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Abstract— Convolutional Neural Networks (CNNs) have
been successfully applied for relative camera pose estimation
from labeled image-pair data, without requiring any hand-
engineered features, camera intrinsic parameters or depth
information. The trained CNN can be utilized for performing
pose based visual servo control (PBVS). One of the ways to
improve the quality of visual servo output is to improve the
accuracy of the CNN for estimating the relative pose estimation.
With a given state-of-the-art CNN for relative pose regression,
how can we achieve an improved performance for visual servo
control? In this paper, we explore switching of CNNs to improve
the precision of visual servo control. The idea of switching a
CNN is due to the fact that the dataset for training a relative
camera pose regressor for visual servo control must contain
variations in relative pose ranging from a very small scale to
eventually a larger scale. We found that, training two different
instances of the CNN, one for large-scale-displacements (LSD)
and another for small-scale-displacements (SSD) and switching
them during the visual servo execution yields better results
than training a single CNN with the combined LSD+SSD
data. However, it causes extra storage overhead and switching
decision is taken by a manually set threshold which may not
be optimal for all the scenes. To eliminate these drawbacks, we
propose an efficient switching strategy based on model agnostic
meta learning (MAML) algorithm. In this, a single model is
trained to learn parameters which are simultaneously good
for multiple tasks, namely a binary classification for switching
decision, a 6DOF pose regression for LSD data and also a 6DOF
pose regression for SSD data. The proposed approach performs
far better than the naive approach, while storage and run-time
overheads are almost negligible.

I. INTRODUCTION

In visual servoing, motion of a robot is controlled by
integrating visual feedback into robot control [1]. Typically
an eye-in-hand configuration is used for visual feedback,
in which a camera is mounted on the end-effector of the
robot. The objective is to move the camera from an arbitrary
6DOF camera pose (position+orientation) to a fixed goal
pose indicated by the corresponding reference image. The
movement of the camera is achieved by iteratively min-
imizing the error between the current pose and the goal
pose. Classical visual servoing algorithms can be divided
into two categories - position-based visual servo (PBVS)
[2] and image-based visual servo (IBVS) [3]. In PBVS,
the error between estimated current camera pose and the
given reference pose is defined in the Euclidean space. The
bottleneck for PBVS is that it requires to know the camera
parameters and the 3D geometry of the scene. In IBVS, error
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in image space is minimized using tracking and matching of
handcrafted visual features such as points, line and moments.
IBVS also requires intrinsic camera calibration to transfer
the feature values from image frame to camera frame [1].
Choosing the right set of features is very crucial to the IBVS
method which is a tedious task.

An alternative approach called ‘direct visual servoing’
(DVS) [4], eliminates the need for extracting and tracking the
handcrafted features as it uses the image intensities directly
in the computation of the interaction matrix. However, it
suffers from reduced domain convergence.

Recently, CNN based methods have achieved remarkable
success in various robotics tasks such as object grasping [5],
navigation [6] and automated bin/shelf picking [7]. CNN
based methods have also been explored to solve the visual
servoing problem as well [8], [9], [10], [11]. Similar to
DVS approach, CNN based methods also do not require
handcrafted features, depth information, and intrinsic camera
calibration. Moreover, CNN based methods have shown
greater domain convergence than DVS [8].

We undertake the problem of eye-in-hand pose based
visual servo control where CNN is trained to estimate relative
camera pose. The dataset consists of image-pairs and the
corresponding relative camera pose between them as ground
truth labels. Better the pose estimation by CNN, better is the
visual servo control. How can best visual servo control be
performed with a given state-of-the-art CNN for relative pose
regression? In this paper, we introduce a novel idea of CNN
switching to achieve better precision for visual servo control.
Our approach is generic and can be applied to problems of
similar kind. The idea of CNN switching is based on the
observation that the dataset to train the relative camera pose
regressor for visual servo control, must contain variations in
relative pose, ranging from a smaller scale to a larger scale. It
is found that adding an extra amount of data generated with a
finer sampling (small scale camera displacements) improves
the precision of visual servo control at finer scale [8]. With
this inspiration, we generate two different datasets, namely
large scale displacements (LSD) dataset, which is generated
by sampling camera displacements in a large enough range
covering the designated setup area and the other is small
scale displacements (SSD) dataset, which is generated by
sampling camera displacements in a very small range (refer
to Tab. I).

What is the optimal way to train our model(s) on such
combination of data so that it achieves the best performance
for visual servo task? In this paper, we present a novel and
unique way to train our CNN model on this combination
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of data which outperforms naive vanilla method in terms of
accuracy of visual servo control and also improves over other
comparable methods with fewer parameters. The training
method uses model-agnostic-meta-learning (MAML [12])
algorithm and exploits the idea of CNN switching to achieve
finer precision visual servo output.

II. RELATED WORKS

Recently, there have been several works on visual servoing
based on CNNs. These works can be categorized in two ways
based on how the visual servoing problem is formulated.
In one way, the task for the robot is to position itself in
the 6DOF cartesian space such that the current camera view
matches best with the given reference image [8], [9]. In the
other way, the task for the robot is simply to reach near a
target object, which is indicated by an image of the object
[10], [11]; the final orientation of the end-effector can be
arbitrary and there is no need for it to match with reference
image exactly. In this paper, we formulate the visual servoing
problem similar to the former way.

In [8], two different strategies are presented for visual
servoing. In their basic servoing strategy, for each reference
image, 10K training samples are randomly sampled around
reference image to train CNN. Though visual servo control is
able to converge during run time, collecting 10K samples and
training a CNN for each new reference image, is impractical.
In their second strategy, reference image is not assumed to be
fixed. Pretrained VGG16 based CNN is trained with 100K
training samples. However, it only achieves a broad range
convergence. To get finer convergence, it was combined with
DVS (direct visual servoing) method. This means significant
improvements are needed in this strategy to work as a
standalone method for visual servoing.

In [10], the goal is to direct the manipulator arm closer
to the target object as indicated by the reference image.
Recurrent deep network with supervised learning and re-
inforcement learning is used to learn the arm motion. In
[11], visual servoing is used for navigation task in an indoor
environment.

In a recent work [13] for a robotic reaching task in an
eye-to-hand setup, a hot-swap strategy is used for swapping
the global and local estimation network. The strategy differs
from our switching strategy at the implementation level. In
their strategy, the local network is trained by zoomed-in
images of the dataset used for global network to provide the
focused estimation. In our case, with an eye-in-hand setup,
focused estimation at the finer level is achieved by providing
only the small-scale displacements data to the local network.
Also, other than the naive threshold based CNN switching
approach, we propose an efficient switching strategy based
on model-agnostic-meta-learning [12] algorithm. The meta
learning based switching performs far better than the naive
approach.

In an another work [14], a task switching strategy is
discussed to improve automatic fruit harvesting by a robot.
For their first task when the robotic arm is still far from the
fruits, a low false positive rate is preferred over the fruit

detection accuracy. As soon as the arm reaches near the
targeted fruit, the second task objective is activated where
the fruit detection accuracy is preferred over having a low
false positive rate.

III. CNN SWITCHING

To learn relative camera pose estimation for visual servo-
ing application, the training dataset must contain variations in
relative translation and relative rotation ranging from a very
small scale to a larger scale. First, we generate a training
dataset named LSD (large scale displacements) as described
in Sec. IV-B. We found that, though, the network trained
on this dataset performs good in general for visual servo
control, it does not converge to a finer level precision. To
achieve finer scale convergence, we generate another training
dataset namely SSD(small scale displacements) that is having
much smaller relative pose ranges compare to LSD (refer to
Tab. I). This time we train our network on the combined
data LSD+SSD and found that the precision of visual servo
control improves compared to CNN trained only on LSD
data.

We propose CNN switching approach to train CNN
model(s) which outperforms the above naive methods. Three
different variants of this approach are presented in the next
subsections.

A. Vanilla Switching

We found that if we train two separate instances of the
CNN with LSD and SSD datasets respectively and at the time
of execution of visual servo experiment, if the two instances
are switched in their respective domains based on some error
threshold then the final visual servo output is much finer than
what is achieved with CNN trained with combine LSD+SSD
data.

However, this scheme has two major drawbacks. First,
it requires to train and store two instances of the CNN.
Secondly, the optimal switching decision is not always trivial.
At run time, what we have access to is the reference image
of the scene and the current camera view. The switching
decision is taken based on the error calculated from these
two images. Due to variations in illumination, scene colors
etc. any error formulation which is directly based on intensity
values or on features which are not invariant to these changes,
the error threshold for optimal switching would vary from
scene to scene. To rectify these drawbacks, we present two
other variants of switching method, discussed in the next
subsections.

B. Implicit Switching

In this method, switching is not performed explicitly but
learn it implicitly during the training through an auxiliary
classification task. For this, a classification head is added to
the feature-encoder along with the existing pose regressor
head, as shown in Fig. 1a. The classification head consists
of a single FC layer with just two outputs (i.e. to learn
a binary classifier). CNN is trained end-to-end with com-
bined LSD+SSD dataset. While the regressor head learns
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Fig. 1: Figure (a) shows three different variants of our pose regression CNN used by different approaches discussed in Sec.
III. Figure (b) depicts the different components of our CNN. (Best viewed in color)

the relative camera pose regression task, the classification
head learns to classify the data between LSD and SSD
domains. This way the network is forced to learn features
which are discriminative between small scale and large scale
camera displacements. Intuitively, it helps network to have
its focus on small scale camera displacements which are
observed during finer lever convergence of visual servo
control. This simple yet powerful approach outperforms the
naive method of training the vanilla CNN with combined
SSD+LSD dataset with a greater margin.

C. Learning switching explicitly through model agnostic
meta learning approach

For switching to be effective, we need to extract image
features such that the error formulation based on these
features is invariant to changes such as illumination, scene
colors, textures etc. CNN based methods are known to learn
features automatically from the data, that are invariant to
above changes to a good extent. We learn switching with a
binary classifier based on CNN. For explicit switching, we
learn three different tasks. One is switching which is modeled
as a binary classification task to be trained over combined
SSD+LSD data and the other two are relative camera pose
regression tasks to be trained over LSD and SSD datasets,
respectively. We chose a meta learning approach to train
our CNN, simultaneously with all three tasks. In our CNN
architecture, we add total three heads to the feature-encoder
part, one for each task as illustrated in Fig. 1a.

Meta learning a.k.a. “learning to learn” aims at training a
model on a variety of learning tasks such that it is easily
adaptable to a new task. Model agnostic meta learning
(MAML) is one such approach in which the weight param-
eters are learned in such a way that they are simultaneously
as good as possible for all the given tasks. Such learned
parameters are easily adaptable for any particular task with
fewer number of training samples.

Formally, our model is represented by function fθ with
parameters θ. We want to optimize our model for three
different tasks {Ti}i=1,2,3. In each iteration of MAML,
first for each task Ti, with its K training examples (K-shot
learning), the parameters θ are optimized to θ′i as follows:

θ′i = θ − α∇θLTi(fθ) (1)

LTi is the loss function defined for task Ti and α is the
step size hyperparameter. Model parameters θ are updated
by optimizing the performance of each fθ′i obtained in Eq.
(1) with the following meta-objective :-

min
θ

∑
i=1,2,3

LTi(fθ′i) =
∑

i=1,2,3

LTi(fθ−α∇θLTi (fθ)) (2)

The aim of the meta-objective is to optimize parameters θ,
such that the updated parameters are good for all the tasks.
The meta update for the parameters θ is obtained as follows
using simple gradient descent rule :

θ ←− θ − β∇θ
∑

i=1,2,3

LTi(fθ′i) exp(−Ŝi) + Ŝi (3)

Where β is the meta step size. Term exp(−Ŝi) is used to
auto balance the losses for all the three tasks, similar to loss
function described by Eq. (6). The balancing weights (i.e.
exp(−Ŝi)) are auto learnt during the training. The losses for
different tasks have different ranges and it is important to
balance them to get a stable training.

The training examples used in meta update are different
than that used for updates of Eq. (1). We divide the training
set of each task into two equal parts, one is used for updates
of Eq. (1) and other is used for meta-objective updates of
Eq. (3).

First, CNN is trained with MAML algorithm described
above. Then, each head is finetuned separately, while keeping
other parts of the model parameters frozen. This simple yet
elegant technique enables to learn all three tasks with just a
single model. In Sec. V-D, we show by empirical results that
the MAML training approach gives superior performance as
compared to that of all baseline approaches.

IV. TASK SET-UP AND MODEL TRAINING

A. Visual servo control law

An eye-in-hand configuration is assumed where the cam-
era is attached to the end effector of the manipulator arm. The
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goal is to position the camera to a target 6DOF pose in the
cartesian space such that the current camera view matches
the best with the given reference view. To achieve this our
visual servo system predicts the velocity (linear and angular
in 3D) of the camera in its local frame, iteratively minimizing
the error between the current camera image and the reference
image. The estimation is done using pose based visual servo
control [1] given as follows:-{

vc = −λRT c∗tc

ωc = −λ θu
(4)

Translation vector c
∗
tc gives the coordinates of the origin

of the current camera frame (c) expressed relative to the
desired camera frame (c∗). Matrix R gives the orientation
of the current camera frame relative to the desired camera
frame and θu is the angle parameterization for the rotation
matirx R. Our trained CNN estimates the relative camera
pose (c

∗
tc, θu) required by the control law.

(a) Simulation (b) Real

Fig. 2: Dataset environments

B. Environment set-up and training dataset generation

Training CNN requires enormous amount of data which is
difficult to get from real robots. The data generation process
for real robots is often manual and time-consuming due to
safety concerns and hardware limitations. In [5], to generate
50k data samples for a single task, it took 700 robot hours. To
overcome this difficulty, we create a simulated environment
with a target object (i.e. brick) and some distractor objects
(i.e. mug, bottle, dumbbell, etc.) as shown in Fig. 2a.

In simulation, we assume free-flying camera model similar
to [9]. Initially, camera is put right above the target object
(i.e. brick) to a particular height so that scene is visible
nicely. Camera is set to move with random translation and
rotation within the predefined limits. For each data sample
entire simulation rendering is randomized as mentioned in
[15]. Images at former and later pose of the camera are saved
along with the relative pose label. Thus, automatically a large
number of data samples are collected effortlessly.

For real world experiments, we finetune the CNN trained
in the simulated environment with few real real world sam-
ples (i.e. 100). The real-world task employs an UR10 robotic
arm (6DOF) with an eye-in-hand camera setup. Real data
samples were collected by manually controlling the robotic
arm.

As discussed in Sec. I, we generate two different datasets,
namely large-scale-displacements (LSD) dataset and small-
scale-displacements (SSD) dataset. Camera offset limits for
LSD and SSD datasets are given in Tab. I. The data sampling
is done using a equal combination of uniform and gaussian
sampling. For each data sampled from gaussian distribution,
mean is taken to be zero and standard deviation is chosen
randomly between zero and one-third of the upper limit.

TABLE I: Camera offset limits for data generation. Transla-
tions are given in meter and rotations are given in radian.

LSD SSD
X,Y translation [−0.30, 0.30] [−0.05, 0.05]

Z translation [−0.20, 0.20] [−0.04, 0.04]
X,Y rotation [−0.15, 0.15] [−0.05, 0.05]

Z rotation [−0.40, 0.40] [−0.10, 0.10]

C. Network Architecture
In Fig. 1b, different components of our CNN architecture

are depicted which are used for building three different
variants as illustrated in Fig. 1a. Different switching methods
described in Sec. III uses one of these variants. The most
significant component of our CNN architecture is the feature-
encoder part. On the top of the feature-encoder, are first
five layers of ResNet18 [16], pretrained on ImageNet [17]
classification task. Though, originally these layers are trained
for a classification task, they are used for relative pose
regression task. The top initial layers of any trained CNN
are known to produce generic features that can be used
for learning a new task [8]. Both, reference image and
current image (each of size 224x224) are passed through
these top five layers, separately. Subsequently, the output
features at the fifth layer are concatenated depth-wise and
passed through three more convolutional (conv.) layers to
learn features specific to the task. Each of these three conv.
layers uses stride 1 and is followed by a ‘Batchnorm’, a
‘Relu’ and a ‘Pooling’ layer, which are not shown in the
figure to avoid clutter. At this point, the resultant feature map
of size 1024x7x7 is passed through an ‘AdaptiveAvgPool’
layer to produce a feature vector of size 1x1024.

D. Basic training configurations and loss functions
For all the variants used in this paper, a common training

configuration is followed which is found to be effective.
‘Adam’ optimizer is used with learning rate 10−4 and weight
decay 4 × 10−5 for 50 epoch. The best network from
this training is further trained with a slower learning rate
of 10−5 for another 20 epoch which results in improved
accuracy. Input images are normalized using per channel
mean and variance calculated over the entire training dataset.
The use of batch-normalization in intermediate layers of
CNN proved useful in terms of increased accuracy. For the
training, 2 NVIDIA GTX 1080 Ti GPUs is used. The loss
function is calculated in terms of euclidean distances between
predicted and ground truth vectors, for translation(meters)
and rotation(radians) respectively as follow, similar to [18] -

loss(I, I∗) = ‖t̂− t‖2 + β‖θ̂u − θu‖2 (5)
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Here β is used to balance the translation and rotational errors.
For the training in our case, β = 0.2 turns out to be optimal.

Alternatively, following loss function, proposed in [19],
is used to auto learn the balance weights for different loss
terms during the training:

L =
∑
i

Li exp(−Ŝi) + Ŝi (6)

The term exp(−Ŝi) represents the homoscedastic uncertainty
corresponding to loss term Li. Additive term Ŝi acts as self
regularizer. Balance weights (i.e. exp(−Ŝi)) are auto learned
in contrast to the loss function given in Eq. (5), avoiding the
difficult task of hyper-parameter tuning. However, the final
performance of CNN is found to be almost equal in both the
cases when either of the loss function is used.

V. EVALUATIONS AND DISCUSSIONS

We conduct both, simulated evaluations and real-world
evaluations. Simulated evaluations are performed, using Mu-
joco [20], with free-flying camera model. Real-world eval-
uations are carried out using UR10 arm manipulator, with
a calibrated eye-in-hand camera. For all the experiments,
scenes are static and consist of 3D objects placed on a table.

A. Real world experiment set-up

For the real world experiments, the task environment is
setup with objects similar to those used for simulations (Fig.
2). Employing domain randomization [15] in our simulated
dataset, our trained CNN models easily get transferred to real
world with simple transfer learning. Total list of attributes for
domain randomization and the randomization process is same
as given in [15]. We are able to achieve good performance
in real world with finetuning of only FC layers with just a
few real world samples (i.e. 100). Domain randomization
helps in the sim2real transfer of the CNN learning. To
verify that we do an ablation study. Our full method is
compared with three variants. Each variant is trained on
a dataset generated by randomizing all the attributes but
one (the one mentioned in the first column of Tab. III)
and then finetuned with real world data similar to our full
method. Average translation and rotation errors for different
variants is presented in Tab. III, calculated over 10 real world
experiments. Camera offset limits for the experiments are as

given in Tab. II. It is evident from the results that every
attribute contributed in the sim2real transfer of the CNN
learning, texture randomization being the most significant.
Advanced sim2real transfer learning techniques have been
proposed recently [21], [22], [23], however further discussion
over them is out of the scope for the current study.

TABLE II: Camera offset limits for quantitative experiments
done in Sec. V. Translations are given in meter and rotations
are given in radian.

Simulation Real-world
proximal distal

X,Y translation [−0.15, 0.15] [−0.30, 0.30] [−0.20, 0.20]
Z translation [−0.10, 0.10] [−0.20, 0.20] [−0.15, 0.15]
X,Y rotation [−0.07, 0.07] [−0.15, 0.15] [−0.08, 0.08]

Z rotation [−0.15, 0.15] [−0.40, 0.40] [−0.15, 0.15]

B. Network design comparisons

Here we provide empirical results to assess performance
of our CNN compared with previous related works, [8] and
[24]. These models differ with ours in two aspects, firstly in
the backbone network used in feature encoder and secondly
in the design choice for feature encoder. Fig. 3 depicts three
design choices for feature encoder. [8] uses VGG16 [25] as
the backbone and its feature encoder design is as given in
Fig. 3(a), named ‘single’. [24] uses GoogleNet [26] as the
backbone and a siamese style feature encoder (Fig. 3(b)). Our
feature encoder is depicted in Fig. 1. Its design corresponds
to 3(c). With three design choices {single, siamese, ours}
and three backbones {vgg, googlenet, ours}, 8 different
variants are trained on our LSD dataset. Tab. IV presents
the regression loss obtained by evaluating each variant on
our testset. In the table, each variant is named depending
upon its design choice and backbone. For example, ‘siamese-
vgg’ model uses vgg as the backbone and design choice is
‘siamese’.

From the results in the table, it is observed that ours design
choice of feature encoder has achieved better accuracy com-
pare to ‘single’ and ‘siamese’. Our model with vgg backbone
(i.e. ours-vgg) has achieved slightly lower regression loss
than our proposed model (i.e. ours-ours). However ours-vgg
has almost 13 times more number of weight parameters,
that is 136.4 million (M) compare to 10.5 M parameters in
ours-ours model. Overall, our proposed model (i.e. ours-ours)
has achieved relatively better regression loss (i.e. 0.000665)
with lesser number of parameters. Last column of the table
shows the regression loss achieved by our ours-ours method
(i.e. 0.000782) when it was trained on auto-balancing loss
function described in Eq. (6).

C. Switching benefits over naive approaches (with real-
world experiments)

In this subsection, we discuss the benefits of CNN
switching in general over the naive approaches with real
world experiments. In the subsequent subsection, specific
switching algorithms proposed in the paper are evaluated. To
discuss results for this subsection, we use certain shorthand
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(a) Start Error Image (b) ‘LSD only’ (c) ‘Comb’ (d) ‘Switch(LSD/SSD)’

(e) Photometric Error (f) Velocity Norm

Fig. 4: Real-world experiment with UR10 arm to compare the performance of our switching scheme. The experiment runs for 70 steps.
(a) Start error Image (b) Final error image by ‘LSD only’ method (c) Final error image by ‘Comb’ method (d) Final error image by our
‘Switch’ method (e) Photometric error plot (f) Camera velocity norm plot. (Best viewed in color)

TABLE III: Ablation study on domain randomization: aver-
age results over 10 real world experiments (Sec. V-A)

Model Variant Pos. error (meter) Rot. error (radian)
Full method 0.011± 0.006 0.051± 0.030
No Texture 0.044± 0.034 0.484± 0.073
No distractor 0.035± 0.028 0.118± 0.059
No light rand. 0.018± 0.014 0.107± 0.083

TABLE IV: Comparison: regression loss over test data for
different CNN architectures (RL: Regression Loss)

CNN Architecture RLs #Weight parameters
single-vgg [8] 0.000634 134.3 M
siamese-vgg 0.000906 134.5 M
ours-vgg 0.000606 136.4 M
siamese-googlenet [24] 0.003394 7.29 M
ours-googlenet 0.002242 7.12 M
single-ours 0.001247 10.4 M
siamese-ours 0.001435 14.4 M
ours-ours (Proposed) 0.000665 10.5 M
ours-ours (Loss auto balance) 0.000782 10.5 M

names for different models as follow:
Switch :- This method corresponds to the ‘Vanilla-switch’
method discussed in Sec. III-A. Two different instances of
CNN are trained, respectively with LSD and SSD dataset.
Switching decision is taken based on an error threshold
defined over MSE error.
Switch (LSD part):- Part of the experiment carried out

with Switch method, where CNN trained with LSD dataset
is activated
Switch (SSD part):- Part of the experiment carried out
with Switch method, where CNN trained with SSD dataset
is activated
LSD only:- Method uses only one CNN, trained with LSD
dataset
Comb:- Method uses only one CNN, trained with combine
SSD+LSD dataset

In Fig. 4, results of a real-world experiment are presented
to compare the precision of visual servo output for the above-
mentioned methods. In the Figure, start error image, final
error images for different methods, photometric error plots,
and camera velocity norm plots are given. Further, for quan-
titative assessment, average position and average rotation
errors are plotted in Fig. 5, for 10 real-world experiments.
Camera offsets are chosen between the limits given in Tab.
II.

It is clear, from the results that ‘Comb’ method achieves
better precision output than ‘LSD only’ method, (See Figs.
4b, 4c and 4e). This is intuitive as ‘Comb’ method was
shown small-scale displacement (SSD) data during its CNN
training while ‘LSD only’ was not shown. However, ‘Switch’
method achieves even better precision than ‘Comb’ method
(See Figs. 4c, 4d, 4e and 5), which indicates the effectiveness
of switching scheme in improving precision of visual servo
output. The intuition behind the results is that, when CNN is
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Fig. 5: Figure plots the average results obtained over 10 real-
world experiments to compare the Switch and Comb methods
(refer to Sec. V-C). T(m):average camera position error in
meter; R(r): average camera rotation error in radian

trained with combined data, the estimation of camera pose is
kind of averaged out while learning the large scale and short
scale camera pose variations simultaneously. On the other
side, when CNN instances are trained separately for large
scale and short scale datasets, the focused estimation in the
respective domains helps achieve better accuracy.

One question, which may arise whether the switching
scheme incurs artefacts in visual servo control either in image
space or in Cartesian space? In order to answer this, the
consider photometric error plot and the camera velocity-
norm plot (Figs. 4e and 4f, respectively). For this particular
experiment, switching from LSD to SSD takes place at step
‘9’. It can be observed from the figures that control remains
smooth both in image space (Fig. 4e) and Cartesian space
(Fig. 4f).

D. Evaluations of proposed switching schemes (with simu-
lated experiments)

In this section, some additional shorthand names are
used, which are defined as follows:
Vanilla-switch: Two different instances of CNN are trained,
respectively for LSD and SSD datasets. Switching decision
is based on MSE error threshold (Sec. III-A).
CNN-switch: Three different instances of the CNN are
trained, one binary classifier for switching purpose and other
two for the regression tasks, for LSD and SSD datasets
respectively
Implicit-switch: A single CNN is trained with combined
LSD and SSD data along with an auxiliary classification
loss (Sec. III-B).
Meta-switch: A single CNN is trained for three different
tasks with model agnostic meta learning approach (MAML)
(Sec. III-C).

We evaluate different variants of CNN switching only with
simulated experiments. Simulations are a convenient way to
perform large number of batch experiments with automated

scripts without the fear of safety concerns and hardware
failures.

For the experiments in this section, two different scenarios
are considered in our simulation environment, namely prox-
imal and distal. Both scenarios have different camera offset
limits which are mentioned in Tab. II. For experiments in
proximal scenario, camera offsets are taken from a small
range. In distal scenario, camera offsets are taken from a
larger range, thus it exhibits increased difficulty level than
the proximal case. For each method in each of the scenario,
100 visual servo experiments are performed. Each single
experiment is run for 200 steps of visual servo control and
final error values are recorded. The average translation and
average rotation errors are calculated and depicted in Tab.
V. On the basis of obtained results, the following analysis is
done.

CNN-switch performs way better than Vanilla-switch in
both proximal and distal cases. This is because, Vanilla-
switch takes switching decision based on a fixed error
threshold defined over MSE error which is not optimal for all
the scenes due to variations in illuminations, colors etc. On
the other hand, CNN-switch uses CNN for switch decision
which is robust under above variations.

Comb method performs good in proximal case but worse
in distal case. This is because, in Comb method, CNN is
trained on combined SSD+LSD data and pose estimation is
kind of averaged out due to different pose variations in SSD
and LSD data. Due to which, Comb method does not perform
well, both on very large camera displacements and also on
very small scale camera displacements. Whereas, Implicit-
switch, which is also trained on combined LSD+SSD data,
performs well both in proximal and distal cases. This is be-
cause Implicit-switch trains an extra auxiliary classification
head in CNN to learn discriminative features for SSD and
LSD datasets, thus avoiding the averaging out effect which
occurs with Comb method.

Meta-switch performs slightly better then Implicit-switch,
but it has slightly bigger model size. Meta-switch performs
switching explicitly having more focused pose estimation in
the respective domains, namely SSD and LSD.

Although, CNN-switch too performs switching explicitly,
it also trains three different instances of the CNN, namely
for switching decision, regression for LSD and regression
for SSD, respectively. Still, performance is not better then
Meta-switch, even worser in the distal case. This is because,
in CNN-switch, CNN instances for pose estimation has only
seen one of the datasets, either LSD or SSD. Whereas, in
Meta-switch, feature encoder has seen both LSD and SSD
dataset during the training, acquiring more robustness.

Finally, in transition from proximal to distal case, per-
formance remains almost same for both, Implicit-switch
and Meta-switch. Whereas, for all the other methods, per-
formance degrades by a large margin. This indicates the
effectiveness of our proposed switching strategies in getting
a more reliable and robust visual servo control employing
state-of-the-art CNN for relative pose estimation.
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TABLE V: Comparing different switching strategies, based on average camera position and rotation errors, taken over 100
simulated experiments. The definitions of model names and other details are given in Sec. V-D.
(PE: positional error , RE: rotational error)

proximal distal
Model Variant Model size PE RE PE RE
LSD only 64.65 MB 0.042± 0.059 0.083± 0.133 0.079± 0.339 0.121± 0.409
Comb 64.65 MB 0.024± 0.023 0.040± 0.038 0.088± 0.485 0.121± 0.534
Vanilla-switch 129.30 MB 0.039± 0.055 0.073± 0.121 0.130± 0.365 0.154± 0.408
CNN-switch 177.46 MB 0.023± 0.021 0.039± 0.034 0.031± 0.083 0.053± 0.116
Implicit-switch 64.66 MB 0.026± 0.023 0.044± 0.038 0.023± 0.023 0.042± 0.038
Meta-switch 81.16 MB 0.021± 0.020 0.035± 0.034 0.023± 0.020 0.038± 0.034

VI. CONCLUSIONS

We have presented a CNN based method to perform eye-
in-hand pose based visual servoing with a manipulator robot
for static scenes. Our CNN architecture design achieves
better pose regression accuracy than previous related works.
It has been shown that the CNN switching method has
been effective in improving the precision of visual servo
output at the finer level in comparison to the naive method.
For efficient and roboust CNN switching, a meta learning
approach called model-agnostic-meta-learning (MAML) is
used to train a single model which is good for all three
different tasks.

The training and testing scenes taken into considerations
in this work are somewhat simpler. In future extension of
this work, more complex and practical environments could
be included for evaluations. One of the challenges with CNN
based methods for visual servoing is the need for real-time
operation. In our work, camera motion control was saccadic
due to low fps CNN operation (i.e. around 2-3 fps) on a
desktop system without GPUs. Also, it would be interesting
to have a future study on control theoretic guarantee for
visual servo output.
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