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Abstract— For applications in e-commerce, warehouses,
healthcare, and home service, robots are often required to
search through heaps of objects to grasp a specific target object.
For mechanical search, we introduce X-Ray, an algorithm based
on learned occupancy distributions. We train a neural network
using a synthetic dataset of RGBD heap images labeled for
a set of standard bounding box targets with varying aspect
ratios. X-Ray minimizes support of the learned distribution
as part of a mechanical search policy in both simulated and
real environments. We benchmark these policies against two
baseline policies on 1,000 heaps of 15 objects in simulation
where the target object is partially or fully occluded. Results
suggest that X-Ray is significantly more efficient, as it succeeds
in extracting the target object 82% of the time, 15% more often
than the best-performing baseline. Experiments on an ABB
YuMi robot with 20 heaps of 25 household objects suggest that
the learned policy transfers easily to a physical system, where it
outperforms baseline policies by 15% in success rate with 17%
fewer actions. Datasets, videos, and experiments are available
at https://sites.google.com/berkeley.edu/x-ray.

I. INTRODUCTION

Mechanical search – extracting a desired object from a
heap of objects – is a fundamental task for robots in un-
structured e-commerce warehouse environments or for robots
in home settings. It remains challenging due to uncertainty
in perception and actuation as well as lack of models for
occluded objects in the heap.

Data-driven methods are promising for grasping unknown
objects in clutter and bin picking [7, 10, 23, 26, 27], and
can reliably plan grasps on the most accessible object without
semantic knowledge of the target object. Some reinforcement
learning [9, 39] or hierachical [5] mechanical search policies
use semantics, but have so far been limited to specific objects
or heuristic policies.

In this paper, we draw on recent work on shape completion
to reason about occluded objects [29, 35] and work on pre-
dicting multiple pose hypotheses [24, 32]. X-Ray combines
occlusion inference and hypothesis predictions to estimate an
occupancy distribution for the bounding box most similar to
the target object to estimate likely poses – translations and
rotations in the image plane. X-Ray can efficiently extract
the target object from a heap where it is fully occluded or
partially occluded (Figure 1).

This paper provides four contributions:
1) X-Ray (maXimize Reduction in support Area of oc-

cupancY distribution): a mechanical search policy that
minimizes support of learned occupancy distributions.
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Fig. 1: Mechanical search with a fully occluded target object
(top row) and a partially occluded target object (bottom
row). We predict the target object occupancy distribution,
which depends on the target object’s visibility and the heap
(second column). Each pixel value in the distribution image
corresponds to the likelihood of that pixel containing part
of the target object. X-Ray plans a grasp on the object that
minimizes the estimated support of the resulting occupancy
distribution to minimize the number of actions to extract
the target object. We show two nearly-identical heaps; in
the fully occluded case, X-Ray grasps the mustard bottle
whereas in the partially occluded case, the policy grasps the
face lotion (third column), resulting in the respective next
states (fourth column).

2) An algorithm for estimating target object occupancy
distributions using a set of neural networks trained on
a dataset of synthetic images that transfers seamlessly
to real images.

3) A synthetic dataset generation method and 100,000
RGBD images of heaps labeled with occupancy dis-
tributions for a single partially or fully occluded target
object, constructed for transfer to real images.

4) Experiments comparing the mechanical search policy
against two baselines in 1,000 simulated and 20 physi-
cal heaps that suggest the policy can reduce the median
number of actions needed to extract the target object by
20% with a simulated success rate of 87% and physical
success rate of 100%.

II. RELATED WORK

A. Pose Hypothesis Prediction

There is a substantial amount of related work in computer
vision on 3D and 6D pose prediction of both known and
unknown objects in RGB, depth, and RGBD images [8,
13, 18, 36]. Many of these papers assume that the target
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objects are either fully visible or have minor occlusions. In
addition, many assume that there is no ambiguity in object
pose due to self-occlusion or rotational symmetry of the ob-
ject, as these factors can significantly decrease performance
for neural network-based approaches [3]. Recent work has
attempted to address the pose ambiguity that results from
object geometry or occlusions by restricting the range of
rotations [31] predicting multiple hypotheses for each de-
tected object [24, 32]. Rupprecht et al. [32] find that refining
multiple pose hypotheses to a 6D prediction outperforms
single hypothesis predictions on a variety of vision tasks,
such as human pose estimation, object classification, and
frame prediction. Manhardt et al. [24] note that directly
regressing to a rotation for objects with rotational symmetries
can result in an averaging effect where the predicted pose
does not match any of the possible poses; thus, they predict
multiple pose hypotheses for objects with pose ambiguities
to better predict the underlying pose and show Bingham
distributions of the predicted hypotheses. However, only
minor occlusions are considered and since ground truth pose
distributions are not available for these images and objects,
comparisons for continuous distributions can only be made
qualitatively. Predicting multiple hypotheses or a distribution
to model ambiguity has also been applied to gaze prediction
from facial images [30], segmentation [14], and monocular
depth prediction [38]. In contrast to these works, we learn
occupancy distributions in a supervised manner.

B. Object Search

There has been a diverse set of approaches to grasping
in cluttered environments, including methods that use ge-
ometric knowledge of the objects in the environment to
perform wrench-based grasp metric calculations, nearest-
neighbor lookup in a precomputed database, or template
matching [1, 20, 25], as well as methods using only raw
sensor data [12, 34], commonly leveraging convolutional
neural networks [9, 10, 17]. While multi-step bin-picking
techniques have been studied, they do not take a specific
target object into account [22].

Kostrikov et al. [15] learn a critic-only reinforcement
learning policy to push blocks in a simulated environment
to uncover an occluded MNIST block. Zeng et al. [40]
train joint deep fully-convolutional neural networks to predict
both pushing and grasping affordances from heightmaps of
a scene containing multicolored blocks, then show that the
resulting policy (VPG) can separate and grasp novel objects
in cluttered heaps. The policy can be efficiently trained
on both simulated and physical systems, and can quickly
learn elegant pushes to expand the set of available grasps
in the scene. Yang et al. [39] train similar grasping and
pushing networks as well as separate explorer and coordina-
tor networks to address the exploration/exploitation tradeoff
for uncovering a target object. Their policy learns to push
through heaps of objects to find the target and then coordinate
grasping and pushing actions to extract it, outperforming a
target-centered VPG baseline in success rate and number of
actions. Both approaches can generalize to objects outside

the training distribution, although they are evaluated on a
limited set of novel objects, and Yang et al. separate the
cases where the target object is partially occluded and fully
occluded. Additionally, we focus only on grasping actions,
as some mechanical search environments may be constrained
or objects may be fragile.

Recently, several approaches to the mechanical search
problem have been proposed, both in tabletop and bin picking
environments. Price et al. [29] propose a shape completion
approach that predicts occlusion regions for objects to guide
exploration in a tabletop scene, while Xiao et al. [37]
implement a particle filter approach and POMDP solver to
attempt to track all visible and occluded objects in the scene.
However, 75% of the objects in Price et al.’s evaluation
scenes are seen in training and Xiao et al.’s method requires
models of each of the objects in the scene. We benchmark
our policy on a variety of non-rigid, non-convex household
objects not seen in training and require no object models.
In previous work, Danielczuk et al. [5] proposed a general
mechanical search problem formulation and introduced a
two-stage perception and search policy pipeline. In contrast,
we introduce a novel perception network and policy based
on minimizing support of occupancy distributions that out-
performs the methods introduced in [5].

III. PROBLEM STATEMENT

We consider an instance of the mechanical search problem
where a robot must extract a known target object from a heap
of unknown objects by iteratively grasping to remove non-
target objects. The objective is to extract the target object
using the fewest number of grasps.

A. Assumptions

• One known target object, fully or partially occluded by
unknown objects in a heap on a planar workspace.

• A robot with a gripper, an overhead RGBD sensor with
known camera intrinsics and pose relative to the robot.

• A maximum of one object is grasped per timestep.
• A target object detector that can return a binary mask

of visible target object pixels when queried.

B. Definitions

We define the problem as a partially-observable
Markov decision process (POMDP) with the 7-tuple
(S,A, T,R,Ω, O, γ) and a maximum horizon H:
• States (S): A state sk at timestep k consists of the

robot, a static overhead RGBD camera, and a static bin
containing N+1 objects, target object Ot and distractor
objects {O1,k,O2,k, . . . ,ON,k}. No prior information is
known about the N distractor objects.

• Actions (A): A grasp action ak at timestep k executed
by the robot’s gripper.

• Transitions (T ): In simulation, the transition model
T (sk+1 | ak, sk) is equivalent to that used by Mahler
et al. [22] and uses pybullet [4] for dynamics. On the
physical system, next states are determined by executing
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Fig. 2: Training dataset generation for learning the occupancy distribution function. Each dataset image is generated by
sampling N = 14 object models from a dataset of 1296 CAD models. The target object (colored red) is dropped, followed
by the N other objects (colored gray), into a planar workspace using dynamic simulation. Camera intrinsics and pose are
sampled from uniform distributions centered around their nominal values and an RGBD image is rendered of the scene. The
augmented depth image (top right), consisting of a binary target object modal mask and a two-channel depth image, is the
only input used for training for seamless transfer from simulation to real images. The ground truth target object distribution
is generated by summing all shifted amodal target object masks whose modal masks correspond with the target object modal
mask.

the action on a physical robot and waiting until objects
come to rest.

• Rewards (R): The reward rk = R(sk,ak, sk+1) ∈
{0, 1} is 1 if the target object is successfully grasped
and lifted from the bin, otherwise the reward is 0.

• Observations (Ω): An observation yk ∈ Rh×w×4+ at
timestep k consists of an RGBD image with width w
and height h taken by the overhead camera.

• Observation Model (O): A deterministic observation
model O(yk | sk) is defined by known camera intrinsics
and extrinsics.

• Discount Factor (γ): To encourage efficient extraction
of the target object, 0 < γ < 1.

We also define the following terms:
• Modal Segmentation Mask (Mm,i): the region(s) of

pixels in an image corresponding to object Oi which
are visible [11].

• Amodal Segmentation Mask (Ma,i): the region(s) of
pixels in an image corresponding to object Oi which
are visible or invisible (occluded by other objects in
the image) [11].

• The oriented minimum bounding box is the 3D box with
the minimum volume that encloses the object, subject to
no orientation constraints. We use this box to determine
scale and aspect ratio for a target object.

• The occupancy distribution ρ ∈ P is the unnormalized
distribution describing the likelihood that a given pixel
in the observation image contains some part of the target
object’s amodal segmentation mask.

C. Objective
Given this problem definition and assumptions, the objec-

tive is to find a policy π∗θ with parameters θ that maximizes
the expected discounted sum of rewards:

θ∗ = arg max
θ

Ep(τ |θ)

[
H−1∑
k=0

γkR(sk, πθ(yk), sk+1)

]
where p(τ | θ) = P(s0)ΠH−1

k=0 T (sk+1 | πθ(yk), sk)O(yk | sk)
is the distribution of state trajectories τ induced by a policy

πθ [22]. Maximizing this objective corresponds to removing
the target object in the fewest number of actions.

D. Surrogate Reward

Because the reward defined in Section III-B is sparse and
the transition function relies on complex inter-object and
grasp contact dynamics, it is difficult to directly optimize for
πθ. Thus, we instead introduce a dense surrogate reward R̃
describing the reduction of the support of the target object’s
occupancy distribution:

R̃(yk,yk+1) = |supp(fρ(yk))| − |supp(fρ(yk+1))|,

where fρ : Ω −→ P is a function that takes an observation
yk and produces the corresponding occupancy distribution
ρk for a given bounding box and supp(ρ) = {(i, j) ∈
{0, . . . , h− 1} × {0, . . . , w− 1} | ρ(i, j) 6= 0 is the support
of the occupancy distribution. Then, |supp(ρ)| is the number
of nonzero pixels in ρ. Section IV discusses a data-driven
approximation for the function fρ while Section V discusses
a greedy policy using the learned fρ and R̃.

IV. LEARNING OCCUPANCY DISTRIBUTIONS

We describe a method for estimating the function fρ
via a deep neural network. Each pixel in the occupancy
distribution ρ ∈ [0, 1]h×w has a value representing the
likelihood of it containing part of the target object’s amodal
segmentation mask, or the likelihood that some part of the
object, in some planar translation or rotation, would occupy
that pixel without any occlusions from other objects. We train
this pixelwise distribution network on a dataset of augmented
depth images and ground-truth occupancy distributions.

A. Dataset Generation

We generate a dataset of 10,000 synthetic augmented depth
images labeled with target object occupancy distributions for
a rectangular box target object. We choose 10 box targets
of various dimensions ranging from 3cm× 3cm× 5mm to
9.5cm× 0.95cm× 5mm (aspect ratios varying from 1:1 to
10:1) with equal volume and generate a dataset for each,
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Test Lid Domino Flute
Aspect Ratio Bal. Acc. IoU Bal. Acc. IoU Bal. Acc. IoU Bal. Acc. IoU

1:1 98% 0.91 93% 0.70 92% 0.74 71% 0.30
2:1 97% 0.90 79% 0.44 96% 0.81 84% 0.44
5:1 97% 0.90 66% 0.23 96% 0.83 86% 0.49
10:1 97% 0.87 84% 0.49 82% 0.58 82% 0.41

TABLE I: Balanced accuracy (Bal. Acc.) and Intersection over Union (IoU) metrics for networks trained on various aspect
ratio target boxes. The first column is the respective set of 2,000 test images for the network’s training dataset. The other
columns show how the networks can generalize to unseen objects outside the training distribution. Each dataset contains 1,000
test images for the lid, domino, and flute objects, respectively. These objects are shown in Figure 4 and have approximate
aspect ratios of 1:1, 2:1, and 5:1, respectively. Each network performs very well when estimating distributions for its training
target object and makes reasonable predictions for target objects with similar bounding box aspect ratios, even for novel
target objects at different scales and in the presence of new occluding objects. However, a network trained on a small aspect
ratio does not generalize well to higher aspect ratio objects, as it tends to overestimate the occupancy distribution.

resulting in a total of 100,000 dataset images. We choose
a relatively small thickness for the target so that it is more
likely to be occluded in heaps of objects, as it tends to lie
flat on the workspace. We sample a state s0 by uniformly
sampling a set of N 3D CAD models as well as a heap
center and 2D offsets for each object from a 2D truncated
gaussian. First, Ot is dropped from a fixed height above
the workspace, then the other N objects are dropped one
by one from a fixed height and dynamic simulation is run
until all objects come to rest (all velocities are zero). Any
objects that fall outside of the workspace are removed. N
is drawn from a Poisson distribution (λ = 12) truncated
such that N ∈ [10, 15]. The 3D CAD models are drawn
from a dataset of 1296 models available on Thingiverse,
including “packaged” models, where the original model has
been augmented with a rectangular backing, as in [23]. The
camera position is drawn from a uniform distribution over
a viewsphere and camera intrinsics are sampled uniformly
from a range around their nominal values. We use the
Photoneo Phoxi S datasheet intrinsics and a camera pose
where the camera points straight down at the heap at a height
of 0.8m for the nominal values. An RGBD image is rendered
and augmented depth images are created by concatenating a
binary modal mask of the target object with the depth image.
Note that if the target object is not visible, the image is
equivalent to a two-channel depth image, as the first channel
is all zeros. We find that training on these images, as opposed
to training on RGBD images directly, allows for seamless
transfer between simulated and real images.

To generate the ground-truth occupancy distribution, we
find the set of translations and rotations in the image plane
for the target object such that an image rendered from the
same camera pose with all other objects in the scene in
the same respective poses will yield the same target object
modal segmentation mask. Thus, when the object is fully
visible, the distribution’s support collapses to the pixels of
the target object modal segmentation mask. However, when
the object is partially or fully occluded, then multiple target
object translations or rotations may result in the same image
and the distribution will spread to reflect where the target
could hypothetically be hiding. In practice, we generate this

distribution by discretizing the set of possible translations
into a 64 × 48 grid (every 8 pixels in the image) and
rotations into 16 bins, then shifting and rotating a target-
only depth image to each point on the grid, offsetting by
the depth of the bottom of the workspace at that point. By
comparing the depths for the set of these shifted and rotated
depth images to original depth image, we can determine
the modal segmentation mask for the target object as if
it were at each location. Any location for which there is
intersection-over-union (IoU) greater than 0.9 (or, in cases
where the target object has a blank modal mask due to full
occlusion, any location for which the modal mask is also
blank) is considered to result in the same image. Then, the
amodal target object masks from all locations resulting in the
same image are summed and the resulting normalized single-
channel image is the ground truth occupancy distribution. A
visualization of this process is shown in Figure 2. Dataset
generation for 10,000 images took about 5 hours on an
Ubuntu 16.04 machine with a 12-core 3.7 GHz i7-8700k
processor.

B. Occupancy Distribution Model

We split each dataset of 10,000 images image-wise and
object-wise into training and test sets (8,000 training images
and 2,000 test images, where objects are also split such
that training objects only appear in training images and
test objects only appear in test images). We train a fully-
convolutional network with a ResNet-50 backbone [19] using
a pixelwise mean-squared-error loss for 40 epochs with
a learning rate of 10−5, momentum of 0.99, and weight
decay of 0.0005. The input images were preprocessed by
subtracting the mean pixel values calculated over the dataset
and transposing to BGR. Training took approximately 2.5
hours on an NVIDIA V100 GPU and a single forward pass
took 6 ms on average as compared to 1.5 s for generating
the ground-truth distribution.

C. Simulation Experiments for Occupancy Distributions

We benchmark the trained model on the full set of 2,000
test images as well as on 1,000 images with three other
simulated target objects shown in Figure 4 - a lid, a domino,
and a flute - to test generalization to object shapes, aspect
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Fig. 3: The ground truth occupancy distributions for a target
object of various aspect ratios for the same heap image.

ratios and scales not seen during training. We chose these
target objects due to their diversity in scale and object aspect
ratio (e.g., the flute is longer, thinner, and deeper, while the
lid is nearly square and flat). We report two metrics: balanced
accuracy, the mean of pixelwise accuracies on positive and
negative pixel labels, and intersection-over-union, the sum
of positive pixels in both the ground truth and predicted
distribution divided by the sum of total positive pixels in
either distribution. We consider true positives as the ground
truth pixel having normalized value greater than 0.1 and the
predicted value being within 0.2 of the ground truth value.
Similarly, we consider true negatives as the ground truth pixel
having normalized value less than 0.1 and the predicted value
being within 0.2 of the ground truth value. Results are shown
in Table I.

Target Object Scale. For objects of different scale than
the training target object, we scale the input image by a
factor equal to the difference in scale between the box target
object and the other target object, feed it through the network,
and then rescale the output distribution. We find that this
scaling dramatically improves performance with minimal
preprocessing of the input image; for example, when testing
on the lid object, which is about twice as large as the training
box object, we increase balanced accuracy and IoU from
63.0% and 0.186 to 93.1% and 0.697, respectively.

Target Aspect Ratios. We found that, while our network
performed well on objects with similar aspect ratios, longer
and thinner objects with higher aspect ratios resulted in
the model overestimating the support of the distribution.
This effect can be seen in Figure 3, which shows ground
truth occupancy distributions for target objects of different
aspect ratios in the same heap image. Table I suggests
that the trained networks can accurately predict occupancy
distributions for target objects that have similar aspect ratios
to the training boxes, but do not perform as well when tasked
with predicting a distribution for objects with dramatically
different aspect ratios. In particular, the network trained with
a 1:1 box target object tends to overestimate the support
for target objects with high aspect ratios, leading to a drop
in metrics. This effect is especially visible along corners of

Fig. 4: Example predicted target object occupancy distribu-
tions for three target objects, a lid, domino, and flute, unseen
during training (far left). Warmer colors indicate a higher
likelihood of that pixel containing part of the target object’s
amodal mask. The network is able to accurately predict a dis-
tribution across many objects, a collapsed distribution when
the object is partially visible, and multimodal distributions
when there are gaps between objects (top three rows). The
final row shows a failure mode where the network spuriously
predicts an extra mode for the distribution when the target
object is partially occluded.

occluding objects, where more rotations of a low aspect ratio
object are possible, while only one or two rotations of a high
aspect ratio object are possible.

Figure 4 shows occupancy distribution predictions with
ground truth distributions for the three unseen objects us-
ing the network trained on the closest aspect ratio target
object and scaled appropriately. Results suggest that the
network is able to accurately predict diverse distributions
when occluding objects not seen in training are present.
Figure 4 suggests not only that the network can predict the
correct distribution spanning multiple occluding objects in
unimodal and multimodal cases when the target object is
fully occluded, but also that it can correctly collapse the
distribution to a small area around the visible part of the
target object when it is only partially occluded.

V. X-RAY: MECHANICAL SEARCH POLICY

Using the learned occupancy distribution function fρ, we
propose X-Ray, a mechanical search policy that optimizes
for the objective and surrogate reward R̃ defined in Sec-
tion III. We create both simulated and physical object heaps
and generate overhead camera images using an observation
model based on the Photoneo PhoXi S depth camera. The
heap RGBD image and target object are inputs to the
perception system, which uses the network trained on the
most similar bounding box to the target object to predict an
occupancy distribution for the target. The policy takes the
predicted distribution and a set of modal segmentation masks
for the scene and computes a grasping action that would
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Fig. 5: The perception stage takes as input an RGBD image of the scene and outputs an occupancy distribution prediction
using a network based on the target object bounding box dimensions and the created augmented depth image. The perception
stage also produces a set of segmentation masks. The X-Ray mechanical search policy then finds the mask that has the most
overlap with the occupancy distribution (colored yellow in the grasp scores image) and plans a grasp on that mask.

maximally reduce the support of the subsequent distribution.
Specifically, the policy takes an element-wise product of each
segmentation mask with the predicted occupancy distribution
and sums over all entries in the resulting image, leading to
a score for each of the segmentation masks. The policy then
plans a grasp on the object mask with the highest score and
executes it, as shown in Figure 5.

A. Simulation Experiments with X-Ray

We first evaluate the mechanical search policy with sim-
ulated heaps of novel objects. To further test the ability
of the learned network to generalize to unseen occlud-
ing objects, we use a set of objects unseen in training
and validation: 46 YCB objects [2] and 13 “packaged”
YCB objects (augmented in the same way as described
in Section IV). Initial states were generated as explained
in Section IV, first dropping the target object, followed
by the other N objects. We use N = 14 so each heap
initially contained 15 total objects, colorreda similar or
larger size to previous bin-picking work [22, 26]. As the
focus of this work was not instance segmentation or target
detection, we use ground truth segmentation masks and target
binary masks in simulation, although we note that any class-
agnostic instance segmentation network [6, 16] or object
detection network [41] can be substituted. For each grasp,
either a parallel jaw or suction cup grasp, we use wrench
space analysis to determine whether it would result in the
object being lifted from the workspace under quasi-static
conditions [20, 21, 28]. If the grasp is collision-free and the
object can be lifted, the object is lifted until the remaining
objects come to rest using dynamic simulation implemented
in pybullet, resulting in the next state. Otherwise the state
remains unchanged.

In addition to the policy proposed here, we evaluate
two previously proposed baseline policies, Random and
Largest [5]. The Random policy that first attempts to grasp
the target object, and, if no grasps are available on the target
object, grasps an object chosen uniformly at random from
the bin. The Largest policy that first attempts to grasp the
target object, and, if no grasps are available on the target

Policy Success Rate Number of Actions Quartiles

Random 42% 4 7 9
Largest 67% 4 5 7
X-Ray 82% 3 5 6

TABLE II: Evaluation metrics for each policy over 1,000
simulated rollouts. The lower quartiles, medians, and upper
quartiles for number of actions are reported for successful
rollouts. X-Ray extracts the target at a higher success rate
with significantly fewer actions.

Fig. 6: Histogram of the number of actions taken to extract
the target object over the 1,000 simulated rollouts for the
three policies tested. The median number of actions for each
policy is shown by the corresponding vertical line.

object, iteratively attempts to grasp the objects in the bin
according to the size of their modal segmentation mask.

Each policy was rolled out on 1,000 total heaps until
either the target object was grasped (successful rollout) or the
horizon H = 10 was reached (failed rollout). We benchmark
each policy using two metrics: success rate of the policy and
mean number of actions taken to extract the target object in
successful rollouts. Table II and Figure 6 show these metrics
and the distribution of successful rollouts over the number
of actions taken to extract the target object, respectively.
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While the Random and Largest policies occasionally are
able to quickly extract the target object, X-Ray consistently
extracts the target in fewer actions and succeeds in 15%
more heaps than the best-performing baseline. Largest is
a reasonable heuristic for these heaps, as shown in [5], as
large objects typically have a greater chance of occluding
the target, but X-Ray combines this intuition with superior
performance when the object is partially occluded. X-Ray
outperforms the Largest policy on heaps where the target
object is partially occluded by a thin or small object (such
as a fork or dice) at some point during the rollout. In
these scenarios, a robust grasp is often not available on the
target object, and while X-Ray can correctly identify that the
occluding object should be removed, the Largest policy will
often grasp a larger object further from the target object. In
scenarios where there are many large objects, but some are
lying to the side, X-Ray will typically grasp objects that are
in the more cluttered area of the bin, since they are more
likely to reveal the target object. This behavior is a function
of weighting the object area by the predicted distribution,
which encourages the policy to ignore solitary objects.

B. Physical Experiments with X-Ray

We also evaluate X-Ray with heaps of novel household
objects on a physical ABB YuMi robot with a suction cup
and parallel jaw gripper, using two target objects. Some
examples of the objects used can be seen in Figures 1 and 5.
Initial states were generated by placing the target object on
the workspace, filling a bin with the N other objects, and
then dumping the bin on top of the target object. In these
heaps, N = 24 was used so that each heap initially contained
25 total objects. We chose 25 total objects because it has been
commonly used in cluttered bin-picking environments [23]
and objects tend to disperse further on the physical setup.
For segmentation masks, we used the class-agnostic instance
segmentation network from [6], and for grasp quality anal-
ysis, we used FC-GQCNN [33]. To generate binary target
masks, we use HSV color segmentation from OpenCV and
use red target objects. While we make this assumption for
simplicity, we note that we could substitute this process with
a target object segmentation method that uses visual features,
semantics and shape, such as the one described in [6].

We perform 20 rollouts for each of the three policies.
Each policy was rolled out until either the target object was
grasped (successful rollout) or the horizon H = 10 was
reached (failed rollout). We report the same metrics as in
the simulated experiments in Table III.

We find that X-Ray outperforms both baselines, extracting
the target object in a median 5 actions over the 20 rollouts as
compared to 6 actions for the Largest and Random policies
while succeeding in extracting the target object within 10
actions in each case. These results suggest that X-Ray not
only can extract the target more efficiently than the baseline
policies, but also has lower variance. The Largest policy
performed comparatively worse with more objects in the
heap than in simulation, as it relies heavily on accurate
segmentation masks. However, when objects are densely

Policy Success Rate Number of Actions Quartiles

Random 85% 4 6 7
Largest 85% 4 6 7
X-Ray 100% 4 5 5.25

TABLE III: Evaluation metrics for each policy over 20 physi-
cal rollouts. The lower quartiles, medians, and upper quartiles
for the number of actions are reported across successful
rollouts. X-Ray extracts the target with significantly fewer
actions, always extracting it within 10 actions.

clustered together, segmentation masks are often merged,
leading to grasps on smaller objects that do not uncover
the target. In this case or in the case of spurious segmen-
tation masks that do not cover objects, X-Ray reduces this
reliance on accurate segmentation masks, as the occupancy
distribution and segmentation are combined to create a score
for the mask. This property of X-Ray causes it to compare
favorably to a policy that directly scores segmentation masks
based on their relationship to the target object geometry. X-
Ray also reduces reliance on the target object binary mask
being accurate; if the detector cannot see enough of the target
object to generate a detection even when it is partially visible,
X-Ray will continue to try and uncover it according to the
fully occluded occupancy distribution until more of the target
is revealed.

VI. DISCUSSION AND FUTURE WORK

We present X-Ray, a mechanical search algorithm that
minimizes support of a learned occupancy distribution. We
showed that a model trained only on a synthetic dataset of
augmented depth images labeled with ground truth distribu-
tions learns to accurately predict occupancy distributions for
target objects unseen in training. We benchmark X-Ray in
both simulated and physical experiments, showing that it can
efficiently extract the target object from challenging heaps
containing 15-25 objects that fully occlude the target object
in 82% - 100% of heaps using a median of just 5 actions.

In future work, we will address some of the failure modes
of the system, especially for objects that are significantly
non-planar. Currently, the assumption that the object is flat
can result in incorrect occupancy distributions for taller
objects. Additionally, we will look to add memory to the
policy so that if objects shift into previously free space, the
distribution will not cover that area, and explore reinforce-
ment learning policies based on a reward of target object
visibility.
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Aubry, K. Kohlhoff, T. Kröger, J. Kuffner, and K. Goldberg,
“Dex-net 1.0: A cloud-based network of 3d objects for robust
grasp planning using a multi-armed bandit model with correlated
rewards,” in Proc. IEEE Int. Conf. Robotics and Automation (ICRA),
IEEE, 2016, pp. 1957–1964.

[21] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A.
Ojea, and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust

grasps with synthetic point clouds and analytic grasp metrics,” Proc.
Robotics: Science and Systems (RSS), 2017.

[22] J. Mahler and K. Goldberg, “Learning deep policies for robot bin
picking by simulating robust grasping sequences,” in Conf. on Robot
Learning (CoRL), 2017, pp. 515–524.

[23] J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose, S.
McKinley, and K. Goldberg, “Learning ambidextrous robot grasping
policies,” Science Robotics, vol. 4, no. 26, eaau4984, 2019.

[24] F. Manhardt, D. M. Arroyo, C. Rupprecht, B. Busam, N. Navab,
and F. Tombari, “Explaining the ambiguity of object detection and
6d pose from visual data,” in Proc. IEEE Int. Conf. on Computer
Vision (ICCV), 2019.

[25] M. Moll, L. Kavraki, J. Rosell, et al., “Randomized physics-
based motion planning for grasping in cluttered and uncertain
environments,” IEEE Robotics & Automation Letters, vol. 3, no. 2,
pp. 712–719, 2017.

[26] D. Morrison, P. Corke, and J. Leitner, “Closing the loop for robotic
grasping: A real-time, generative grasp synthesis approach,” arXiv
preprint arXiv:1804.05172, 2018.

[27] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to
grasp from 50k tries and 700 robot hours,” in Proc. IEEE Int. Conf.
Robotics and Automation (ICRA), IEEE, 2016, pp. 3406–3413.

[28] D. Prattichizzo and J. C. Trinkle, “Grasping,” in Springer handbook
of robotics, Springer, 2008, pp. 671–700.

[29] A. Price, L. Jin, and D. Berenson, “Inferring occluded geometry
improves performance when retrieving an object from dense clutter,”
in Int. S. Robotics Research (ISRR), 2019.

[30] S. Prokudin, P. Gehler, and S. Nowozin, “Deep directional statistics:
Pose estimation with uncertainty quantification,” in Proc. European
Conf. on Computer Vision (ECCV), 2018, pp. 534–551.

[31] M. Rad and V. Lepetit, “Bb8: A scalable, accurate, robust to partial
occlusion method for predicting the 3d poses of challenging objects
without using depth,” in Proc. IEEE Int. Conf. on Computer Vision
(ICCV), 2017, pp. 3828–3836.

[32] C. Rupprecht, I. Laina, R. DiPietro, M. Baust, F. Tombari, N. Navab,
and G. D. Hager, “Learning in an uncertain world: Representing
ambiguity through multiple hypotheses,” in Proc. IEEE Int. Conf.
on Computer Vision (ICCV), 2017, pp. 3591–3600.

[33] V. Satish, J. Mahler, and K. Goldberg, “On-policy dataset synthesis
for learning robot grasping policies using fully convolutional deep
networks,” IEEE Robotics & Automation Letters, vol. 4, no. 2,
pp. 1357–1364, 2019.

[34] A. Saxena, L. L. Wong, and A. Y. Ng, “Learning grasp strategies
with partial shape information.,” in AAAI, vol. 3, 2008, pp. 1491–
1494.

[35] J. Varley, C. DeChant, A. Richardson, J. Ruales, and P. Allen,
“Shape completion enabled robotic grasping,” in Proc. IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), IEEE, 2017,
pp. 2442–2447.

[36] Y. Xiang, T. Schmidt, V. Narayanan, and D. Fox, “Posecnn: A
convolutional neural network for 6d object pose estimation in
cluttered scenes,” arXiv preprint arXiv:1711.00199, 2017.

[37] Y. Xiao, S. Katt, A. ten Pas, S. Chen, and C. Amato, “Online plan-
ning for target object search in clutter under partial observability,”
in Proc. IEEE Int. Conf. Robotics and Automation (ICRA), IEEE,
2019, pp. 8241–8247.

[38] G. Yang, P. Hu, and D. Ramanan, “Inferring distributions over depth
from a single image,” in Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), 2019.

[39] Y. Yang, H. Liang, and C. Choi, “A deep learning approach to
grasping the invisible,” arXiv preprint arXiv:1909.04840, 2019.

[40] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T.
Funkhouser, “Learning synergies between pushing and grasp-
ing with self-supervised deep reinforcement learning,” in Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
IEEE, 2018, pp. 4238–4245.

[41] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object detection
with deep learning: A review,” IEEE Trans. Neural Networks and
Learning Systems, vol. 30, no. 11, pp. 3212–3232, 2019.

9584


