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Abstract— Accurately tracking dynamic targets relies on
robots accounting for uncertainties in their own states to share
information and maintain safety. The problem becomes even
more challenging when there is an unknown and time-varying
number of targets in the environment. In this paper we address
this problem by introducing four new distributed algorithms
that allow large teams of robots to: i) run the prediction
and ii) update steps of a distributed recursive Bayesian multi-
target tracker, iii) determine the set of local neighbors that
must exchange data, and iv) exchange data in a consistent
manner. All of these algorithms account for a bounded level of
localization uncertainty in the robots by leveraging our recent
introduction of the convex uncertainty Voronoi (CUV) diagram,
which extends the traditional Voronoi diagram to account
for localization uncertainty. The CUV diagram introduces a
tessellation over the environment, which we use in this work
both to distribute the multi-target tracker and to make control
decisions about where to search next. We examine the efficacy
of our method via a series of simulations and compare them to
our previous work which assumed perfect localization.

I. INTRODUCTION

Multiple target tracking (MTT) using teams of mobile
robots has been studied for decades due to its broad applica-
tions in surveillance, security, smart city, etc. One significant
challenge of MTT, compared with single-target tracking, is
data association, i.e., matching multiple measurements to tar-
get tracks. Many MTT techniques have been introduced over
the years, such as global nearest neighbor (GNN) [1], joint
probabilistic data association (JPDA) [2], multiple hypothesis
tracking (MHT) [3], and particle filters [4], each of which
solves the data association problem in a different way. In
this paper we use another method, the probability hypothesis
density (PHD) filter [5], which requires no explicit data
association. As a result, this is best suited to situations where
it is not required for each target to have a unique identity, e.g.,
a rescue robot only needs to know where all of the people
are located. We recently introduced a distributed version of
the PHD filter [6] but, like all of the above MTT methods,
it assumes perfect knowledge of the location of each sensor.
This is unrealistic for many practical applications.

Once we have an algorithm to effectively estimate the
locations of targets, the next problem is how to control
a team of robots to simultaneously search for new targets
and track existing ones. One common approach is to utilize
coverage control, which is the problem of a sensing network
moving to acquire a optimal total sensing capability over
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the entire area of interest. This has been addressed in a
centralized manner [7], however this does not scale to large
teams. Others have introduced distributed solutions such as
gradient-based schemes [8], [9] and Voronoi-based methods
[10]–[12]. The basic idea of Voronoi methods is to partition
a convex environment using the Voronoi tessellation and then
iteratively driving each sensor towards the weighted centroid
of its Voronoi cell, a process known as Lloyd’s algorithm.
This approach guarantees collision avoidance and coverage
for point sensors. We recently [6] used the PHD as the
weighting function in Lloyd’s algorithm to guide a team of
sensors towards areas of high target density detected by on
board sensors. However, all of the above-mentioned coverage
control strategies assume that the locations of the mobile
sensors are perfectly known.

Several recent works have introduced variants of Voronoi
diagram that account for uncertainty in the sensor locations,
including the guaranteed Voronoi diagram [13], uncertain
Voronoi diagram [14], [15], buffered Voronoi diagram [16],
[17], and (our work) the convex uncertainty Voronoi (CUV)
diagram [18]. In this paper we replace the standard Voronoi
diagram in our previous work [6] with the CUV diagram to
account for sensor localization uncertainty in a principled
manner. This requires us to develop four new distributed
algorithms to properly maintain the distributed PHD filter,
which, in the limit of no localization uncertainty, become
exactly our previous algorithms. We then directly compare
results from our new algorithm to those obtained from our
old approach, showing the benefits of properly accounting
for localization uncertainty.

II. PROBLEM FORMULATION

A team of R robots explores a convex open environment
E ⊂ R2. Each robot is equipped with sensors that can
localize itself with respect to a shared global reference frame
and detect tracking goals relative to a local reference frame.
Let qtr and q̂tr denote the true and estimated poses of robot
r at time t, respectively. The team seeks to track a set of
targets with states Xt = {xt1, . . . , xtn}, which encodes both
the number of targets (i.e., the cardinality of the set |Xt|)
and the state of each target (i.e., the elements of the set xti)
Note that the number of targets is not known by the robots.
At each time step, robot r receives a set of measurements Ztr,
the size of which varies over time due to false positive and
false negative detections and due to the motion of both targets
and robots causing targets to enter and leave the sensor field
of view (FoV). Note that for clarity of notation, we will drop
the superscript t when discussing a single time step.

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 6968



A. PHD filter

The sets X and Z from above contain a random number
of random elements, and thus are realization of random
finite sets (RFSs) [19]. The first order moment of an RFS is
known as the Probability Hypothesis Density (PHD) (which
we denote v(x)) and takes the form of a density function
over the state space of a single target or measurement. The
PHD filter recursively updates this target density function in
order to estimate the target set [5].

The PHD filter uses three models to describe the motion
of the targets: 1) The motion model, f(x | ξ), describes the
likelihood of an individual target transitioning from an initial
state ξ to a new state x. 2) The survival probability model,
ps(x), describes the likelihood that a target with state x will
continue to exist from one time step to the next. 3) The
birth PHD, b(x), encodes both the number and locations of
the new targets that may appear in the environment.

The PHD filter also uses three models to describe the
ability of robots to detect targets: 1) The detection model,
pd(x | q), gives the probability of a robot with state q
successfully detecting a target with state x. Note that the
probability of detection is identically zero for all x outside
the sensor FoV. 2) The measurement model, g(z | x, q),
gives the likelihood of a robot with state q receiving a
measurement z from a target with state x. 3) The false
positive (or clutter) PHD, c(z | q), describes both the number
and locations of the clutter measurements.

Using these target and sensor models, the PHD filter
prediction and update equations are:

v̄t(x) = b(x) +

∫
E

f(x | ξ)ps(ξ)vt−1(ξ) dξ (1)

vt(x) = (1− pd(x | q))v̄t(x) +
∑
z∈Zt

ψz,q(x)v̄t(x)

ηz(v̄t)
(2)

ηz(v) = c(z | q) +

∫
E

ψz,q(x)v(x) dx (3)

ψz,q(x) = g(z | x, q)pd(x | q), (4)

where ψz,q(x) is the probability of a sensor at q receiving
measurement z from a target with state x. In this work we
represent the PHD using a set of weighted particles [20].

B. Convex Uncertain Voronoi Diagram

We assume that each robot r only knows its estimated
position q̂r and the associated covariance matrix Σr. We
define the localization uncertainty region of robot r to be
a ball centered at q̂r with radius c λmax, where λmax is the
maximum eigenvalue of Σr and c is a positive constant. We
use c = 3 so that the region covers at least 99.73% of all
possible locations of r, though any other level set of the
covariance matrix could be used to guarantee a desired level
of confidence. Note that we use a ball because it leads to an
analytic expression for UV cell boundary, making it much
faster to compute. A CUV cell is then defined as follows:

Definition 1 (UV Cell). The uncertain Voronoi (UV) cell of
a robot r, Ur = {x | p(r = arg mink=1,...,n ‖x− qk‖) > 0},

is the collection of points in E such that r has a nonzero
probability to be the nearest sensor to that point.

Definition 2 (CUV Cell). The convex uncertainty Voronoi
(CUV) cell of robot r, Cr = Conv(Ur), is the convex hull
of its UV cell.

In [18], we introduced several important properties of
the CUV diagram and proposed a distributed algorithm to
construct it. A CUV cell contains all possible Voronoi cells
generated from all possible combinations of the positions of
robot r and each of its neighbors. Therefore, by assigning
each robot to be responsible for all information in its CUV
cell, the coverage of the whole environment is guaranteed
even with the localization uncertainty of robots.

In [18] we also introduced another concept:

Definition 3 (CAR). The collision avoidance region (CAR)
for robot r, Mr = {x ∈ Vr | ‖x−∂Vr‖ ≥ dr+dbuffer}, is the
collection of points inside of its Voronoi cell Vr (constructed
using the estimated positions of r and each CUV neighbor in
Nr) that are at least a distance dr + dbuffer away from any
boundary of Vr, where dr is the radius of r’s localization
uncertainty region and dbuffer is a small buffered distance.

In [18] we prove that each robot r may go anywhere within
its CAR and be guaranteed to avoid collisions with all other
robots. By having each robot move within its CAR, the entire
team is then guaranteed to search and track without collision
in the environment. Note that by restricting each robot to
move within a subset of its CUV, we may degrade the quality
of tracking. This is particularly true when a target lies in
between the CARs of two neighboring robots, as neither
robot is able to get closer to the target. However, we argue
that this degradation is significantly smaller than that which
would occur by losing robots from the team due to collisions.

C. Lloyd’s Algorithm and Voronoi Partition

Lloyd’s algorithm (locally) optimizes the functional

H(Q,W) =

n∑
r=1

∫
Wr

f
(
‖x− qr‖

)
φ(x)dx, (5)

with respect to Wr (the region that each robot r is responsi-
ble for) and Q (the set of robot positions). Here ‖ ·‖ denotes
the Euclidean distance and f(·) is a monotonically increasing
function, which may be used to quantify the cost of sensing
due to degradation of a sensor’s ability to measure events
with increasing distance.

As was derived in [10], minimizing H with respect to W
induces the Voronoi partition on the environment Vr = {x |
r = arg mink=1,...,n ‖x− qk‖}. In other words, the (convex)
set Vr is the set of all points that are the nearest neighbor of
r. Minimizing H with respect to Q leads each robot to the
weighted centroid of its Voronoi cell, that is

q∗r =

∫
Vr
xφ(x) dx∫

Vr
φ(x) dx

, (6)

where φ(x) is the importance weighting function.
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Like in our previous work [6], we set φ(x) = v(x) to track
targets by driving robots towards estimated target locations.
The control input for robot r is then

ur = −kprop(qr − q∗r ), (7)

where kprop > 0 is a positive gain. By following this
control law, robots asymptotically converge to the weighted
centroids of their Voronoi cells. Note that Lloyd’s algorithm
assumes a convex environment, though this restriction has
been lifted in recent works [21] to allow for exploration in
environments with obstacles. We use a modified version of
Lloyd’s algorithm [18, Algorithm 3] to guarantee collision
avoidance using the CUV.

III. DISTRIBUTED ESTIMATION WITH LOCALIZATION
UNCERTAINTY

The key to distributed tracking using a mobile sensing net-
work is to distribute the storage and maintenance of the PHD
across individual agents in a way that is guaranteed to match
the results of a centralized PHD filter. This distributed stor-
age system requires each robot to exchange information with
its neighbors in order to dynamically update its dominance
region and the PHD information in that region. We previously
[6] introduced three algorithms for distributed PHD particle
exchange, prediction and update steps respectively, using the
Voronoi cell as dominance region of each robot. When all
robots are able to perfectly localize themselves the domi-
nance regions form a perfect partition (i.e., full coverage of
the environment and no overlap between regions). While the
CUV diagram guarantees full coverage of the environment,
it does this by creating overlapping cells [18]. This greatly
increases the difficulty in maintaining the distributed PHD
representation. Thus, we propose four novel algorithms to
solve these problems. Note that we implement all of these
algorithms in discrete time with a constant time interval.

At each discrete time step, each robot must first run
the particle exchange (§III-B) algorithm to update its CUV
cell and ownership of particles. In order to recursively
estimate the target state, each robot should then run the
PHD prediction (§III-C) and update (§III-D) algorithms in
each discrete time step. All three of these algorithms use the
exchange set algorithm (§III-A) as a subroutine to determine
the set of neighbors each robot must exchange data with.

A. Exchange Set

Our approach to distributed estimation requires each robot
to exchange information with its neighbors in multiple
contexts. To capture this range in behavior we define the
exchange set of a robot as follows:

Definition 4 (Exchange Set). Let robot r be inside of some
convex region S. Its exchange set with respect to S is
Er(S) , {i = 1, . . . , n | S ∩ Ci 6= ∅}, where n is the
number of robots in the team.

An example of a convex region S is the CUV cell Cr, in
which case Er(S) is equivalent to the CUV neighbor set of r,

(a) Particle exchange (b) PHD prediction (c) PHD update

Fig. 1. Figures showing an example of the main robot (central square)
and its neighbors (blue square) exploring a rectangular environment. The
solid lines show the current CUV cell of each robot. (a) The dashed lines
show the new CUV cell of the main robot in the next time step. (b) The
dashed lines show the expanded CUV cell of the main robot, containing all
possible locations that a target starting in the CUV cell of the main robot
may end up. (c) The dashed lines show the sensor FoV of each robot.

Algorithm 1 Find Exchange Set
1: function FINDEXGSET(id, Er(S), S)
2: Find CUV neighbor set N (id)
3: for i ∈ N (id) do
4: Send S to i
5: i compares its CUV cell Ci with S
6: if Ci∩S6= ∅ ∧ i 6∈ Er(S) then
7: Er(S)← FINDEXGSET(i, {Er(S), i}, Ci)
8: end if
9: end for

10: return Er(S)
11: end function

as defined in [18, Definition 3]. Note that the CUV neighbor
set and the Voronoi neighbor set of a robot are identical.

In this paper, we assume that each robot is capable of
communicating with each member of its Voronoi neighbor
set for both Voronoi diagram initialization and maintenance
[22], [23]. As was noted in [24], this requirement cannot
be translated into a communication range constraint. Some
authors have recently proposed solutions to the case with
limited communication range by using multi-hop commu-
nication [25]–[27]. We also assume that communication is
perfect, meaning there is no signal loss or delay. While this
is not realistic, it is beyond the scope of this paper to address
the problem.

We introduce Algorithm 1, which enables each robot to
find its exchange set in a completely distributed manner. A
robot r first finds all of its CUV neighbors i ∈ N (r) and
compares their CUV cells individually with S. Neighbors
who meets the condition that Ci∩S 6= ∅ are added to Er(S).
Then each neighbor i recursively checks if any robots in its
neighborhood N (i) meet the condition until no more robots
do, skipping any robots that have already been added to the
exchange set).

Theorem 1. Algorithm 1 is guaranteed to find the full
exchange set Er(S) for robot r.

Proof: Assume that there is some robot i( 6= r) such that
Ci ∩ S 6= ∅ and i 6∈ Er(S). That is, Algorithm 1 terminates
before checking robot i. This means that i /∈ N (r) and that
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Algorithm 2 Particle Exchange

1: Share (`r, q̂tr) with robots in N (r)
2: Compute CUV cell, Ctr
3: Er(Ctr) = FINDEXGSET(r, {r}, Ctr)
4: Initialize T = Ctr \ Ct−1

r

5: for i ∈ Er(Ctr) do
6: r send T with i
7: i computes ∆Cr,i = Ct−1

i ∩ T
8: i sends polygon ∆Cr,i and particles in ∆Cr,i to r
9: r updates T ← T \∆Cr,i

10: end for

Algorithm 3 Distributed PHD Prediction Step for Robot r

1: Compute expanded CUV cell, C̃tr
2: Er(C̃tr) = FINDEXGSET(r, {r}, C̃tr)
3: Initialize expanded area T = C̃tr \ Ctr
4: for i ∈ Er(C̃tr) do
5: r sends T to i
6: i computes ∆C̃r,i = Ct−1

i ∩ T
7: i sends polygon ∆C̃r,i and particles in ∆C̃r,i to r
8: r updates T ← T \∆C̃r,i
9: end for

10: Send done signal to robots i ∈ Er(C̃tr)
11: Wait for all robots i ∈ Er(C̃) to be done receiving
12: Perform PHD prediction in C̃tr using (1)
13: Save particles only within Ctr
14: for i ∈ Er(C̃tr) do
15: i replace particles in ∆C̃r,i with those sent from r
16: end for

for all robots j ∈ N (i) we have Cj∩S = ∅ so that Ci∩S =
∅. This is a contradiction, therefore all robots i 6∈ Er(S) must
be in Er(S).

B. Particle Exchange

As each robot moves, so to do the boundaries of its
CUV cell. Since these CUV cells are used to distribute
the PHD storage, robots must exchange data every time a
cell changes shape. Algorithm 2 outlines this process of
transferring ownership of particles between robots. Each
robot r first computes its new CUV cell by finding its
neighbor set. This requires r to share the radius and center
of its localization uncertainty region, `r and q̂tr respectively,
with all its neighbors. Then r determines all other robots that
that it must exchange particle with by finding the exchange
set Er(Ctr), using Algorithm 1. Next, robot r must keep track
of all of the area from which it has yet to receive information
(T ) so as not to double count regions shared by more than 2
robots. The shaded area of Figure 1a shows the initial region
T . Finally, it exchanges data with all of the members of its
exchange set.

C. PHD Prediction

The PHD prediction step propagates the target distribution
forward in time. This process includes the appearance of

Algorithm 4 Distributed PHD Update Step for Robot r
1: if Fr ⊂ int(Ctr) then
2: Update PHD using Ztr with (2)
3: else
4: Er(Fr) = FINDEXGSET(r, {r}, Fr)
5: Initialize T = Fr \ Cr
6: for i ∈ Er(Fr) do
7: if i = r then
8: Compute ηrzr =

∫
Cr
ψzr,qr (x)v(x) dx

9: else
10: r sends Zr, qr, T to i
11: i computes P = Ci ∩ T
12: i computes ηizr =

∫
P
ψzr,qr (x)v(x) dx

13: i sends P, ηizr to r
14: r updates T ← T \ P
15: end if
16: end for
17: Compute ηzr = c(zr; q) +

∑
k∈EFr (r) η

k
zr

18: Update PHD using Zr with (2)
19: Send ηzr to all i ∈ Er(Fr) who run (2) using Zr
20: end if

new targets and the disappearance and movement of existing
targets. In this work, we assume that targets are homoge-
neous, i.e., sharing identical models. However, we could use
the semantic PHD (SPHD) filter [28], a modified version of
the PHD filter, to incorporate different motion models for
different type of targets. In order to account for the motion
of targets from one CUV cell to another we need to run the
prediction over an area that is larger than the CUV cell. The
expanded cell of robot r should include the starting locations
of all the possible targets may enter into Cr in the next time
step.

To do this, each robot r runs Algorithm 3. Robot r first
expands its CUV cell by inflating Ctr using the maximum
travel distance of a target over the time step to get C̃tr (line
1). Note that if C̃tr is non-convex then we take the convex
hull and that C̃tr = Ctr if targets are static. Then r finds its
exchange set Er(C̃tr), by running Algorithm 1, and receives
particles from robots in Er(C̃tr) to fill the expanded area
(lines 2–9). Note that the T functions as an indicator of
the finished area to avoid receiving duplicated particles from
areas where 3 or more CUV cells overlap. The robot then
runs the PHD prediction (1) only after all robots in Er(C̃tr)
have finished receiving particle (lines 10–13) in order to yield
an identical predicted PHD to that of a centralized PHD filter.
Finally, lines 14–16 are required to ensure that all robots
agree in overlapping regions.

D. PHD Update

The PHD update step uses the sensor measurements to
correct the prediction from the previous step. As was the
case in [6], the PHD update step can be classified into two
cases, as Algorithm 4 shows. The first case happens when
the field of view of sensor r, Fr, is fully inside its CUV cell.
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(a) Robot 1 (b) Robot 2 (c) Robot 3

Fig. 2. Demonstration of PHD update procedure for the case where r’s
sensor FoV exceeds the boundary of its CUV cell. The main robot is the
green square in the middle and its field of view, Fr , is shown by the green
circle.

In this case, we may simply apply PHD update equation (2)
using r’s measurement set (lines 1–2).

The other case is more complicated as robot r cannot
compute the normalization term (3) using only local informa-
tion. First, robot r must find its exchange set Er(Fr) (line
4) and initialize the un-updated region T (line 5), which
is shown as the gray area in Figure 2a. Next, robot r and
all of its neighbors in the exchange set compute the partial
normalization terms, ηizr , ∀i ∈ Er(Fr) (lines 6–16). This
process is illustrated in Figure 2, where the central robot
exchanges data with 1, then 2, and then 3. The gray area is
T and the hashed area is P , which is the area over which the
partial normalization term is computed at each step. Once r
has all of the partial normalization terms it can add them to
compute the full term, ηzr from (3) (line 17). It then sends
that term back to each neighbor and all robots can use the
full normalization term to run the PHD update equation (2)
within their CUV cell (lines 18–19).

As noted by Mahler [29], the final result of the multi-
sensor PHD filter update depends on the order in which
measurements are applied. We proposed one solution to this
in [6] by processing updates starting from the lowest ID
and keeping track of the current robot by using a Boolean
activation variable (indicating that that robot is the one
currently running its update). Each robot pauses until it
becomes the active agent in its neighbor set (i.e., all other
robots with lower IDs have already run the update step). The
same strategy could be used here.

IV. SIMULATION RESULTS

There are two main approaches for robots to get their
locations: relative to a global coordinate system or to their
starting location. The former is typically done using a global
positioning system (GPS) sensor when outdoors or a motion
capture system when indoors. The latter is typically done
using a combination of proprioceptive (e.g., IMU or wheel
encoders) and exteroceptive (e.g., camera or lidar) sensors.
Levinson et al. [30] fuse GPS, IMU, wheel odometry, and
LIDAR data to achieve an average localization error of
≤ 5 cm for vehicles in urban environment, compared with
≥ 1 m for GPS alone. Similarly, experiments in [31], which
use Monte Carlo localization, show that when using a sonar
and lidar a robot achieve localization error of≤ 25 cm, which

can be further decreased to ≤ 10 cm if cell size and number
of samples are properly selected.

Using the data from the references above, we choose to
conduct our MATLAB simulations in an open 60 × 60 m
2D space. Robots have localization error σr ranging from
0.1 m to 0.4 m in steps of 0.05 m, which is representative of
real-world scenarios. We also compare these results to the
case without localization error for reference. For each level
of localization error we test either 10, 15, 20 ground robots
tracking 10, 15, 20 targets, where the targets can either be all
static or all dynamic. This leads to a total of 9×3×3×2 =
162 scenarios tested, with ten trials for each combination.

The robots begin each trial uniformly distributed along the
edges of the space, ensuring that they begin a safe distance
from each other. They move with a maximum speed of 2 m/s.
Each robot r is equipped with an isotropic sensor with a 6 m
sensing range. The other parameters of the sensor model
are identical to those from our previous work [6]. Note that
the PHD filter can easily accommodate more realistic sensor
models [32]. The target models also match those from our
previous work [6]. The PHD is represented by a uniform
grid of particles. The grid resolution is 1 m, and initially the
weight of each particle is set to wj = 2.7−4, so that the total
expected number of targets is initially 1.

We use the first order Optimal SubPattern Assignment
(OSPA) metric [33], a commonly-used approach in MTT.
The error between two sets X,Y , where |X| = m ≤ |Y | = n
without loss of generality, is

d(X,Y ) =(
1

n
min
π∈Πn

(
m∑
i=1

dc(xi, yπ(i))
p + cp(n−m)

))1/p

, (8)

where c is a cutoff distance, dc(x, y) = min(c, ‖x − y‖),
and Πn is the set of all permutations of the set {1, 2, . . . , n}.
This gives the average error in matched targets, where OSPA
considers all possible assignments between elements x ∈ X
and y ∈ Y that are within distance c of each other. This
can be efficiently computed in polynomial time using the
Hungarian algorithm [34]. We use c = 10 m, p = 1, and
measure the error between the true and estimated target sets.
Note that a lower OSPA value indicates a more accurate
tracking of the target set.

A. Collision Avoidance

Before testing the target tracking performance, we first
conduct a series of tests to demonstrate the need for collision
avoidance. We ran trials with 10, 20, 50 and 100 robots with
localization errors ranging from 0.1 m to 0.4 m, in steps of
0.1 m. Each robot has a radius of 0.1 m, the same order of
magnitude as the localization uncertainty. The robots search
for 20 dynamic targets over the course of 1000 s. Note that
20 is only the initial number of targets and that the actual
number varies over time as new targets enter and existing
ones leave. The robots use our old method from [6], which
assumes perfect knowledge in the positions of the robots and
only guarantees collision avoidance in this case.
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σr (m)
Robot # 10 20 50 100

0.1 3 115 85 176
0.2 7 87 95 193
0.3 25 144 118 168
0.4 3 82 132 102

TABLE I
NUMBER OF COLLISIONS PER TRIAL

As Table I shows, even with a low density of robots (only
10 in the 60×60 m area) a number of collisions happen over
each trial, even with very modest uncertainty in the positions
of each robot. As the density of robots increases, so to do
the number of collisions. This agrees with the intuition that
a higher robot density will increase the chance of collisions.
The number of collisions also generally increases as the
amount of localization uncertainty increases. However, the
correlation between these two factors is less strong than it
was between density and number of collisions.

B. Static Targets

We first test the case of stationary targets to get a bench-
mark of performance. Note that in addition to remaining
stationary, there are no new-born targets and no existing
targets disappear. Figure 3 shows the average OSPA error
over the final 250 s of 300 s runs to get the steady-state
value. Overall, we see that for a fixed number of robots
and targets the OSPA error remains fairly consistent over
the range of localization uncertainty values tested, with a
slight increase as σr increases. This increase is due to two
main reasons. First, the total detection probability of the team
is no longer maximized as discussed in II-B, and decreases
as the localization uncertainty level increases. Second, the
increase in localization error results in an increase in the
distances between robots for collision avoidance, which
prevents the robots from tracking more accurately when
targets are closely spaced. These effects are more pronounced
both with smaller teams and when the robot-to-target ratio is
low. This is due to the decrease in redundancy in the system.
However, when the number of robots exceeds the number of
static targets, the OSPA error is close to 0 within uncertainty
range of 0.4 m, indicating that all targets end up with being
tracked accurately.

C. Dynamic Targets

In the case of moving targets, the number of targets
indicates the initial number. Targets are moving at the speed
of maximum 1 m/s. However, this value varies over time as
new targets enter the search area and others leave it. To
account for this increased complexity we run the trials for
a longer time (1000 s) and we measure the average OSPA
error over the final 900 s to obtain a measure of steady-state
behavior.

In Figures 3b, 3d, and 3f, we see that the OSPA error
increases roughly by 1–2 m as the uncertainty range increas-
ing from 0 m to 0.4 m. This is primarily due to an increase
in the number of untracked targets (each of which increases

(a) 10 Robots & Static Targets (b) 10 Robots & Moving Targets

(c) 15 Robots & Static Targets (d) 15 Robots & Moving Targets

(e) 20 Robots & Static Targets (f) 20 Robots & Moving Targets

Fig. 3. OSPA error of different teams of robots tracking different numbers
of targets under different localization uncertainty levels. Red, blue and black
boxplot represents target set of 10, 15 and 20 targets respectively.

the OSPA by a value of c/n), with a minor effect due to
an increase in the error of tracked targets. The number of
untracked targets is considerably higher in the dynamic target
case because new targets enter the area along the boundaries
and there are simply not enough robots to ensure that each
is detected early on. This is also why the OSPA error is
effectively constant regardless of the initial number of targets
for all team sizes and uncertainty values.

We see that as the team size increases, the error decreases,
just like in the static case. The primary reason for this is
that a greater percentage of the area is visible at any given
time, leading to a high fraction of new targets being detected
and tracked. We also see a more pronounced and consistent
increase in the OSPA as σ increases, compared to the static
case. This is due to the more diffuse estimate of target
locations within the PHD making it more difficult to initiate
tracking and the increased likelihood of losing tracking of a
target over time.

V. CONCLUSIONS

In this paper, we introduce four distributed algorithms
to enable a team of robots to safely search for and track
a time-varying number of targets. This offers a significant
improvement over our previous work that assumed that all
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robots had perfect knowledge of their own positions, which
is an unrealistic assumption in practice. These algorithms
enable the team of robots to exchange data and maintain
a distributed multi-target filter in a consistent and efficient
manner that yields an identical result to a centralized ap-
proach. To do this, we leverage our recent results where we
introduced the convex uncertainty Voronoi (CUV) diagram,
using this to distribute the PHD across the team and to ensure
collision avoidance.

We validate our approach using a series of simulated
experiments, where we take localization error values from
real-world scenarios. The results show that the tracking
accuracy decreases only slightly as the localization uncer-
tainty level increases, compared with the case where robots
have perfect knowledge of their locations. Meanwhile, our
proposed method guarantees collision avoidance, which can
be a significant issue when applying Voronoi-based control
algorithms in practice. Future work will aim to remove
the assumption of perfect communication between robots to
further increase the real-world applicability of our work.
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