
  

  

Abstract— Human-robot collaborative assembly consists of 

humans and automated robots, who cooperate with each other 

to accomplish complex assembly tasks, which are difficult for 

either humans or robots to accomplish alone. There has been 

some success in statistics-based and optimization-based 

approaches to realize human-robot collaboration. However, 

they usually need a set of complex modeling and setup efforts 

and the robots usually need to be programmed by a well-trained 

expert. In this paper, we take a new approach by introducing 

convolutional neural networks (CNN) into the teaching- 

learning-collaboration (TLC) model for collaborative assembly 

tasks. The proposed approach can alleviate the need for 

complex modeling and setup compared to the existing 

approaches. It can collect and automatically label the data from 

human demonstrations and then train a CNN-based robot 

assistance model to make the robot assist humans in the 

assembly process in real-time. We have experimentally verified 

our proposed approach on a human-robot collaborative 

assembly platform and the results suggest that the robot can 

successfully learn from human demonstrations to automatically 

generate right actions to assist human in accomplishing 

assembly tasks. 

I. INTRODUCTION 

    The human-robot collaborative assembly has become 

popular research in recent years due to the difficulty of 

automating the tasks. By involving human and robot into the 

same workspace, the human-robot collaborative assembly 

includes diverse research such as human intent prediction [1], 

object recognition and grasping, human-friendly trajectories 

generating [2], and robot teaching and learning techniques 

[3], [4], etc. 

    Early research on processing planning of assembly tasks 

was typically based on the task-allocation situation [5]. 

However, it is very challenging to apply these techniques to 

human-robot collaborative assembly situations because of the 

extensive uncertainties introduced by both task flexibilities 

and human operations. For instance, different human 

operators may prefer to assemble the same product with 

different gestures, different tools and/or different sequences 

of operations. These challenges have stimulated a variety of 

research in the field:  

Tsarouchi et al. [6] has given a review on human-robot 

interaction related to task planning and programming with an 

emphasis on the manufacturing environment. Some of the 
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principles such as human comfort, natural motion have been 

studied in human-aware robot navigation [7]. There were 

some studies on statistics-based approach:  Calinon et al. [8] 

presented a task-parameterized movement learning approach, 

Rozo et al. [9] extend the approach to task-parameterized 

impedance learning in human-robot collaborative assembly 

task, which is based on a statistical representation of 

dynamical system that can be modulated with respect to task 

variables represented as candidate frames of reference. There 

were also some studies on optimization-based approach: 

Mainprice et al. [10] presented a framework to predict human 

reaching motion in collaborative tasks using inverse optimal 

control, which is based on Path Integral Inverse 

Reinforcement Learning (PIIRL) and Stochastic Trajectory 

Optimizer for Motion Planning (STOMP). 

However, when applying these existing approaches to 

human-robot collaborative assembly, the collaborative tasks 

usually need a set of complex modeling and setup efforts [11], 

and robots usually need to be programmed by a well-trained 

expert. This increases the cost of applying collaborative 

robots in human-robot assembly and also makes the 

collaborative robots very complicated and very inconvenient 

for end-users to use.  

Therefore, in order to address this challenge, in this paper, 

we introduce deep learning to make robots easily learn 

undefined task and workspace situation from human 

demonstrations and enable the trained robots to actively assist 

human operators in the human-robot collaborative assembly 

in real-time.  

Deep learning methods have dramatically improved the 

state-of-art in visual object recognition and object detection 

[12]. Taking advantage of the outstanding performance of 

object recognition, many types of research have been done in 

robotic grasping based on convolutional neural networks 

(CNN) [13]. In robotic motion control perspective, Zhang et 

al. [14] presented a vision-based deep reinforcement learning 
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Fig. 1.  The system diagram of the TLC model. 
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for robot motion control;  the research of Pwhich et al. [15] 

revealed that the end-to-end training results in a better 

performance in control policy search and robots can learn 

control policies for a wide range of tasks on the same neural 

networks. These existing works motivate us to introduce 

CNN into human-robot collaborative assembly tasks. We 

propose to recognize the state of the assembly objects and the 

environment of the workspace through CNN and predict the 

corresponding responses of robots to actively assist human 

operators in human-robot collaborative assembly tasks.    

The contributions of the paper can be summarized as (a) 

proposing a CNN based approach to make robot learn to 

assist humans in collaborative assembly from human 

demonstrations; (b) using CNN to alleviate the need of 

complex modeling and setup of traditional approaches; (c) 

online data collection and automatic image labeling for the 

training of CNN.  

II. PROBLEM FORMULATION 

A. An overview of the TLC model 

    Human-robot collaboration in collaborative assembly 

requires robots to assist humans actively, which means the 

manipulations of robots must be deployed automatically 

without manually trigger actions from human operators. To 

solve this, we proposed a TLC model, which consists of 

human-teaching, robot-learning, and human-robot 

collaboration. The system diagram of the TLC model is 

shown in Fig. 1.  In the human-phase, the collaborative 

assembly task is allocated to both the human and the robot. In 

general, the robot should cooperate with the human operator 

to handle the lower-precision and higher-strength jobs, while 

the human operator focuses on the higher-precision and 

lower-strength assembly operations. To demonstrate the 

collaborative assembly task, the human operates the robot 

through intuitively human-robot interactions, such as 

leading-through, joystick operation when conducting the 

assembly maneuvers. Therefore, human operators are able to 

teach the robot to accomplish collaborative assembly tasks 

through natural demonstrations. In the robot-learning phase, 

the robot learns the expected behaviors in the process of 

collaborative assembly tasks online based on the scene of the 

shared workspace captured by the version system and the 

robot operations taught by the human operator. Based on the 

task knowledge learned from human demonstrations, in the 

human-robot collaboration phase, the robot makes action 

decisions and generates proper assistant behaviors by given 

real-time images of the shared workspace. In this work, by 

modeling a collaborative assembly task as a time series, CNN 

is introduced to map the real-time vision of the shared 

workspace to proper robot assistant behaviors.  

B. Time Series Analysis of Collaborative Assembly Tasks 

Human-robot collaborative assembly tasks are complex 

time series, which include massive strict constraints (e.g. 

force/torque, tolerance, etc.), plentiful flexible manipulations 

(e.g. personalized preference in gestures, tools, and sequence 

of maneuvers, etc.) and dynamic environments. These 

characteristics lead to challenges to pre-define and program 

every possible state that may happen in the collaborative 

assembly. However, any specific assembly process must 

follow a certain sequence of requirements to achieve a 

successful final assembly.  

    Fig. 3 illustrates the time series of a collaborative assembly 

task. From a mechanical perspective, checkpoints iCP  

represent a series of discrete states, which are necessary and 

order-sensitive for the mechanism targeting for a successful 

final assembly. A sub-assembly iSA is defined as a set of 

maneuvers,  which make the state of mechanism transfer from 

the current checkpoint to the next checkpoint. The 

sub-assembly processes often include plenty of flexible 

operations accomplished by human operators which are not 

order-sensitive and highly based on the humans’ personal 

preferences. A station iP represents a position and orientation 

of the semi-assembled machine that leads to the comfortable 

and convenient installation of new parts for human operators 

corresponding to the current sub-assembly section. In 

summary, an entire assembly task can be regarded as a time 

series consists of checkpoints, sub-assembly processes, hold 

and transfer of stations of the semi-assembled machine. The 

robot must generate proper behaviors to move from one 

station to another in real-time based on the state of the 

assembly task and the behavior of the human operator. 

For an arbitrary human-robot collaborative assembly task, 

the configurations of stations are always discrete and finite 

though their values are unknown in advance. The 

configurations of stations are mainly determined by the 

design of the mechanism and humans’ personal performances. 

Therefore, the problem is formulated as two steps:  

Step 1: the robot learns the applicable station set { }P  for 

the collaborative assembly. In this process, the information of 

the tasks, such as the operations of the human operator and 

the states of semi-assembled mechanism, are represented 

through sequences of camera frames. Meanwhile, the 

applicable station set { }P is abstracted from the position and 

speed feedback of the robot in human demonstrations. 

Step 2: the robot generates proper behavior to assist the 

human in the collaborative assembly. In this human-robot 

collaboration process, the robot should generate proper 

behavior based on the real-time images of the shared 

workspace. This is achieved by a trained CNN, which maps 
 

Fig. 3.  The time series analysis of collaborative assembly tasks. 

 
Fig. 2.  Robot system configuration for learning from demonstration. 
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Fig. 4.  Automatic image labeling based on time series. 

the situation of the shared workspace to a set of proper 

behaviors learned in the human demonstrations. 

III. LEARNING FROM DEMONSTRATIONS USING CNN 

A. Robot System Configuration 

The robot system configuration for the human-teaching 

process is shown in Fig. 2. The robot holds the 

semi-assembled mechanism in its gripper, the state of the 

workspace is captured by a camera. In the process of human 

demonstrations, the human operator uses a joystick to control 

the motion of the robot. After moving the robot to a station 

that is convenient for him/her to conduct the following 

sub-assembly maneuvers, the human operator accomplishes 

the desired sub-assembly maneuvers by selecting correct 

parts and assembling them to the semi-assembled mechanism 

with hand tools. 

For each round of demonstration, we can obtain four 

datasets of time series data: a series of timestamped images, 

which include the information of mechanism status and 

human operations; the moments when the robot speed turns to 

zero, which indicate the human intends to hold the position of 

the end-effect; the moments when the robot starts to move, 

which indicate the human wants to move the robot to the next 

station; and the positions of the end-effector when the robot 

speed turns to zero, which indicate the set of stations selected 

by the human operator for the assembly task. Based on these 

four datasets, the images can be automatically and effectively 

labeled according to their timestamps.  

B. Automatically Image Labeling 

Unlike many deep learning cases, whose datasets are 

manually labeled, the image frames of the workspace in the 

collaborative assembly process are automatically labeled 

based on the timestamps. Fig. 4 illustrates the timing 

sequence to label the image time series data sampled in the 

human demonstration. The algorithm of automatic image 

labeling is shown in Algorithm 1. When the robot is stopped 

at a station, the position of the robot end-effector is recorded 

through the robot feedback. When the human operator is 

conducting the assembly maneuvers, the real-time images are 

sampled and saved to the computer, and all the images are 

timestamped. All these timestamped images are mapped to a 

robot behavior, which is the robot should stop at this specific 

station to wait until the sub-assembly is accomplished. 

After the current sub-assembly process being finished, the 

human operator uses a joystick to move the robot to the next 

station. The real-time images of the process that the robot 

transfers from the current station to the next station are also 

captured by the camera and all the images are timestamped as 

well. When the robot arrived at the next proper station for the 

human operator to conduct the following assembly 

maneuvers, the robot is stopped by the human via the joystick. 

The images in this period should be mapped to a robot motion, 

which is the robot end-effector transfers from the previous 

station to the current station. The current station is also 

recorded via robot position feedback. 

Since the human operator uses a joystick to operate the 

robot and uses hand tools to conduct the assembly maneuvers, 

there is a time interval t when the human operator switches 

Algorithm 1: Data Acquisition and Automatic Image Labeling 

Initialization 

Initialize the list of “robot moving moment” 
Initialize the list of “robot stopping moment” 

Initialize the list of “robot stopping pose” 

Initialize the robot position and velocity 
Initialize the folder for temporary image storage 

 

Human demonstration 
While the current round of demonstration is not finished, do 

Save the timestamped image of workspace 

Read current robot speed 
Read current robot position 

 

If the robot is stopping, then 
Append the current robot position to “robot stopping pose” 

Append the current timestamp to “robot stopping moment” 

 
If the robot is starting to move, then 

Append the current timestamp to “robot moving moment” 

 

If the current round of demonstration is finished, then 

Break the while loop 

 

Automatic image labeling 

Set the proper time interval t  

For image in temporary image storage do 

Get the timestamp of the image it  

Find the nearest timestamp st  in the list of “robot stopping 

moment” 

Find the nearest timestamp mt  in the list of “robot moving 

moment” 

If it is earlier than st and it is later than mt t−  , then 

Get the corresponding robot stopping pose P  at st  

Label the image as “Moving to P ” 

 

If it is later than st and it is earlier than mt t−  , then 

Label the image as “Stop at current position” 

 

TABLE I. STRUCTURE OF CNN 

Type Stride Input Size Filter Shape 

Conv 1 800 x 300 x 3 3 x 3 x 3 x 16 

Max Pool 2 800 x 300 x 3 Pool 2 x 2 

Conv 1 400 x 150 x3 3 x 3 x 3 x 32 
Max Pool 2 400 x 150 x3 Pool 2 x 2 

Conv 1 200 x 75 x3 3 x 3 x 3 x 32 

Max Pool 2 200 x 75 x3 Pool 2 x 2 
Conv 1 100 x 38 x 3 3 x 3 x 3 x 64 

Max Pool 2 100 x 38 x 3 Pool 2 x 2 

Conv 1 50 x 19 x 3 3 x 3 x 3 x 64 
Max Pool 2 50 x 19 x 3 Pool 2 x 2 

Conv 1 25 x 10 x 3 3 x 3 x 3 x 64 

Max Pool 2 25 x 10 x 3 Pool 2 x 2 
Flat N/A 13 x 5 x 64 N/A 

FC  1 1x1x4160 4160 x 512 

FC 1 1 x 1 x 512 512 x 256 
Softmax 1 1 x 1 x 256 Classifier 

* Conv is the convolutional layer 
* FC is the fully connected layer 

* Filter shape is noted by width, height, channel and number of filters 
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Fig. 5.  The structure of CNN and robot configuration for CNN implementation. 

 

 
Fig. 6.  Robot control diagram for CNN implementation. 

his/her hand between the joystick and hand tools. In this time 

interval, the last sub-assembly has been finished and the state 

of the assembly has already arrived at the checkpoint, 

therefore, the images in this period should be mapped to the 

next robot motion. In our experiment, we found that the time 

interval t is generally kept consistent in serval rounds of 

human demonstrations, and is affected by the level of 

proficiency of the human operator. By selecting a proper 

value of the time interval, the error rate of image labeling can 

be controlled from 1% to 2%, which is normally acceptable 

for CNN training.  

C. Structure of CNN  

The structure of CNN and system diagram we used in this 

work is shown in Fig. 5. The detail of the structure of CNN is 

given in Table I. The input size is notated by image width, 

image height, and number of channels. The filter shape of 

convolutional layers is noted by filter height, filter width, 

filter height, number of channels, and number of filters. The 

image of the workspace is captured by a webcam and the 

sampling frequency is 2Hz. This sampling frequency is 

selected based on the normal operating speed of the human 

operator, which can obtain enough data to present the 

assembly process and avoid too many repetitive images. The 

original RGB images obtained by the camera are first cropped 

and resized to 800 x 300 x 3. Then the image is pixel-wise 

normalized in each channel by 
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where H  is the height of the image, W  is the width of the 

image, and  0,255ix   is the pixel value at a specific 

position  in one channel of the RGB image. The parameters of 

the CNN applied in this work are illustrated in Table I. It 

includes six convolution-pool sections after the image 

normalization. The number of filters is variant corresponding 

to the convolutional layers. The filter size and the stride of the 

max pool are set as 2 x 2 and 1. After the convolution-pool 

sections, the output is flattened as an array with 4160 

elements. Then, there are two fully connected layers, which 

have 512 and 256 neurons respectively. A Softmax classifier 

is used to calculate the loss function and map the probability 

to each robot's behavior. The probability of each potential 

robot behavior can be written as 
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where K  is the total number of robot behaviors to predict in 

the collaborative assembly task, which is learned from the 

human demonstrations. The sparse cross-entropy loss is 

applied for the measurement of classification measurement. 

The Adam optimizer is implemented for the training of the 

CNN. The initial learning rate is set as 0.002 with an 

exponential decay rate of 0.98. Considering the limitation of 

the memory on our workstation, the batch size of training, 
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Fig. 7.  Robot setup for human-robot collaborative assembly. 

validation, and testing are set as 100 images. After every 500 

iterations, the updated CNN is validated throughout the 

overall validation dataset. If the validation result is better than 

the previous validation, then the current parameters of the 

CNN are saved to a file. The maximum training epochs are set 

as 100 rounds. Once the training is finished, the CNN 

parameters with the minimum validation error are selected for 

robot assistance generation. 

D. CNN-based Robot Assistance Generation 

      The system configuration of the robot system for CNN 

implementation is illustrated in Fig. 5. In this case, the human 

does not use the joystick to control the robot behavior. The 

diagram of the robot control logic is illustrated in Fig. 6. The 

scenario of the shared workspace is sampled at a frequency of 

10Hz, which is a normal frequency used in real-time control. 

The same pre-process including cropping, resizing and 

normalization is conducted for the image as the human 

demonstration before feeding to the CNN. The trained CNN 

can generate the probability of each potential robot behaviors, 

which are learned from human demonstration. The robot 

behavior with the highest probability is selected to generate 

the robot assistant manipulation.  

If the selected behavior is to move the robot end-effector to 

a pose  , , , , ,P x y z   = , the desired pose with assigned 

robot speed will be sent to the lower level controller. The 

lower level controller compares the received desired position 

with the real-time robot pose feedback. If the current robot 

pose is different from the desired robot pose, then a joint 

motion trajectory is generated based on the inverse 

kinematics of the robot in the low-level controller. The robot 

executes the joint trajectory to move to the desired robot pose 

with the assigned robot speed. If the selected robot behavior is 

to stop and hold the robot at the current pose, a zero robot 

velocity command will send to the low-level robot controller, 

which makes the robot stop immediately. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Setup 

The real robot system setup for the experiment is shown in 

Fig. 7(a). The experiment is conducted based on a Staubli 

TX40 industrial robot. A web camera is used to record the 

state in the human-robot shared workspace of the 

collaborative assembly. The system integration for robot 

control, joystick operation, computer version are based on 

Robot Operating System (ROS). The CNN is built, trained 

and deployed with TensorFlow. The low-level motion 

planning and robot speed control is implemented by the joint 

motion function of Staubli TX40 controller.  

The vehicle model (Fig. 7(c)) is disassembled as four 

wheels, the front bumper, the rear bumper, the 

semi-assembled chassis and the corresponding screws and 

washers for each component (Fig. 7(b)). In the human 

demonstrations, human uses the joystick to operate the robot 

to move the semi-assembled chassis to a proper location, 

which is comfortable and convenient for him/her to conduct 

the following sub-assembly maneuvers. The image of the 

workspace and the position of the robot are recorded for the 

CNN training. In the process of the CNN implementation, the 

real-time images are acquired by the webcam at the same 

location and the robot behavior is triggered automatically 

based on the image input of the CNN, which enables the robot 

to move to a position that is comfortable and convenient for 

the human worker to accomplish the assembly maneuvers. 

B. CNN Validation and Testing Results 

In the learning efficiency perspective, the robot should 

accomplish the learning process in a few demonstrations of 

specific tasks for the collaborative assembly applications. In 

our experiment, we have created four datasets (D1- D4) from 

various human demonstrations of accomplishing the 

assembly tasks. Based on these datasets we have conducted 

the training, validation, and testing with two different 

configurations.  

Firstly, we used only the dataset D1 to train and the dataset 

D3 to determine the parameters of the neural networks. The 

fourth demonstration was used as a test dataset for the trained 

neural networks. The training process was totally run for 100 

epochs, meanwhile, the entire images of the 3rd demonstration 

as the validation set were fed to the neural networks for every 

500 iterations.  The parameters of the neural networks were 

saved whenever we get a better result in the validation. The 

best validation result is 96.21% correct prediction which was 

achieved in 54000 iterations. The trained neural networks 

TABLE II. TRAINING, VALIDATION AND TESTING RESULTS 

Training 

Dataset 

Validation 

Dataset 

Test 

Dataset 

Validation 

(%) 

Test 

(%) 

D1 D3 D4 96.21 98.34 
D1 & D2 D3 D4 98.26 98.49 

 

 
Fig. 8. The robot supportive behaviors for two wheels and front bumper 

assembly. 
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with the parameter corresponding to the minimum validation 

error get an average prediction accuracy as 98.34% with the 

test dataset. 

Secondly, we used the dataset D1 and D2 to train the neural 

networks so that the training dataset increased to 1334 images 

in total. The dataset D3 and D4 demonstrations were still used 

for validation and testing. The best validation result is 98.26% 

correct prediction which was achieved in 120000 iterations. 

The trained neural networks with the parameter 

corresponding to the minimum validation error get an average 

prediction accuracy as 98.49% with the test dataset. The 

training, validation and teasing results of both configurations 

are summarized in Table II. 

According to the results of the two different 

training-validation-testing configurations, the prediction 

accuracies on the validation dataset are both higher than 95%. 

Through the CNN trained by the former configuration has a 

lower validation accuracy, the average test accuracies of both 

configurations are similar to each other, which are 98.34% 

and 98.49% respectively. In our experiment, both CNNs 

successfully assisted the human operator in accomplishing 

the model vehicle assembly task. 

    The human-robot collaboration in the process of the two 

wheels and front bumper assembly is shown in Fig. 8. The 

robot can hold or turn the proper station to make the human 

operator to install the parts easily. The scenario of an 

intelligent emergency stop function of the robot is shown in 

Fig. 9. Once the features of human hands were detected, the 

control commands to stop the robot were generated by the 

neural networks. The robot stopped immediately before 

collision when the human operator’s hand suddenly 

approached the moving chassis. 

These experimental results demonstrated the trained CNN 

can generate the proper supportive behaviors automatically in 

the human-robot collaboration to help the human operator in 

the assembly of the model vehicle. In the process of human 

demonstrations, when the human hands are working on 

assembly maneuvers in the shared workspace, the robot is 

always stopping and holding on a specific station. The feature 

of human hands is successfully abstracted by the CNN, which 

enables the robot to stop immediately in many other states 

besides the learned stations when the human hands are 

approaching the moving robot arm. 

V. CONCLUSIONS  

This paper proposes a CNN based approach to learn and 

assist humans in assembly tasks from human demonstrations. 

Experimental results show that CNN is effective in robot 

learning during collaborative assembly and the robot can be 

trained to actively assist humans in the human-robot 

collaborative assembly process in real-time. The datasets for 

training, validation, and testing can be created and labeled 

online from human demonstrations. The approach can help 

alleviate the need for complex modeling and setup compared 

to the existing approaches. Our approach also suggests a 

potential way by which the robot can be personalized by its 

users to assist them in their preferred ways. 
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Fig. 9. The robot stops immediately when human hands approaching the 

moving object. 
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