percentile of the tasks: 25%, 50%, and 75%
• task duration: SH = [100, 300], LO = [800, 1000], and

FU = [100, 1000]

We compared L-DCOP with an auction-based approach
from the literature called prioritized iterated auction (PIA)
[14], [15]. PIA handles both time window and ordering
constraints imposed on the tasks, but can only be used in non-
coalition scenarios. Ours is the first work to extend coalition
formation to handle tasks with time window and ordering
constraints.

B. Results

We conducted extensive experiments to assess the per-
formance of the proposed algorithm. Figures 5, 6, and 7
show the results of the experiments under different settings,
averaged over 25 randomly generated precedence graphs.
The summary of the results are as follow:

1) Results for tasks with an EST within the first 25% of
the scheduling time frame: For 10 and 15 tasks with time
duration intervals of [100, 300], [100, 1000], and [800, 1000],
L-DCOP allocates more or an equal number of tasks com-
pared to PIA and outperforms PIA under task completion
frequency (TCF) and average task execution time (ATET) in
100% of the cases.

For 25 tasks, L-DCOP allocates more or an equal number of
tasks compared to PIA in 100% of the cases and outperforms
PIA under TCF in ≈89% (8 out of 9) and under ATET in 100%
of the cases.

2) Results for tasks with an EST within the first 50% of
the scheduling time frame: For 10, 15, and 25 tasks with a
task duration in the intervals of [100, 300], [100, 1000], and
[800, 1000], L-DCOP allocates more or an equal number of
tasks compared to PIA and outperforms PIA under TCF and
ATET in 100% of the cases.

3) Results for tasks with an EST within the first 75% of
the scheduling time frame: For 10 tasks with a task duration
in the intervals of [100, 300], [100, 1000], and [800, 1000], L-
DCOP schedules more or an equal number of tasks compared
to PIA in ≈78% (7 out of 9) of the cases and outperforms
PIA under TCF and ATET in 100% of the cases.

For 15 tasks, L-DCOP schedules more or an equal number
of tasks compared to PIA and outperforms PIA under TCF
and ATET in 100% of the cases.

For 25 tasks, L-DCOP schedules more or an equal number
of tasks compared to PIA in 100% of the cases and outper-
forms PIA under TCF in ≈89% (8 out of 9) and under ATET
in 100% of the cases.

6913

60

70

80

90

100

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

TC
R

%

of Robots (Duration)

L-DCOP PIA

(a) TCR (10 Tasks)

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

TC
F

of Robots (Duration)

L-DCOP PIA

(b) TCF (10 Tasks)

0
200
400
600
800

1000

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

AT
ET

of Robots (Duration)

L-DCOP PIA

(c) ATET (10 Tasks)

60

70

80

90

100

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

TC
R

%

of Robots (Duration)

L-DCOP PIA

(d) TCR (15 Tasks)

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

TC
F

of Robots (Duration)

L-DCOP PIA

(e) TCF (15 Tasks)

0
200
400
600
800

1000

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

AT
ET

of Robots (Duration)

L-DCOP PIA

(f) ATET (15 Tasks)

60

70

80

90

100

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

TC
R

%

of Robots (Duration)

L-DCOP PIA

(g) TCR (25 Tasks)

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

TC
F

of Robots (Duration)

L-DCOP PIA

(h) TCF (25 Tasks)

0
200
400
600
800

1000

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

AT
ET

of Robots (Duration)

L-DCOP PIA

(i) ATET (25 Tasks)

Fig. 5: Results for tasks with an EST within the first 25% of the scheduling time frame averaged over 25 randomly generated
precedence graphs. Task duration: SH = [100, 300], LO = [800, 1000], and FU = [100, 1000].

C. Discussion

Task durations affect the overall performance of the pro-
posed algorithm. Shorter task durations (e.g., [100, 300]) lead
to coalitions becoming less effective, in particular for smaller
numbers of robots (4 robots), because each robot performs
a relatively short subtask compared to the time it spends
traveling to the task. For coalition formation, it is more
favorable to have longer task durations, since the robots’
combined travel time is justified by the amount of time
each robot spends performing part of the task. Overall, the
formation of coalitions in L-DCOP significantly reduces the
average task execution time (ATET), and the experiments
show that L-DCOP outperforms PIA under ATET in 100%
of the cases.

The time duration interval [800, 1000] is challenging for
smaller robot teams (4 robots), in particular when the number
of tasks is high (25 tasks). Since the time duration per task
is high, it takes longer for each task to be completed by a
single robot, and not all tasks can be allocated due to time
window and ordering constraints. L-DCOP performs better
than PIA in this case, in particular with a larger number of
robots (6 and 8 robots), since a coalition of robots can finish

a task in a shorter time allowing more tasks to be scheduled
and completed in the future.

In addition, we examined the earliest start time (EST)
parameter in the experiments. If the EST of tasks is scheduled
early (i.e., within the initial 25% of the scheduling time
frame), the time window of the tasks will be longer and more
flexible on average. Hence, robots schedule and complete
more tasks in this setting. When the EST of tasks is assigned
to be in the later percentiles of the scheduling time frame
(50% and 75%), the time window will be shorter and
less flexible on average. Under these settings, it is more
challenging for robots to schedule and complete the tasks.

In summary, the results show that L-DCOP increases the
task completion rate and task completion frequency by 1.7%
and 10.1%, respectively, and reduces the task execution time
by 52.5% on average.

VI. CONCLUSION AND FUTURE WORK
We presented L-DCOP, the first DCOP formulation of the

multi-robot task allocation problem with time window and
ordering constraints. The proposed method forms efficient
coalitions among robots to maximize the task completion
rate and frequency while minimizing the task execution time.

6914

60

70

80

90

100

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

TC
R

%

of Robots (Duration)

L-DCOP PIA

(a) TCR (10 Tasks)

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

TC
F

of Robots (Duration)

L-DCOP PIA

(b) TCF (10 Tasks)

0
200
400
600
800

1000

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

AT
ET

of Robots (Duration)

L-DCOP PIA

(c) ATET (10 Tasks)

60

70

80

90

100

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

TC
R

%

of Robots (Duration)

L-DCOP PIA

(d) TCR (15 Tasks)

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

TC
F

of Robots (Duration)

L-DCOP PIA

(e) TCF (15 Tasks)

0
200
400
600
800

1000

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

AT
ET

of Robots (Duration)

L-DCOP PIA

(f) ATET (15 Tasks)

60

70

80

90

100

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

TC
R

%

of Robots (Duration)

L-DCOP PIA

(g) TCR (25 Tasks)

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

TC
F

of Robots (Duration)

L-DCOP PIA

(h) TCF (25 Tasks)

0
200
400
600
800

1000

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

AT
ET

of Robots (Duration)

L-DCOP PIA

(i) ATET (25 Tasks)

Fig. 6: Results for tasks with an EST within the first 50% of the scheduling time frame averaged over 25 randomly generated
precedence graphs. Task duration: SH = [100, 300], LO = [800, 1000], and FU = [100, 1000].

The method outperforms an auction-based approach under
different evaluation metrics. For future work, we plan to
extend this work in various directions:

• Scalability: Scalability is a major challenge in DCOPS
due to communication overhead among the robots. We
plan to work on improved variations of the max-sum
algorithm to reduce this overhead [23], [1].

• Heterogeneity: The algorithm should be able to handle
various forms of heterogeneity, such as different motion
or sensing capabilities of the robots.

• Dynamic environments: The method should be able to
adapt to changes in the environment without having to
be completely re-run. For example, robots or tasks can
be added to or removed from the environment. Dynamic
DCOPs [24] can potentially address this issue.

• Uncertainty: Handling uncertainties, such as changing
costs and task durations, is another challenge to address
in the MRTA problem.

• Robustness: The algorithm should be robust to failures
[25], such as robot action failure and unreliable com-
munication.

• Physical limitations: The method should be able to

handle energy- or battery- constrained robots.
• Boundedness: The algorithm should provide provable

bounds on the solution quality for the MRTA problem.

REFERENCES

[1] S. Ramchurn, A. Farinelli, K. Macarthur, M. Polukarov, and N. Jen-
nings, “Decentralised coordination in robocup rescue,” The Computer
Journal, vol. 53, no. 9, pp. 1447–1461, 2010.

[2] P. Fazli, A. Davoodi, and A. K. Mackworth, “Multi-robot repeated
area coverage,” Autonomous Robots, vol. 34, no. 4, p. 251–276, 2013.

[3] P. Fazli and A. K. Mackworth, “The effects of communication and
visual range on multi-robot repeated boundary coverage,” in IEEE
International Symposium on Safety, Security, and Rescue Robotics
(SSRR), 2012, pp. 1–8.

[4] J. Ji, P. Fazli, S. Liu, T. Pereira, D. Lu, J. Liu, M. Veloso, and X. Chen,
“Help me! sharing of instructions between remote and heterogeneous
robots,” in International Conference on Social Robotics (ICSR), 2016,
pp. 786–795.

[5] M. Veloso, J. Biswas, B. Coltin, and S. Rosenthal, “Cobots: Robust
symbiotic autonomous mobile service robots,” in International Joint
Conference on Artificial Intelligence (IJCAI), 2015, pp. 4423–4429.

[6] E. Nunes, M. Manner, H. Mitiche, and M. Gini, “A taxonomy for task
allocation problems with temporal and ordering constraints,” Robotics
and Autonomous Systems, vol. 90, pp. 55–70, 2017.

[7] J. A. Adams et al., “Coalition formation for task allocation: Theory
and algorithms,” Autonomous Agents and Multi-Agent Systems, vol. 22,
no. 2, pp. 225–248, 2011.

6915

60

70

80

90

100

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

TC
R

%

of Robots (Duration)

L-DCOP PIA

(a) TCR (10 Tasks)

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

TC
F

of Robots (Duration)

L-DCOP PIA

(b) TCF (10 Tasks)

0
200
400
600
800

1000

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

AT
ET

of Robots (Duration)

L-DCOP PIA

(c) ATET (10 Tasks)

60

70

80

90

100

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

TC
R

%

of Robots (Duration)

L-DCOP PIA

(d) TCR (15 Tasks)

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

TC
F

of Robots (Duration)

L-DCOP PIA

(e) TCF (15 Tasks)

0
200
400
600
800

1000

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

AT
ET

of Robots (Duration)

L-DCOP PIA

(f) ATET (15 Tasks)

60

70

80

90

100

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

TC
R

%

of Robots (Duration)

L-DCOP PIA

(g) TCR (25 Tasks)

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

TC
F

of Robots (Duration)

L-DCOP PIA

(h) TCF (25 Tasks)

0
200
400
600
800

1000

4 (SH)
6 (SH)

8 (SH)
4 (FU)

6 (FU)
8 (FU)

4 (LO)
6 (LO)

8 (LO)

AT
ET

of Robots (Duration)

L-DCOP PIA

(i) ATET (25 Tasks)

Fig. 7: Results for tasks with an EST within the first 75% of the scheduling time frame averaged over 25 randomly generated
precedence graphs. Task duration: SH = [100, 300], LO = [800, 1000], and FU = [100, 1000].

[8] L. E. Parker and F. Tang, “Building multirobot coalitions through
automated task solution synthesis,” Proceedings of the IEEE, vol. 94,
no. 7, pp. 1289–1305, 2006.

[9] F. Fioretto, E. Pontelli, and W. Yeoh, “Distributed constraint opti-
mization problems and applications: A survey,” Journal of Artificial
Intelligence Research, vol. 61, no. 1, pp. 623–698, 2018.

[10] S. D. Ramchurn, M. Polukarov, A. Farinelli, C. Truong, and N. R.
Jennings, “Coalition formation with spatial and temporal constraints,”
in International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 2010, pp. 1181–1188.

[11] B. P. Gerkey and M. J. Mataric, “A formal analysis and taxonomy of
task allocation in multi-robot systems,” The International Journal of
Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.

[12] M. C. Gombolay, R. Wilcox, and J. A. Shah, “Fast scheduling of multi-
robot teams with temporospatial constraints,” in Robotics: Science and
Systems (RSS), 2013, pp. 49–56.

[13] M. B. Dias, R. Zlot, N. Kalra, and A. Stentz, “Market-based multirobot
coordination: A survey and analysis,” Proceedings of the IEEE, vol. 94,
no. 7, pp. 1257–1270, 2006.

[14] M. McIntire, E. Nunes, and M. Gini, “Iterated multi-robot auctions for
precedence-constrained task scheduling,” in International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), 2016, pp.
1078–1086.

[15] E. Nunes, M. McIntire, and M. Gini, “Decentralized allocation of tasks
with temporal and precedence constraints to a team of robots,” in IEEE
International Conference on Simulation, Modeling, and Programming
for Autonomous Robots (SIMPAR), 2016, pp. 197–202.

[16] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings, “Decentralised
coordination of low-power embedded devices using the max-sum
algorithm,” in International Conference on Autonomous Agents and

Multiagent systems (AAMAS), 2008, pp. 639–646.
[17] M. Pujol-Gonzalez, J. Cerquides, A. Farinelli, P. Meseguer, and J. A.

Rodriguez-Aguilar, “Efficient inter-team task allocation in robocup
rescue,” in International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2015, pp. 413–421.

[18] P. Scerri, A. Farinelli, S. Okamoto, and M. Tambe, “Allocating tasks
in extreme teams,” in International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2005, pp. 727–734.

[19] F. R. Kschischang, B. J. Frey, and H. . Loeliger, “Factor graphs and the
sum-product algorithm,” IEEE Transactions on Information Theory,
vol. 47, no. 2, pp. 498–519, 2001.

[20] P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo, “Adopt: asyn-
chronous distributed constraint optimization with quality guarantees,”
Artificial Intelligence, vol. 161, no. 1, pp. 149–180, 2005.

[21] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,”
Artificial intelligence, vol. 49, no. 1-3, pp. 61–95, 1991.

[22] G. Melançon, I. Dutour, and M. Bousquet-Mélou, “Random generation
of directed acyclic graphs,” Electronic Notes in Discrete Mathematics,
vol. 10, pp. 202–207, 2001.

[23] Y. Kim and V. Lesser, “Improved max-sum algorithm for dcop with
n-ary constraints,” in International Conference on Autonomous Agents
and Multiagent Systems (AAMAS), 2013, pp. 191–198.

[24] K. D. Hoang, F. Fioretto, P. Hou, M. Yokoo, W. Yeoh, and R. Zivan,
“Proactive dynamic distributed constraint optimization,” in Interna-
tional Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 2016, p. 597–605.

[25] P. Fazli, A. Davoodi, P. Pasquier, and A. K. Mackworth, “Complete
and robust cooperative robot area coverage with limited range,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2010, pp. 5577–5582.

6916

