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Abstract— We study active preference learning as a frame-
work for intuitively specifying the behaviour of autonomous
robots. A user chooses the preferred behaviour from a set of
alternatives, from which the robot learns the user’s preferences,
modeled as a parameterized cost function. Previous approaches
present users with alternatives that minimize the uncertainty
over the parameters of the cost function. However, different
parameters might lead to the same optimal behaviour; as a
consequence the solution space is more structured than the
parameter space. We exploit this by proposing a query selec-
tion that greedily reduces the maximum error ratio over the
solution space. In simulations we demonstrate that the proposed
approach outperforms other state of the art techniques in both
learning efficiency and ease of queries for the user. Finally, we
show that evaluating the learning based on the similarities of
solutions instead of the similarities of weights allows for better
predictions for different scenarios.

I. INTRODUCTION

Recently, research in human robot interaction (HRI) has
focused on the design of frameworks that enable inexperi-
enced users to efficiently deploy robots [1]–[6]. Autonomous
mobile robots for instance are capable of navigating with
little to no human guidance; however, user input is required
to ensure their behaviour meets the user’s expectations. For
example, in industrial facilities, a robot might need to be
instructed about the context and established workflows or
safety regulations [7] or an autonomous car should learn
which driving style a passenger would find comfortable [8],
[9]. Users who are not experts in robotics find it challenging
to specify robot behaviour that meets their preferences [3].

Active preference learning offers a methodology for a
robot to learn user preferences through interaction [1]–
[3], [10]–[12]. Users are presented with a sequence of
alternative behaviours to a specific robotic task and choose
their preferred alternative. Figure 1 shows an example
of learning user preferences for an autonomous vehicle
where alternative behaviours are presented on an interface.
Usually, the user is assumed to make their choice based on
an internal, hidden cost function. The objective is to learn
this cost function such that a robot can optimize its behaviour
accordingly. Often, the user cost function is modelled as a
weighted sum of predefined features [1]. Hence, learning
the cost function is reduced to learning the weights. The key
questions in this methodology are (1) how to select a set of
possible solutions that are presented to the user such that the
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(a) Optimal behaviour. (b) Learned behaviour.

Fig. 1: Behaviour of an autonomous car (red) in the presence
of another vehicle (white). In (a) we show the optimal
behaviour for some user. In (b) we show alternative paths
presented during active preference learning. Darker shades
of red indicate behaviour that was presented later. The figure
was created using code from [2].

cost function can be learned from few queries to the user,
and (2) can the user choose reliably between these solutions.

In this work we propose a new approach for selecting
solutions in active preference learning. In contrast to the
work of [1], [2], [13] our approach does not focus on
reducing the uncertainty of the belief over the weights;
instead, we consider the set of all possible solutions to
the task. Different weights in the user cost function might
correspond to similar or even equal optimal solutions; in
optimization problems this is known as sensitivity [14].
Thus, even if the estimated weights do not equal the true
user weights, the corresponding solution might be the same.
Therefore, we propose a new measure for active preference
learning: The regret of the learned path. The concept of
regret is known in robust shortest path problems [15], [16].
Consider two sets of weights for a user cost function, one
that is optimal for a user and one that was estimated through
active preference learning. The regret of the estimate captures
the suboptimality of the solution found using the estimated
weights, i.e., the ratio of the cost of the estimated solution
evaluated by the optimal weights and the cost of the optimal
solution, evaluated by the optimal weights.

We use the notion of regret to select alternatives to show to
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the user. From a set of solutions that are considered equally
good for the user given the feedback obtained so far, we
choose the pair of solutions (P,Q) that, if P is the optimum,
the ratio of costs is maximised. As the user either rejects
P or Q we remove the most sub-optimal alternative from
our solution space. In each iteration, our proposed approach
optimizes over the set of all solutions that are consistent with
the user feedback obtained so far. It then presents the user
with the pair of solutions where the regret is maximized.

Following the motivation for regret, we evaluate the results
of active preference learning based on the learned solution,
instead of the learned weights. Therefore, we use the relative
error in the cost of paths as a metric. This mirrors how an
actual user would evaluate a robot’s behaviour: Users are
not interested in what weights are used by a robot’s motion
planner; one of the main motivations for active preference
learning is that users find it challenging to express weights
for cost or reward functions. Instead users judge a robot’s
behaviour by how similar it is to what they deem as optimal.

A. Related Work

The concept of learning a hidden cost or reward function
from a user is widely used in various human-robot interaction
frameworks, such as learning from demonstrations (LfD) [4],
[17], learning from corrections [18], [19] and learning from
preferences [1], [3], [12], [13], [17].

Closely related to our work, the authors of [1], [13] and
[2] investigate how active preference learning can be used to
shape a robot’s behaviour. Thereby a general robot control
problem with continuous states and actions is considered.
The user cost function is modelled as weighted sum of
features. They show that the robot is able to learn user pre-
ferred behaviours from few iterations using active preference
learning. In [1] and [13], Dragan and colleagues investigate
a measure for selecting a new pair of possible solutions to be
shown to the user based on the posterior belief over the set
of all weights. In detail, new solutions are selected such that
the integral over the unnormalized posterior, called volume,
is minimized in expectation. This approach is revised in [2],
where a failure case for the volume removal is demonstrated.
As an alternative measure, the authors propose the informa-
tion entropy of the posterior belief over the weights. We show
that both of the above approaches disregard the sensitivity
of the underlying motion planning problem: Learning about
weights of a cost function can be inefficient, as different
weights can lead to the same optimal behaviour. In our
previous work [12] we discretized the weight space into
equivalence regions, i.e., sets of weights where the optimal
solution of the planning problem is the same.

Another concern during active preference learning is to
present alternatives to the user that are easy for them to
differentiate which leads to a lower error rate. The authors
of [20] investigate strategies for active learning that consider
the flow of the queries to reduce the mental effort of the
user and thus decrease the user’s error rate. Similarly, [2]
optimizes for queries that are easy to answer. In our work, we
present an active query strategy that features these properties

intrinsically: By maximizing the regret of the presented
paths, we automatically choose paths that are different with
respect to the user cost function and thus are expected to be
easily distinguishable for the user.

B. Contributions

We contribute to the ongoing research in active preference
learning as a framework for specifying complex robot be-
haviours. We propose a measure for evaluating the solution
found by preference learning based on the robot’s learned
behaviour instead of the learned weights in the cost function.
Further, we propose a new active query selection guided
by the maximum error ratio between solutions. Thereby,
users are presented with the pair of solutions that has the
maximum error ratio among all paths in the feasible solution
space. We demonstrate the performance of our approach by
comparing it to a competing state of the art technique and
show that our proposed method learns the desired behaviour
more efficiently. Moreover, the queries the user is presented
with are easier to answer and thus lead to more reliable user
feedback. Finally, we demonstrate how our measure based on
solutions gives better predictions about the behaviour of the
robot in different scenarios that were not part of the learning.

II. PROBLEM STATEMENT

Preliminaries: Let X be the state space of a robot
and the environment it is acting in and x0 some start state.
Further, we have an action space A where each a ∈ A
potentially only affect parts of the state, i.e., there might be
static or dynamic obstacles unaffected by the robot’s actions.

Further let P be a path of finite length starting at x0. A
path is evaluated by a column vector of predefined features
φ(P ) = [φ1(P ), φ2(P ), . . . , φd(P )]T . Together with a row
vector of weights w we define the cost of a path as

c(P,w) = φ(P )w. (1)

Given some weight w′ let the optimal path be P ′ =
arg minP c(P,w

′). The optimal cost for a weight is

c∗(w′) = c(P ′,w′). (2)

For any other weight w, we call c(P ′,w) the cost of P ′

evaluated by w.

Problem Formulation: We consider a robot’s state and
action space (X ,A) and some start state x0. Further, let a
vector of weights wuser, describing a user’s preference for
the robot’s behaviour and the corresponding optimal path
P user. Each weight wuser

i has a lower and upper bound li
and ui. However, wuser itself is hidden. We can learn about
wuser by presenting the user with pairs of paths (P,Q) over
k iterations. The objective is to find an estimated path P k

that reflects the user preferences wuser, i.e., is as similar to
P user as possible. To evaluate the result of learning wuser the
authors of [1] propose the alignment metric, i.e., the cosine
of the angle between the learned weight vector w and wuser.
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We adapt this metric and transform it to a normalized error
between 0 and 1, which we call the weight error:

ErrWeight(w,w
user) =

1

2

(
1− w ·wuser

||w||2||wuser||2

)
. (3)

The alignment metric was also used in [2], [13]. However,
this metric has two potential shortcomings: 1) It does not
consider the sensitivity of the optimization problem that
finds an optimal path for a given weight vector. Thus, an
error in ErrWeight might actually not result in a different
optimal path. Moreover, even if the learned weight has
a relatively small error, the corresponding path might be
suboptimal to the user. 2) The weight error is not suitable as
a test error (i.e., to test whether the learned user preferences
generalize well to new task instances not encountered during
learning) since it does not consider the robot’s resulting
behaviour: ErrWeight(w,wuser) is equal for all training and
test instances. Hence, the weight error gives no insight into
how well the estimated preferences translate into different
scenarios, unless ErrWeight(w,w

user) = 0, i.e,. the optimal
weights are found. Therefore, we choose a different metric
for evaluating the learned behaviour: Instead of the learned
weight wk we consider the learned path P k. We compare
the cost of P k, evaluated by the user’s true cost wuser to
the optimal cost path of wuser:

ErrPath(P
k,wuser) =

c(P k,wuser)

c∗(wuser)
− 1. (4)

This error was proposed in [21] and we refer to it as the
path error. A similar error was used in [22] for finding risk-
aware policies in inverse reinforcement learning. Based on
this metric we can now formally pose the learning problem.

Problem 1. Given (X ,A) and x0, and a user with hidden
weights wuser who can be queried over k iterations about
their preference between two paths P and Q, find a weight
wk with the corresponding optimal path P k starting at x0

that minimizes ErrPath(P,w
user).

III. ACTIVE PREFERENCE LEARNING

We introduce the user model and learning framework of
our active preference learning approach and then discuss sev-
eral approaches for selecting new solutions in each iteration.

A. User Model

To learn about wuser and thus find P ′, we can iteratively
present the user with a pair of paths (P,Q) and they return
the one they prefer:

c(P,wuser) ≤ c(Q,wuser) =⇒ the user returns P,
c(P,wuser) > c(Q,wuser) =⇒ the user returns Q.

(5)

However, a user might not always follow this model exactly.
For instance, they might consider features that are not in the
model or they are uncertain in their decision when P and
Q are relatively similar. Thus, we extend equation (5) to a
probabilistic model, similar to our previous work in [12]. Let

IP,Q be a binary random variable where IP,Q = 1 if the user
prefers path P over Q, and −1 otherwise. Then we have

P
(
IP,Q = 1|c(P,wuser) ≤ c(Q,wuser)

)
= p,

P
(
IP,Q = −1|c(P,wuser) ≤ c(Q,wuser)

)
= 1− p,

(6)

where 1/2 < p ≤ 1. If p = 1 we recover the deterministic
case from equation (5). In this very simple model the user’s
choice does not depend on how similar P and Q are. In the
simulations we simulate the user with to the more complex
model in [2], which poses the user’s error rate as a function
of the similarity between alternatives, and show that equation
(6) nonetheless allows us to achieve strong performance.

B. Learning Framework

Over multiple iterations, equation (5) yields a collection
of inequalities of the form (φP − φQ)w ≤ 0. We write
the feedback obtained after k iterations as a sequence
Uk = {(P 1, Q1), (P 2, Q2), . . . , (P k, Qk)}. Without loss of
generality, we assume that for any pair (P,Q) in Uk the path
P was preferred over the path Q. We then summarize the
left-hand-sides (φP −φQ) for all k iterations using a matrix
Ak. Based on the sequence Uk we can compute an estimate
wk of wuser by taking the expectation.

Deterministic case: In the deterministic case, i.e.,
p = 1, the estimate wk must satisfy Akwk ≤ 0 to
be consistent with the user feedback obtained thus far.
The set of all such weights constitutes the feasible set
F = {w ∈ Rd|li ≤ wi ≤ ui, Akw ≤ 0}.

C. Active Query Selection

In active preference learning we can choose a pair of
paths (P,Q) to present to the user in each iteration k.
Throughout this work we only consider paths P and Q that
are optimal for some weights wP and wQ. Given the user
feedback obtained until iteration k, a new pair (P k, Qk)
is found by maximizing some measure f(wP ,wQ, Uk−1)
describing the expected learning effect from showing
(P k, Qk) to the user. Recently, several measures have been
introduced: Removing the Volume, i.e., minimizing the
integral of the unnormalized posterior over the weights [1],
[13], maximizing the information entropy over the weights
[2] and removing equivalence regions, i.e., sets of weights
where for each weight has the same optimal path [12].

Parameter space and solution space: The first two
approaches maximize information about the parameter space,
i.e., the weights w, instead of the solution space, i.e., the
set of all possible paths P . Despite its motivation based on
inverse reinforcement learning, this has a major drawback:
The difference in the parameters does not map linearly
to the difference in the features of corresponding optimal
solutions. Given some wP and wQ, we can compute optimal
paths P and Q with features φP and φQ, respectively.
Then ||wP − wQ|| ∝ ||φP − φQ|| does not necessarily
hold. Thus, learning efficiently about w does not guarantee
efficient or effective learning about paths. Moreover, learning
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Fig. 2: Example of the sensitivity of a continuous motion
planning problem. We show the histogram of the normalized
weight error ErrWeight and the normalized path error ErrPath
for 3000 uniformly sampled random weights.

about w might allow for disregarding a large number of
weights. However, the corresponding optimal paths might
be very similar and thus the learning step is potentially less
informative in the solution space.

Example 1. We consider the autonomous driving example
from [2] which is posed in a continuous state and ac-
tion space, illustrated in Figure 1. In Figure 2 we com-
pare the weight error ErrWeight(w,w

user) and the path
error ErrPath(P,wuser) of 3000 uniformly random samples.
While the weight error is distributed uniformly, the path error
distribution takes nearly a discrete form, despite the continu-
ous action space. This illustrates how different weights do not
necessarily lead to different solutions, making the solution
space more structured than the parameter space.

In our previous work [12] we proposed a query selection
based on a discretization of the weight space: Sets of weights
that have the same optimal path are labeled as equivalence
regions. The objective then is to maximally reduce the pos-
terior belief over equivalence regions, i.e, to reject as many
equivalence regions as possible. A drawback of this approach
is that there exists cases where any query only allows for
updating the belief of few equivalence regions, resulting in
slow convergence. Because of these limitations of the ex-
isting approaches we study a new measure f(wP ,wQ, Uk)
based on the solution space.

IV. MIN-MAX REGRET LEARNING

We propose a new measure f(wP ,wQ, Uk) called the
maximum regret, which we seek to minimize.

Definition 1 (Regret of weights). Given a weight wP with
its corresponding optimal path P and some weight wQ, the
regret of P under wQ is

r(wP ,wQ) =
c(P,wQ)

c∗(wQ)
. (7)

Regret expresses how sub-optimal a path P is when
evaluated by some weights wQ. In active learning, this can
be interpreted as follows: If P is the final estimate, but Q
is the optimal solution, how large is the ratio between the

cost of P , evaluated by wQ, and the optimal cost? We now
formulate an approach for selecting which alternatives to
show to the user by using regret.

A. Deterministic Regret

When assuming a deterministic user, we need to assure
that wP ∈ Fk and wQ ∈ Fk, such that the presented paths
reflect the user feedback obtained so far. Given wP we pose
the Maximum Regret under Constraints Problem (MRuC) as

max
wQ

r(wP ,wQ)

s.t. AkwQ ≤ 0,

li ≤ wQ
i ≤ ui.

(8)

The objective can be written in the form
maxwQ,φQ φ

QwQ
/c∗(wP ). This is a bi-linear program, which

are a generalization of quadratic programs. Unfortunately,
in our case the objective function is non-convex; generally,
such problems are hard to solve.

Symmetric Regret: In equation (8) we have defined the
maximum regret problem when one path is given. While
presenting users with a new pair of paths (P,Q), we want
to find paths where the regret of wP under wQ is maximized
and vice versa. Thus, we rewrite the objective in (8) to
r(wP ,wQ) + r(wQ,wP ), which we call the symmetric
regret. The maximum symmetric regret of a feasible set Fk

can be found with the following bi-linear program:

max
wP ,wQ

r(wP ,wQ) + r(wQ,wP )

s.t. AkwP ≤ 0,

AkwQ ≤ 0,

li ≤ wP
i ≤ ui, li ≤ wQ

i ≤ ui.

(9)

Similar to equation (8) this is a non-convex optimization
problem. In the evaluation we solve this problem by sam-
pling a set of weights and pre-computing the corresponding
optimal paths, following the approach in [1].

B. Probabilistic Regret

We now formulate regret with consideration of the user’s
uncertainty when choosing among paths. Taking a Bayesian
perspective we treat wuser as a random vector. This allows
us to express a posterior belief over wuser given an obser-
vation IP,Q. Let cP = c(P,wuser) and cQ = c(Q,wuser),
respectively. Further, we assume a uniform prior over wuser.
For any estimate w where (φP − φQ)w ≤ 0 we have

P(wuser = w|IP,Q) ∝ P
(
IP,Q|cP ≤ cQ

)
. (10)

Let P(w|IP,Q) denote P(wuser = w|IP,Q = 1). We
calculate the posterior given a sequence of user feedback
Uk = {(P 1, Q1), (P 2, Q2), . . . , (P k−1, Qk−1)} as

P(w|Uk) ∝
∏

(P,Q)∈Uk

P(w|IP,Q). (11)

We formulate the symmetric regret in the probabilistic case
by weighting the regret by the posterior of wP and wQ:
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Algorithm 1: Maximum Regret Learning
Input: (X ,A), x0,K
Output: P best

1 Initialize U0 = ∅
2 Sample a set of weights Ω
3 for k = 1 to K do
4 wP ,wQ ← max regret((X ,A), x0, U

k−1,Ω)
5 P,Q← opt path(wP ), opt path(wQ)
6 Ik ← user feedback(P,Q)
7 if Ik = −1 then
8 Uk = Uk−1 ∪ (P,Q)

9 else
10 Uk = Uk−1 ∪ (Q,P )

11 return opt path(Ew[w|Uk)])

Rk(wP ,wQ|Uk)

= P(wP |Uk)P(wQ|Uk)
(
r(wP ,wQ) + r(wQ,wP )

)
.

(12)
That is, we discount the symmetric regret such that we

only consider pairs (P,Q) where both wuser = wP and
wuser = wQ are likely given the user feedback Uk.

Finally, we adapt the problem of finding the maximum
symmetric regret from equation (9) to the probabilistic case.
As we cannot formulate a feasible set F for a probabilistic
user, we consider a finite set Ω where each w ∈ Ω is
uniformly randomly sampled from the set {w ∈ Rd|li ≤
wi ≤ ui}. We then take the maximum over all w ∈ Ω to
compute the probabilistic maximum regret

Rk
max(Uk) = max

wP ,wQ∈Ω

[
Rk(wP ,wQ|Uk)

]
. (13)

In min-max regret learning, we choose the pair of paths
(P,Q) that is the maximizer of equation (13).

C. Preference Learning with Probabilistic Maximum Regret

Our proposed solution for active preference learning using
probabilistic maximum regret is summarized in Algorithm 1.
In each iteration we find the pair (wp,wQ) that maximizes
the probabilistic symmetric regret as in equation (13) over
a set of samples Ω (line 4). We then obtain user feedback
Ik = 1 if the user prefers path P and Ik = −1 otherwise (line
7) and add the feedback to a sequence (line 6-10). After K
iterations, we return the path that is optimal for the expected
weight, given the observed user feedback (line 11). Using the
maximum regret in the query selection is a greedy approach
to minimize the maximum error. Given the current belief over
the weights, we choose the pair P,Q with the maximum error
ratio, discounted by the likelihoods of wP and wQ.

V. EVALUATION

We evaluate the proposed approach using the simulation
environment from [2], allowing us to compare our approach
to theirs in the same experimental setup. To label the

approaches let Entropy denote the maximum entropy
learning from [2] and Regret our maximum regret learning.

Learning experiments: First, we consider one of the ex-
periments in [2]: The autonomous driving scenario (Driver)
where an autonomous car moves on a three lane road in the
presence of a human-driven vehicle as shown in Figure 1.
Paths are described by four features: Heading relative to the
road, staying in the lane, vehicle speed, and the distance to
the other car. Every feature is averaged over the entire path.
Furthermore, we introduce the Extended Driver experiment
with additional features to create a more complex scenario.
In addition to the above features we add the distance travelled
along the road, the summed lateral movement, summed
and maximum lateral and angular acceleration, the minimal
speed, and the minimum distance to the other vehicle. We
choose the Driver example because the entropy approach
from [2] showed strong results and this scenario was already
previously investigated in [1]. The extension aims to show
how the learning techniques behave in higher dimensions.

Additionally we consider a third experiment adapted from
[3], [12]: An autonomous mobile robot navigates between
given start and goal locations in a known environment.
However, there are n areas in the environment that a user
marked as desired or undesired for robot traffic. Each such
area is a soft constraint, i.e., there is a penalty or reward
associated with it, which can be expressed by a weight. By
defining features for all areas describing if a robot trajectory
passes through yields a cost function of the form c(P ) =
φ(P )w. Here φ is an n+ 1 dimensional vector, the first n
entries are the features describing the length of path P in
area i for all i = 1, 2, . . . , n. The n+1-th feature is the time
it takes the robot to execute path P . The robot is unaware
of the value of each penalty and reward, i.e., the weights w
are not given to the robot, yielding an instance of Problem
1. We will refer to this experiment as Mobile. The instance
of the problem used for evaluation consists of 18 areas; thus,
the dimensionality of the feature and weight space is 19.

Optimal paths: Given a weight w we need to find
the corresponding optimal path P in order to evaluate the
path error (and to compute regret in Algorithm 1). In [2] no
motion planner is given; in the experiments we rely on the
generic non-linear optimizer L-BFGS [23] for the Driver
and Extended Driver experiments. However, depending on
the problem, this solver can return suboptimal solutions. To
mitigate this effect, we pre-sample paths which are used as a
look-up-table. Given a path that was found using L-BFGS,
we iterate over all pre-sampled paths; if a sampled path
yields a better cost for the given weight, we use that path
instead. In both experiments, the entropy approach uses the
implementation provided by [2] where queries are chosen
from 500, 000 pre-sampled pairs of random paths. Since
regret requires optimal paths, the regret approach uses a
set of 200 weights with their corresponding optimal paths,
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yielding 40, 000 possible pairs of paths1. Finally, in these
experiments the behaviour is actually captured by a reward
and not a cost. Thus, an optimal path is found by minimizing
the negative cost and we change the definition of regret to
r(wP ,wQ) = 1− c(P,wQ)/c∗(wQ).

In the Mobile experiment the robot moves using a state
lattice planner [24]; given a weight w we can always find
an optimal path in polynomial time. We varied the problem
setup by choosing three different start and goal locations
for the robot to navigate between. For each start goal pair
we need to pre-sample paths individually. The discrete state
space led to a significantly smaller set of pre-samples, vary-
ing between 5 and 32. However, using randomly generated
paths as in [2] for Entropy led to very poor performance.
Therefore, we slightly modified the Entropy approach for
this experiment, such that the same pre-samples were used
as for the Regret approach.

Simulated users: We simulate user feedback using the
probabilistic user model from [2]. Given two paths, the user’s
uncertainty depends on how similar the paths are with respect
to the cost function evaluated for wuser:

P (I = 1|(P,Q),wuser) =
ec(P,wuser)

ec(P,wuser) + ec(Q,wuser)
. (14)

The probabilistic regret is computed using pre-sampled
weights as described in Algorithm 1, with an uncertainty of
p = 0.85 in equation (6). Similar to [2] for each experiment
we sample a user preference wuser uniformly randomly from
the unit circle, i.e., ||wuser||2 = 1. We notice that this
can include irrational user behaviour: A negative weight on
heading for instance would encourage the autonomous car
to not follow the road.

A. Learning error

In Figure 3 we compare Entropy to Regret on both
metrics over 10 iterations for the two experiments, each
repeated 200 times. In the boxplots the center line shows
the median and the green triangle shows the mean.

In the driver example, Entropy overall achieves a smaller
weight error and smaller deviations from the mean, repro-
ducing the results from [2]. In the path space we observe
that Entropy achieves a slightly better result in the last two
iterations. However, between iteration 2 and 8, the Regret

approach performs better, i.e., learns more quickly. Overall,
both approaches perform equally well.

For the Extended Driver example in Figure 3b, both
approaches make limited progress on the weight metric and
exhibit large deviations. For the path error we observe that
Entropy performs better initially, but makes little progress
after iteration 6. The final median lies at ≈ 0.05 at iteration
10, but the highest quartile still reaches up to 0.2. The
Regret approach achieves a lower mean and median error in
iteration 4 and subsequently improves further. At iteration 8

1Using sampled optimal paths for the entropy approach did not lead to
different results in the experiments, therefore we show the results using the
original implementation.

(a) Driver

(b) Extended Driver

(c) Mobile robot

Fig. 3: Comparison of active preference learning with max-
imizing entropy and minimizing regret.

the mean and median are close to 0, the box plot also shows
that three quarters of all trials are very close to convergence.

Figure 3c illustrates the result for the Mobile experiment.
Here, the weight error shows no difference between the two
approaches; both perform equally poorly and inconsistently.
At the same time the path error shows a large difference.
Regret achieves convergence for nearly all trials after just
5 iterations (some outliers cause the mean value to still be
at ≈ 0.05). At the same time the performance of Entropy is
inferior: Even though the median error becomes 0 in iteration
8, the mean value is still ≈ 0.15 with large deviations.

In conclusion, Regret achieves an equally good result as
Entropy on the path error for the Driver experiment, despite
having a larger weight error. That is, while the weights
found by Entropy are more similar to wuser based on the
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Fig. 4: The likelihood that the simulated user gives the
’correct’ answer, i.e., the probability in equation (14).

alignment metric, the resulting behaviour of Regret and
Entropy are equally good. Moreover, the Extended Driver
and Mobile experiments have shown that the performance of
Entropy deteriorates for higher dimensions, i.e., larger sets
of features. In contrast, Regret still achieves a very strong
performance on the path error.

B. Easiness of queries

A major contribution of [2] is the design of queries that
are easy for the user to answer, i.e., the probability that the
user choice is inconsistent with the assumed cost function
from equation (14) is low. In maximum regret learning we
do not directly consider the user’s uncertainty when choosing
a new pair of paths. However, as the paths maximizing the
probabilistic symmetric regret have a large difference on cost,
our approach implicitly selects paths P,Q that potentially
are easy for a user to answer. To compare the easiness of the
queries presented to the user, we consider the probability that
the user would choose the path with lower cost, evaluated
by wuser (14). In Figure 4 we compare the probability of
correct user answers for Entropy and Regret.

In the Driver experiment, we recorded a mean probability
of 0.84 for Entropy, which is slightly worse than reported
for the strict queries in [2], where correct answers occurred
in 87% of cases. Nonetheless, with Regret the simulated
answers had a mean probability of being correct of 0.94,
outperforming Entropy. In Figure 4, we observe that both
approaches achieve very high probabilities for correct user
answers in the first iteration, i.e., ask an easy question. After-
wards, the probabilities get smaller: The median of Entropy
decreases to 0.9 in iteration 3 and the deviations increase
significantly. The Regret approach maintains higher median
values for all iterations. Interestingly, we observe cyclic
decreases of the mean (and increases for the deviations)
in iterations 4, 8 and 10. According to the user model the
presented paths were very similar, indicating that the learning
might have been close to convergence. This aligns with the
small errors of the expected weight reported in Figure 3a.

In the Extended Driver experiment the user behaviour
is much more accurate for both approaches with a mean
of 0.92 for Entropy and 0.96 for Regret. This indicates
that the sampled paths differ more in cost. From iteration

Fig. 5: Relationship between training errors measured by the
path and weight metric to test errors in the path metric.

7 onwards, Entropy starts to show larger deviations, i.e.,
questions become more difficult to answer, implying that
the presented paths are very similar. Together with the very
small decrease in path error the we observed in Experiment 1
(Figure 3b) at the same iteration, this leads to the conjecture
that Entropy is converging to a local optimum. Finally, the
Mobile experiment did not show any difference between the
two approaches, both achieving a very high accuracy of 0.99.

Overall, these results strongly support our claim that
maximizing regret implicitly creates queries that are easy
for the user to answer.

C. Generalization of the error

Finally, we investigate how the two error metrics general-
ize to different scenarios, independent of whether the error
is a result of learning with Entropy or Regret. That is,
we investigate how useful each error metric is for predicting
the robot’s performance when deployed in a new instance of
the problem not encountered during learning. For the Driver
experiment we use the setup from Figure 1 as a training case
and construct five test cases by changing the initial state
of the human driven vehicle (white). The weight error is
scenario independent, it directly describes how similar the
estimated weight is to wuser. Thus, the weight error is the
same in training and test cases and cannot be used as test
error, as this would contain no additional information about
performance on the test case. Hence, we use the path error
as the test error. Further, we notice that if the weight error
is zero, i.e., the weights have been learned perfectly, then
the path error is zero in all scenarios. However, as shown in
Figure 3 and in [1], [2] the weights typically do not converge
to the true user weight within few iterations. Given some
weight the path errors are fixed values in every test scenario.
We are interested in how well the weight error and the path
error of the training predict the path error of the test scenario.

We generate 40 different random user weights wuser and
then generate 200 estimates of each of these weights. For
every estimate we find the optimal path and compute the
path and weight error which are used as training errors for
the estimate. In Figure 5 we show how these training errors
relate to the test error. We compare the path and weight error
as a measure of generalisation performance (i.e., how well
the weight and path errors predict the test case performance).

We observe that the path error translates linearly between

10958



training and test scenarios: Given a weight with a certain
path error in the training scenario, the weight yields paths in
the test scenarios that have a similar path error, on average.
The relationship between weight error and test error is more
complex. For a weight error of 0− 0.01 during training, we
observe a test error of 0, i.e., if the weights are very close to
the optimum, the optimal solution is found in every scenario.
However, for larger training errors the test error shows large
deviations, implying that a low weight error in training is not
a robust measure of how good the resulting behaviour is in
test cases. The observation is supported by a strong Pearson
correlation of p = 0.92 between training and test error for
the path error, but a much weaker correlation of p = 0.28
for the weight error. This lends support to the claim that
the path error is better suited for making predictions of the
performance in scenarios that were not part of the training.

We conducted a the same experiment for the Extended
Driver scenario. The correlation of the path error is weaker,
but with p = 0.80 still substantially stronger than for the
weight error where we observed p = 0.27. In the Mobile
scenario, training and test instances are defined by multiple
start-goal pairs. However, we observed no correlation for
both path error and weight error. The features in this scenario
are local, i.e., describe if the robot visits a certain part of
the environment. Learning about one task gains insufficient
information to always find a good path for a different task.

In summary, we observe that the path error is more suitable
than the weight error for reliable predictions of the test per-
formance in scenarios with global features. However, higher
dimensions can weaken the reliability, and local features may
not allow for any predictions.

VI. DISCUSSION

In this paper we investigated a new technique for generat-
ing queries in active preference learning for robot tasks. We
have shown that competing state of the art techniques have
shortcomings as they focus on the weight space only. As an
alternative, we introduced the regret of the cost of paths as
a heuristic for the query selection, which allows to greedily
minimize the maximum error. Further, we studied an error
function that captures the cost ratio between the behaviour of
estimated preferences and the optimal behaviour, instead of
the similarity of weights. In simulations we demonstrated
that using regret in the query selection leads to faster
convergence than entropy while the queries are even easier
for the user to answer. Moreover, we have shown that the
path error allows for better predictions for other scenarios.

For future work special cases such as discrete action
spaces in the form of lattice planners should be investi-
gated. This would give further inside into the computational
hardness of finding the maximum regret and potentially
allow for solution strategies that do not require pre-sampling
weights and paths. Richer user feedback such as an equal
preference option could be of interest, promising results for
this approach were presented in [2], [13]. Finally, regret
based preference learning should be investigated in a user
study to show the practicality of this approach.
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