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Abstract— We propose a centralized control framework to
select suitable robots from a heterogeneous pool and place
them at appropriate locations to monitor a region for events
of interest. In the event of a robot failure, our framework
repositions robots in a user-defined local neighborhood of the
failed robot to compensate for the coverage loss. If reposi-
tioning robots locally fails to attain a user-specified level of
desired coverage, the central controller augments the team
with additional robots from the pool. The size of the local
neighborhood around the failed robot and the desired coverage
over the region are two objectives that can be varied to
achieve a user-specified balance. We investigate the trade-off
between the coverage compensation achieved through local
repositioning and the computation required to plan the new
robot locations. We also study the relationship between the size
of the local neighborhood and the number of additional robots
added to the team for a given user-specified level of desired
coverage. Through extensive simulations and an experiment
with a team of seven quadrotors we verify the effectiveness of
our framework. We show that to reach a high level of coverage
in a neighborhood with a large robot population, it is more
efficient to enlarge the neighborhood size, instead of adding
additional robots and repositioning them.

I. INTRODUCTION

Real-world applications of robots require resilience. A
multi-robot team holds the promise of resilience in a failure-
prone environment [1]. That is because, if some robots in the
team fail, the remaining ones can continue the task by recon-
figuration via replanning [1], [2]. For example, in a multi-
robot coverage problem, in the event of a robot failure, the
neighbors of a failed robot can reposition themselves to fill
the coverage gap induced by the failed robot [1]. Alternately,
when a resource, such as a sensor or a computation unit on
a robot fails, the robot team repositions itself to reconfigure
the communication network to maintain the availability of
resources among the robots in the team [2].

In practice, the resilience objective depends on specific
task(s) that the robots are performing. For example, in an
urgent, time-critical task, such as using robots to fight fire [3]
or deliver medical supplies [4], the failures need to be
handled quickly. In tasks such as mine mapping [5] and
plant monitoring [6], when some robots fail, safety and
performance are more important even if it takes longer for
the system to reconfigure in response to a failure. In this
paper, we propose a framework that provides a user with the
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Fig. 1: An illustration of our framework: Local vs. global
tradeoff decision making governs whether to locally recon-
figure or to replenish from a pool.

flexibility to choose different resilience objectives, thereby
resulting in the most preferable resilient actions suitable for
the task.

We consider a scenario in which a central decision-maker
or controller selects an appropriate set of robots from a col-
lection of heterogeneous robots to perform a monitoring task.
The robots are selected based on various criteria such as their
reliability, cost of deployment and size of the sensing area.
The selected robot team is placed in the environment such
that the coverage of the robot team over the environment is
maximized. The coverage of a robot team (defined more pre-
cisely in Section II-B) over a domain is the probability that
the robot team detects some event of interest in the domain
(e.g. intrusion of adversarial agents in the domain). Coverage
also quantifies the monitoring performance of the robot team
over the domain. While performing the monitoring task, it is
possible that some robots may fail to operate. Consequently,
the central controller needs to decide whether it is possible to
monitor the environment at an acceptable performance level
by (1), team reconfiguration (i.e. repositioning the remaining
(active) robots) or (2), by providing additional robots to raise
the monitoring performance of the team to an acceptable
level. The central controller makes this decision based on
parameters set by a user. Figure 1 schematically illustrates
of our framework.

Our framework is as follows. If a robot fails, the user
selects a neighborhood of size L ∈ R+ (an L-neighborhood)
around the failed robot. For ease of computation, we use
a square which circumscribes a circle of radius L as
the user-defined L-neighborhood. In formal terms, the L-
neighborhood is a ball of size L centered around the failed
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robot in the ∞-norm. Active (non-failed) robots within the
L-neighborhood are then required to reposition to achieve
the desired level of coverage demanded by the user. The
coverage requirement is expressed by a single parameter
γ ∈ [0, 1] which is defined as the ratio of the coverage
attained by the robots after repositioning to the coverage
before the robot failure occured in the L-neighborhood.

If the robots inside the L-neighborhood do not attain the
user specified coverage level by repositioning themselves,
then the central controller augments the robot team with a
new set of robots to sufficiently meet the user’s demand.
Notably, a smaller L would result in faster reconfiguration,
but may not contribute enough to the coverage demand if the
γ value is high. The parameters L and γ help the user to trade
off between the coverage attained and the reconfiguration
efficiency when dealing with robot failures. We investigate
this trade-off in this paper.

Related work. Multi-robot coverage is a well studied topic
in robotics [7]–[12]. Following the seminal paper [7], most
approaches focus on constructing an objective function com-
monly called a coverage functional. It quantifies the coverage
achieved by a robot team and corresponding strategies which
optimize the coverage functional. Although, significant re-
search has gone into defining good coverage functionals,
even extending the idea to non-Euclidean spaces [10], most
are non-convex and the solutions are only local optima.
Recently, researchers have started to exploit the diminishing
returns property of some functions (submodularity [13])
for obtaining 1 − 1/e suboptimal solutions using greedy
strategies [13]–[15]. Similar to the works [14], [15], in this
paper, we use a greedy algorithm to achieve suboptimal
coverage over the environment by the robots.

Resilience in multi-robot systems is an active area of
research [1], [16]–[18]. The approach in [1] focuses on
building resilient strategies for multi-robot sweep coverage
problems. In contrast, here we introduce resilient strategies
to handle robot failures in blanket coverage problems. Sec-
tion II-B describes the blanket coverage problem in detail.
In [16]–[18], the authors design robust strategies for task
execution assuming at most a certain fixed number of robots
would fail during the execution of a task. Whereas, in our
paper, we consider if some robot fails, how to actively
coordinate the remaining robots to compensate for the loss
from the failure. We present our framework as four different
problems and our overall strategy as solutions to these
problems.

Notation. We use P(·) to represent the probability of
occurrence of an event. For any positive integer Z ∈ N+,
[Z] denotes the set {1, 2, · · · , Z}. We use R+, R≥0 and Rd
to denote positive real numbers, non-negative real numbers,
and d-dimensional real vectors with d ∈ N+, respectively.
The vector of ones is represented as 1. For any countable
set X , |X | denotes its cardinality and 2X is its collec-
tion of subsets or power set. A non-negative set function
f : 2X → R≥0 is said to be submodular if ∀A ⊆ B ⊂ X and
∀x ∈ X\B, f(A ∪ {x})− f(A) ≥ f(B ∪ {x})− f(B). The
condition implies that the function has a diminishing returns

property. Moreover, the function is monotone if ∀A ⊆ B,
f(A) ≤ f(B) and normalized if f(∅) = 0.

II. PROBLEM FORMULATION

Consider a pool of N ∈ N+ heterogeneous robots labeled
{1, 2, · · · , N} with varying deployment costs and sensing
ranges. A central controller is tasked with selecting robots
from the pool and employing the selected robots to efficiently
monitor a compact area of interest. We refer to this area
of interest as Q ⊂ R2. The central controller monitors the
activities of the selected team and takes appropriate measures
in the event of a robot failure.

The framework in this paper is presented as solutions to
four problems: (1) initial team selection (2) global placement,
(3) local reconfiguration and (4) intermediate robot selection.
Initial team selection deals with the problem of selecting
the smallest set of robots from the robot pool to perform
the task of monitoring Q while satisfying constraints on the
cost of deployment and reliability. Once a team is selected,
it is optimally placed in the region of interest (Q) so that
the region can be monitored for events of interest. The
solution to the global placement problem dictates the optimal
locations for placing the robot team in Q. In the event of
a robot failure, based on the user specified parameters L
and γ, the central controller tries to compensate for loss in
monitoring performance by repositioning the active robots
in a local neighborhood of the failed robot (specified by
L). We refer to this as the local reconfiguration problem.
As the user can specify a desired level of local coverage
through the parameter γ, if the local reconfiguration does
not yield the level of local coverage demanded by the user,
then the central controller selects and places additional robots
from the robot pool such that the demanded local coverage
is satisfied. Since this robot selection problem occurs during
the task execution, we call it the intermediate robot selection
problem. We formalize these problems in the forthcoming
subsections. Our solutions to these problems are detailed in
Section III.

A. Initial team selection

As mentioned earlier, a central controller is tasked with
the process of selecting a team of robots that meet certain
requirements from the robot pool. One requirement is the
reliability of the robots in the selected team. We describe
the probability that a robot will operate successfully for
a given time period [T0, T ] by using a reliability function
[19]. The reliability function for robot i ∈ [N ] is defined
as, Ri(T0, T ) = exp{−

∫ T
T0
λi(τ)dτ}, where λi(τ) is the

instantaneous rate of failure of the robot i due to various
factors, e.g., battery drain, processor failure, actuator failure,
etc. It is reasonable to assume that λi(τ) is a non-decreasing
function. We approximate the bathtub model [19] of λi(τ)
with a quadratic function. Specifically, we define λi(τ) =
λi0 + kiτ

2. The parameters of this function are computed
through data fitting [19]. Let tfi denote the random variable
representing the failure time of robot i. According to our
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reliability model, the failure time of the robot is described
as,

P(tfi ∈ [T0, T ]) = 1−Ri(T0, T ). (1)

Therefore, if we assume that robot failures are independent
events, then the probability that a set of S ∈ 2[N ] robots
fail during the time interval [T0, T ] can be computed as∏
i∈S(1−Ri(T0, T )).
Suppose a particular task requires a set of J distinct

resources for its successful execution and γ̄j is the minimum
amount of resource j ∈ [J ] required by the team to perform
the task. Let Γj : 2[N ] → R+ be a mapping which maps a
robot team to the amount of resource j the team possesses
as a whole. In this paper, we assume the Γj has an additive
structure, namely,

Γj(S) =
∑
i∈S

Γij , (2)

where S ∈ 2[N ] and Γij ≥ 0 is the amount of resource j
maintained by robot i. In addition, we define C(S) as the
cost of deploying the robot team S. Next we present the first
problem in this paper.

Problem 1 (Initial team selection). Find the minimum
number of robots from a pool, such that the selected robot
team is equipped with sufficient resources to monitor a
region of interest under the constraints that the total cost
of deployment is below a budget β and the probability that
all the robots fail before the monitoring task is completed is
below a threshold α ∈ [0, 1]. More formally,

min
S∈2[N]

|S| (3)

subject to,

C(S) ≤ β (4)∏
i∈S

(1−Ri(0, T )) ≤ α, T > 0 (5)∑
i∈S

Γij ≥ γ̄j ∀j ∈ [J ] (6)

where T is the time for which the robots are entrusted with
the monitoring task.

For ease of computation, we adopt the following structure
for the budget constraint (Equation 4):

C(S) =
∑
i∈S

Ci ≤ β, Ci > 0, (7)

where Ci is the cost of deploying robot i. The cost of
deployment captures the cost incurred during its deployment
due to fueling and other overheads. Note that, the availability
of a robot in the pool may not mean that it has zero cost
of deployment. Since in this paper, the task under consid-
eration is coverage, we substitute the resource constraint
(Equation 6) with the following constraint,∑

i∈S
〈Ai〉 ≥ δ〈AQ〉, δ > 1, (8)

where 〈Ai〉 is the sensing area associated with robot i and
〈AQ〉 is the area of Q. If ai is the finite sensing range of
robot i, then its sensing region is Ai = {p : ‖xi−p‖ ≤ ai}.
δ is a predefined parameter which determines the amount of
redundancy in the selected robot team in terms of the total
area that the team can ideally cover.

Once a robot team is selected for the task, the central
controller has to assign appropriate locations to robots in the
selected team such that the coverage over the area of interest
is maximized. In the next subsection, we formally define the
notion of coverage used in this paper and mathematically
describe our robot placement problem.

B. Global placement

Our formulation of the multi-robot domain coverage prob-
lem is similar to the ones presented in [7], [14]. After obtain-
ing a robot team S with |S| ≤ N by solving Problem 1, the
coverage problem deals with placing these robots such that
the probability of detecting events of interest (e.g. arrival of
an adversarial target in the area) over an area is maximized.

We proceed by formulating our coverage problem as a
blanket coverage problem [20]. The map φ : Q → R+

represents a probability density function which quantifies the
amount of information or probability of occurrence of an
event of interest over Q. In other words, the probability that
an event of interest occurred in the region D ⊆ Q can be
written as:

P(e ∈ D) =

∫
D
φ(p)dp (9)

where P(e ∈ D) represents the probability that an event
of interest occurred in D. Consequently, φ(·) has a bounded
support Q and

∫
Q φ(p)dp = 1. Denote the set containing the

positions of robot set S as X|S| = {x1,x2, · · ·x|S|}, where
xi ∈ R2. The sensing performance of robot i at a point p is a
non-increasing function of the distance between p and xi [7].
Consequently, we define the sensing performance function
of the robot i ∈ S as si : R≥0 → (0, 1] as a non-increasing
function of ‖xi−p‖. An example of such a function which
is used for the simulations in this paper is

si(‖xi − p‖) = exp (−ηi‖xi − p‖), (10)

where ηi is the sensing decay rate of robot i. Let the random
variable dpi ∈ {0, 1} model the event of detecting an event
of interest which occurred at p ∈ Q by robot i, then

P(dpi = 1|xi,p) =

{
si(‖xi − p‖) if p ∈ Ai

0 otherwise.
(11)

We use P(dp
i ) instead of P(dp

i = 1|xi,p) for brevity. If
we assume that the detection probabilities of different robots
are independent, then the probability of detection of an event
of interest by the robot team, given that the event occurred
at a point p, can be computed as,

P(∪
i
dp
i = 1|X|S|,p) = 1−

∏
i∈S

[1− P(dp
i )] . (12)
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Therefore, the probability of detecting events of interest in
Q by a team of robots, S, is

H(X|S|,Q) =

∫
Q
P(∪

i
dp
i = 1|X|S|,p)φ(p)dp. (13)

Note that this quantity is a measure of the coverage attained
by the robots over the environment Q. Also, the coverage
functional value quantifies the monitoring performance of
the robot team over Q. We formally define this robot team
placement problem as,

Problem 2 (Global placement). Given a team of robots,
S, compute their positions X|S| ⊆ Q such that the coverage
functional H(X|S|,Q) is maximized.

After the robots, S, reach their appropriate locations in Q
dictated by the solution to Problem 2, the central controller
enters a monitoring mode. It monitors the activities of the
robot team and initiates actions that enable the robot team
to maintain a user-specified level of coverage when a robot
in the team fails.

C. Resilient coordination to robot failure

After the global placement, the robot team starts monitor-
ing the environment. As time goes by, robots may fail due to
internal and/or external factors, such as the battery drain or
the adversarial attack. We model this failure by Equation 1.
If a robot fails, it loses its monitoring functionality and stops
contributing to the coverage functional H(X|S|). The central
controller employs the standard heart beat signal mechanism
[1, Section 4.1] to detect the failure of a robot. The central
controller listens to a periodic heart beat signal send by each
robot and assumes a robot has failed if the controller did not
receive the robot’s heart beat signal within a pre-defined time
interval. We denote the failed robot by rf and the remaining
active robots in the team by S \ rf . We seek to design a
resilient strategy that can react and compensate for the loss
from a robot failure by reconfiguring the robots which lie in
a local neighborhood around the failed robot. Formally,

Problem 3 (Local reconfiguration). Given that a robot
failed, reposition the robots in its local neighborhood to
mitigate the coverage loss caused by the robot failure. We
defer the details of this problem to Section III-C.

If the robots in a user-defined local neighborhood around
the failed robot fail to provide the desired level of coverage
by reconfiguring, then the central controller selects robots
from the robot pool and deploys them to achieve the desired
coverage level. The problem can be described as,

Problem 4 (Intermediate robot selection).

min
Snew∈2[N̂]

|Snew| (14)

subject to,∏
i∈Snew

(1−Ri(0, T − Tf )) ≤ α(Tf ), 0 < Tf < T (15)∑
i∈Snew

〈Ai〉 ≥ 〈Af 〉 (16)

where Snew is the newly selected robot set and [N̂ ] is
the current set of robots in the robot pool. α(Tf ) =

α∏
j∈S\rf

(1−Rj(Tf ,T )) with Tf denoting the time instant when

the failure happens. Note that, α(Tf ) is the maximum
probability of failure corresponding to the newly selected
robots such that total probability of failure of the new team,
Snew ⋃

{S\rf} (newly selected robots and the active robots),
is less than α. 〈Af 〉 is the sensing area of the failed robot.

III. METHODOLOGY

In this section, we describe in detail the strategies adopted
by the central controller to solve the problems presented in
Section II.

A. Robot selection strategies

Recall that we consider two types of robot selection
problems in our framework: (1) initial team selection (Prob-
lem 1) and (2) intermediate robot selection (Problem 4).
Mathematically, both robot selection problems can be cast
as mixed integer linear programming (MILP) [21].

Initial team selection solution. We first describe the
MILP associated with Problem 1. Let the vector Π :=
[π1, π2, · · · , πN ]> denote the collection of binary decision
variables which encode the robot team selection. Then the
following MILP formally describes Problem 1 as,

minimize
Π∈{0,1}N

1>Π (17)

subject to [C1, C2, · · · , CN ]
>

Π ≤ β (18)[
R̃1, R̃2, · · · , R̃N

]>
Π ≤ α̃, (19)

[〈A1〉, 〈A2〉, · · · , 〈AN 〉]>Π ≥ δ〈AQ〉, (20)

where R̃i = log(1−Ri(0, T )) and α̃ = log(α). Solving the
MILP above yields the solution to Problem 1.

Intermediate robot selection solution. Since Problem 4
is similar in formulation to Problem 1, it can be solved using
a similar MILP. Let Πp be vector of length N such that its
i-th element is 1 if the robot with label i exists in the robot
pool, otherwise 0. Then the MILP formulation for Problem 4
can be written as:

min
Π∈{0,1}N

1>Π (21)[
R̃1, R̃2, · · · , R̃N

]>
Π ≤ α̃(Tf ), (22)

[〈A1〉, 〈A2〉, · · · , 〈AN 〉]>Π ≥ 〈Af 〉, (23)
Π ≤ Πp. (24)

Equation 24 ensures that only the robots currently avail-
able in the robot pool can be selected. The inequality is
defined element-wise. Solving the MILP above results in the
selection of a minimum set of robots from the the robot pool
satisfying the conditions in Problem 4.
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Algorithm 1: Greedy Placement

Input: • Robot team S and ground location set Q̂;
• Monitoring function H(X|S|, Q̂).

Output: Placement set X|S|.
1: X|S| ← ∅
2: while |X|S|| < N do
3: s = argmax

s∈Q̂\X|S|

H(X|S| ∪ {s}, Q̂)−H(X|S|, Q̂)

4: X|S| ← X|S| ∪ {s}
5: end while

B. Initial placement

After solving Problem 1, the central controller selects an
initial robot team S. The selected robot team is then tasked
to monitor the environment, which we formally describe in
Section II-B as Problem 2. The objective is to maximize
the total coverage functional H(X|S|,Q) by finding a set of
|S| placement locations X|S|. Similar to [14], if we finely
discretize Q into a finite collection of W ∈ N+ grid cells as
Q̂ = {Q̂1, Q̂2, · · · , Q̂W }, then the optimal coverage problem
using at most |S| robots can be expressed as

max
X|S|∈Q̂

H(X|S|, Q̂) (25)

s.t. |X|S|| ≤ |S| � Q̂, Q̂ ⊆ Q.

where H(X|S|, Q̂) is the coverage function defined on the
discretized environment Q̂.

It turns out that the discrete form of the coverage func-
tional in Equation 25 is a normalized monotone submod-
ular function and therefore has the diminishing returns
property [13], [14], [16]. The diminishing returns property
captures the notion that the more robots participate in a
monitoring task, the less gain one gets by adding an extra
robot towards the task. Also, in Problem 2, we consider a
cardinality constraint, i.e., |X|S|| ≤ |S|. That is, we can place
the robots in no more than |S| locations. This is because the
robot team only has |S| robots in total.

The maximization of submodular functions under a cardi-
nality constraint is generally NP-hard [13], [14]. However,
a simple greedy algorithm that selects an element with the
maximal marginal gain on the submodular function in each
round can give a constant-factor (1− 1/e) approximation of
the optimal [13]. We use the greedy algorithm [13] for solv-
ing the monitoring problem (Problem 2) in Algorithm 1. The
running time of Algorithm 1 can be bounded as O(|S|2W ).

C. Tunable resilient coordination

In this section, we describe the resilient coordination that
the central controller employs to mitigate the effect of robot
failures on the monitoring task. Our resilient coordination
is a combination of the solutions to both Problem 3 and
Problem 4. We refer to this combined solution as tunable
resilient coordination.

Algorithm 2: Tunable Resilient Coordination

1: XLf ← ∅
2: [XLf ,∼] = Algorithm 1(RLf , N̂L)

3: X|S\rf | = XLf ∪ XOf
4: if H(X|S\rf |, N̂L)/H(X|S|, N̂L) ≥ γ then
5: Terminate
6: else
7: Request a new robot set Snew by solving the MILP

in Problem 4
8: RLf = RLf ∪ Snew

9: [XLf ,∼] = Algorithm 1(RLf , N̂L)

10: X|S\rf | = XLf ∪ XOf
11: end if

In the first step, the robots in a neighborhood of the
failed robot coordinate to counter the coverage loss due
to the robot failure (solution to Problem 3). For the failed
robot rf , we refer to the robots inside a neighborhood of
size L around it as its L-neighbors and denote them as
RLf . Also, we use NL to represent the L-neighborhood.
N̂L ⊆ Q̂ is the set of grid cells in Q̂ contained in NL.
We denote the robots outside the L-neighborhood of the
failed robot rf as ROf . Notably, the neighborhood size L is
a user-defined tuning parameter, which measures the extent
to which a user wants to utilize the currently active robots in
the team. We first reposition the failed robot’s L-neighbors
(RLf ) using Algorithm 1 to counter the coverage loss through
a local repositioning RLf inside N̂L. This yields a new set of
positions XLf for RLf (Algorithm 2, line 2). It is noteworthy
that, after this step, only the positions of RLf change. The
positions of ROf , denoted XOf , remain unaltered. Thus, we
obtain a new configuration for the active robots, denoted by
X|S\rf | (XLf ∪ XOf , Algorithm 2, line 3). We denote the
coverage of the current robot team (S \ rf , active robots)
within L-neighborhood by H(X|S\rf |, N̂L).

In the second step, we compare the coverage of the
new configuration, H(X|S\rf |, N̂L), with that of the con-
figuration before the robot failure, H(X|S|, N̂L), in the L-
neighborhood. We denote γ ∈ [0, 1] as a user-defined ratio.
If H(X|S\rf |, N̂L)/H(X|S|, N̂L) ≥ γ, the new configuration
is good enough to compensate for the loss and the resilient
coordination is done (Algorithm 2, lines 4-5). Otherwise, the
central controller solves the MILP (Problem 4) to select a
new robot set from the robot pool (Algorithm 2, line 7),
inserts the new robot set into L-neighborhood of the failed
robot (Algorithm 2, line 8), redoes the local repositioning
(Algorithm 2, line 9) and obtains the configuration for the
new team (Algorithm 2, line 10).

Recall that the parameter γ encodes the desired coverage
level required by the user. For example, if γ is set to
1, then the user forces the central controller to adopt a
strategy that maintains the same level of coverage over the L-
neighborhood as before (without the robot failure). A higher
value of γ demands a higher level of coverage and possibly
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more new robots from the robot pool. In future, we will
perform a formal analysis on how the solution of Problem 1
affects the solutions to the other problems.

IV. SIMULATION

We validate our framework for resilient coverage through
simulations based on Problems 1-4 and their corresponding
solutions in Section III.

Simulation setup. We generate a pool of 50 heterogeneous
robots with mean-life span: 420, and a standard deviation
that is 10% of the mean. The reliability function parameters
for each robot are calculated based on its life span [19].
The sensing area and the cost of a robot are generated
proportionally to its life span. We assume that the most
expensive robot costs 50 and has a sensing area of 200. We
set the parameters in the MILP (Equation 17) as β = 500,
α = 0.3 and δ = 1. We select a robot team from a pool of
50 heterogeneous robots to cover a square domain of size
30× 30 during a time period, 500. Thus, we set the area of
the domain as 〈AQ〉 = 900.

We place the robots in the square domain based on the
positions generated from Algorithm 1. The robots are tasked
with monitoring the square domain for a time period of 500.

To simulate a robot failure, we choose a random time
during 0 ∼ 500. At the chosen random time, we pick the
failed robot based on the reliability value using a roulette
wheel technique [22].

Results. Figure 2 depicts three random failure instants and
the repositioning of the active robots after a robot failure.
Here, we set γ = 1. In all cases, the L-neighbors of the
failed robot (black dot) try to compensate the coverage loss
induced by the failed robot through reconfiguration.

To investigate the trade-off between the size of L-
neighborhood and the coverage attained by repositioning L-
neighbors without adding new robots from the pool, we
simulate 10 trials of random robot failure. In each trial,
we compute the coverage functional value attained by the
reconfigured robots for different values of L ∈ {10, 15, 20}.
The results are presented in Figure 3a. Also, Figure 3b shows
the computational time required by Algorithm 1 for different
values of L. From Figure 3, it is clear that there exists a
trade-off between the coverage value attained through local
repositioning of L-neighbors and the computational time
required to compute the reconfiguration. Therefore, a user
can utilize this trade-off to choose a preferred neighborhood
size, L.

Moreover, we simulate another 10 trials of robot failure
to quantify the number of new robots added to the local
L-neighbors with γ = 1 in Figure 4. Figure 4 shows
that the number of new robots requested decreases when
the L-neighborhood size increases, which is intuitively true.
Comparing the results in Figure 3 and Figure 4 one could
arrive at the wrong conclusion that adding new robots to
achieve the desired coverage is equivalent to increasing L.
We use Figure 5 to throw some light on this misconception.

Again, we simulate 10 trials of robot failure. In each trial,
a failed robot is chosen randomly and its L-neighbors are
locally reconfigured. We refer to the coverage functional
value of this configuration as the base coverage. Then
using Algorithm 1, we add new sets of robots with sizes
{10, 20, 30, 40} in the L-neighborhood in terms of different
L values, L ∈ {10, 15, 20}. The coverage values and the
percentage increase of the coverage over the base coverage
is shown in Figure 5. Figure 5 shows that for a small L (L =
10) the change in percentage increase by adding 40 robots as
compared to 10 robots is roughly ≈ 5%, while this change
is roughly tripled (≈ 15%) when L = 20. One possible
reason can be that the coverage functional is submodular
with the diminishing returns property. This means that adding
more robots may not substantially increase the coverage
when a large number of robots are already placed in a small
neighborhood. Therefore, as a rule of thumb, we propose that
it is better to use a small γ with a small L if the user needs
to compensate efficiently for a coverage loss. However, if a
user wants to reach a high coverage, i.e., γ is large, enlarging
the size of L-neighborhood can be necessary.

V. EXPERIMENT

We demonstrate the practical application of our approach
on a hardware system with seven quadrotors. Our experiment
is built around a real-time implementation of Algorithm 2
with γ = 0.0. By setting γ = 0.0, the condition in
Algorithm 2, line 4 is always true, ensuring that no new
robots are needed to be deployed to achieve the desired
coverage. This is done purely for the ease of experiment
implementation. After taking off and moving to a coverage
formation, we simulate a sequence of hardware failures in
the robot team. When a failure occurs, the affected robot
immediately begins a landing trajectory. Meanwhile, the
system queries a human operator to select the neighborhood
size L around the failed robot. The user is presented with
a graphical interface displaying the robots’ positions and an
illustration of the neighborhood perimeter, allowing them to
choose the trade-off between coverage and repositioning cost
based on the current scenario.

Real hardware experiments require a multi-robot motion
planning algorithm to generate collision-free trajectories be-
tween the initial and repositioned placements. Since motion
planning is not the main focus of this paper, we make
several assumptions to simplify this subproblem. First, we
assume a homogeneous robot team such that each goal
position can be filled by any robot in the team. Second,
we assume that the robots are of negligible size compared
to their distances in the coverage formation. These two
assumptions allow a simple motion planning solution using a
goal assignment that minimizes the sum of distances between
each robot’s start position and goal position, and following
straight-line trajectories. Such an assignment cannot have
intersecting trajectories except for degenerate cases [23].
Our implementation verifies that the trajectories do not pass
too closely to account for the size of the robots. In the
general case of heterogeneous robots, or when the robot sizes
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(a) Initial placement with L = 5
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(b) Initial placement with L = 7.5
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(c) Initial placement with L = 10
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(d) Repositioning with L = 5
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(e) Repositioning with L = 7.5
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(f) Repositioning with L = 10

Fig. 2: The figures illustrate three simulated failure instants. The failed robots are colored in black and the active robots are
colored in red. The numbers indicate the labels of the robots selected from a pool of 50 robots. The inner dotted square
depicts the local neighborhood. Blue circles indicate regions of high coverage value (≥ 0.97), green circles shows the regions
with coverage value between 0.50 and 0.97.
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Fig. 3: (a) Comparison of the coverage over the domain for
different neighborhood sizes L. (b) The computational time
(in seconds) required to find the locations of the robots in
the neighborhood for different neighborhood sizes.

are large compared to the formation size, a more advanced
motion planning algorithm such as [24] can be used.

Our experiment is implemented on the Crazyswarm plat-
form [25] composed of miniature quadrotors in an indoor
motion capture space, shown in Figure 6. After the operator
chooses the value of L, we generate a new configuration
using Algorithm 2 and solve the optimal assignment problem
using the Hungarian algorithm [26]. Each robot receives its
new goal position over the radio and executes a smooth
straight-line trajectory using onboard polynomial trajectory
planning, sensor fusion, and control. A video of this exper-
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Fig. 4: Number of new robots requested for different local
neighborhood size when γ = 1.

iment is available in the supplementary material.

VI. CONCLUSION

This article presents a novel centralized framework for
robot team selection and placement in a region such that
the coverage over the region is maximized. Additionally,
the framework provides a resilient coordination strategy to
handle robot failures during a monitoring task. In particular,
the framework rearranges the robots in a user-specified local
neighborhood around the failed robot to attain a user-defined
coverage level. If local repositioning does not achieve the
desired coverage, the framework augments the robot team
with new robots from a pool to meet the coverage demanded
by the user. By specifying the size of the local neighborhood
and the desired coverage level, the user can trade off the
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Fig. 5: (a) Variation in coverage value of the team over
the domain, when robots are added to a failed robot’s
neighbor and repositioned within the neighborhood, for dif-
ferent neighborhood sizes L. (b) Percentage increase in the
coverage value over the domain for the data in Figure 5a.

Fig. 6: Demonstration of Algorithm 2 with seven quadrotors.
Quadrotors highlighted with a red circle are currently active.
Three quadrotors have suffered hardware failures and landed.
Experimental details in Section V.

amount of coverage attained and the computational time
required to achieve the desired coverage level.

Our framework is validated through simulations and a
proof-of-concept experiment using a team of seven quadro-
tors. From the simulation results, we infer that adding more
robots to the robot team may not always result in sufficient
increase in the coverage due to the diminishing returns
property of the coverage function.

We are currently working on rigorously analyzing the
interplay between user-defined parameters and the coverage
performance. A future avenue is to incorporate decentralized
submodular optimization [27] into our framework and study
the trade-off between centralized and decentralized compo-
nents in the framework.
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