
  

  

Abstract— Robust and accurate scene representation is 
essential for advanced driver assistance systems (ADAS) such 
as automated driving. The radar and camera are two widely 
used sensors for commercial vehicles due to their low-cost, 
high-reliability, and low-maintenance. Despite their strengths, 
radar and camera have very limited performance when used 
individually. In this paper, we propose a low-level sensor fusion 
3D object detector that combines two Region of Interest (RoI) 
from radar and camera feature maps by a Gated RoI Fusion 
(GRIF) to perform robust vehicle detection. To take advantage 
of sensors and utilize a sparse radar point cloud, we design a 
GRIF that employs the explicit gating mechanism to adaptively 
select the appropriate data when one of the sensors is abnormal. 
Our experimental evaluations on nuScenes show that our 
fusion method GRIF not only has significant performance 
improvement over single radar and image method but achieves 
comparable performance to the LiDAR detection method. We 
also observe that the proposed GRIF achieve higher recall than 
mean or concatenation fusion operation when points are sparse. 

I. INTRODUCTION 

The intelligent vehicle technology, such as advanced 
driver assistant systems (ADAS), plays an important role in 
the safety of the driver. Accurate and robust 3D object 
detection on roads with various traffic participants is essential 
for intelligent vehicles. The LiDAR is a popular choice for 
highly automated vehicles (e.g., Level 4 and 5) owing to its 
high accuracy, but LiDAR is not suitable for mass-production 
vehicles yet due to its high-cost, high-maintenance, and low- 
reliability. The radar and camera are the only available 
sensors that suit for commercial vehicles. 

In spite of the fact that radar and camera have advantages 
in mass-production and been used for ADAS over a decade, 
each sensor has clear advantages and disadvantages as Table 
I. The camera provides RGB pixels with a dense angular 
resolution and rich visual cues that can distinguish between 
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types of objects, but does not provide the range information 
and easily affected by weather and lighting conditions. The 
camera-based distance measuring relies on a geometrical 
relationship using camera calibration [1], but the performance 
can be degraded by pitch motion or the slope of the road. 
Meanwhile, the radar operates robustly in harsh weather 
conditions and measures the range to the long distance 
accurately. However, the angular resolution and accuracy of 
the radar are low due to the nature of wavelengths and its 
operating mechanism. The radar-based object detection using 
traditional signal processing methods is applied to 
commercial ADAS in highway environments, but cannot be 
guaranteed to work properly in complex environments. The 
sensor fusion is required to complement properties of radar 
and camera and improve the performance. 

Several radar-camera sensor fusion studies have been 
conducted to complement the limitations of a single sensor. 
However, existing researches are mainly focused on utilizing 
object-level detection results of each sensor to remove false 
positives through cross-validation [2] or reduce computation 
cost by reducing the region of interest (RoI) [3]. Such an 
object-level late fusion scheme is difficult to expect high 
performance gain because the typical signal processing step 
loses out the amount of information from the low-level data 
and cannot overcome the drawbacks of each sensor. In order 
to fully utilize the advantages and complement disad- 
vantages of each sensor, low-level early fusion is necessary. 

The learning-based low-level radar and camera fusion 
have not yet been thoroughly investigated since there was no 
dataset containing low-level radar data before the nuScenes 
[4] was released. Meanwhile, a number of LiDAR and 
camera fusion studies have been conducted on the KITTI [5], 
mainly propose architectures for using different types of 
sensors. These architectures combine feature representations 
from different sensors, but there is not enough consideration 
on how to combine them. Most previous works assume that 
both sensor data are useful and use mean or concatenation 
operation to combine them. However, unlike the LiDAR 
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Fig. 1: Example of partially abnormal data in challenging nuScenes dataset. 
Left: missing radar point on the object due to low resolution. Right: blurred 
image by a raindrop. Red dots represent radar points projected on the image. 
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Camera ○ △ ○ × × × ○ ○ ○ 
Radar △ ○ △ ○ ○ ○ ○ ○ ○ 

LiDAR △ ○ ○ △ △ △ × × × 
○: Good, △: Normal, ×: Bad 

TABLE I: Characteristics of sensors used in automotive 
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provides uniform, dense, and accurate points, the radar points 
are often missing on objects as illustrated in Fig. 1. In other 
cases, the image may be blurred while the radar points are 
reflected on the object normally. In these situations, the 
method of combining feature representations can 
significantly affect the performance since abnormal data 
cannot contribute to improving the performance by data 
fusion. 

In this paper, we focus on fusion-based 3D vehicle 
detection in challenging environments, taking into account 
the characteristics of radar and camera, which are only 
suitable for mass-production. We summarize the challenges 
of using radar point cloud and our contributions as follows: 

• We propose the Gated Region of Interest Fusion 
(GRIF) to solve the challenging situation where the 
radar points are very sparse on the object. The GRIF 
presents much robust recall performance to missing 
points than mean or concatenation fusion operation. 

• We utilize feature pyramid network (FPN) and sparse 
block network (SBNet) [6] for a radar backbone 
network to achieve high performance and low 
computational cost. Note that the radar point cloud 
has the same data form as the LiDAR point cloud, 
but the point density of radar is much sparse. 

• We use a multi-layer 3D anchor to detect objects 
located at various heights. Unlike the LiDAR point 
cloud provides height information, the radar point 
cloud only provides in-plane distance, making it 
challenging to detect objects height in a 3D space. 

We evaluate the proposed method on the nuScenes [4] 
object detection task, which is the only dataset that provides 
the radar point cloud with 3D annotations. We also verify the 
effectiveness of GRIF quantitatively and qualitatively. The 
proposed approach significantly outperforms both image and 
single radar detection methods and achieves comparable 
performance to the LiDAR detection method. 

II. RELATED WORK 

In this section, we briefly review related works of 
learning-based object detection method using the single and 
multiple modalities. 

Camera-based 3D Object Detection:  Monocular or stereo 
images provide rich texture information but do not provide 
direct depth information. Some studies process additional 
work to extract depth from the image input. Pseudo-LiDAR 
[7] utilizes the sub-network to obtain the disparity from the 
image to detect 3D objects. MonoDIS [8] proposes a loss 
disentangling transformation to detect the 3D object from a 
monocular image using two-stage architecture. However, the 
distance measuring performance of image is naturally inferior 
compared to range sensors such as LiDAR and radar. 

Radar Deep Learning for Vehicle Intelligence:  Existing 
learning-based radar studies mainly focus on classification 
and 2D object detection task. Major et al. [9] use range- 
azimuth-Doppler tensors to represent the radar signal and 
detect vehicles in the bird’s eye view (BEV) space but 
assuming planar highway driving scenarios. Brodeski et al. 
[10] aim to detect and localize objects using a two-stage 
detector on the range-Doppler map, and evaluate the 
performance in the anechoic chamber. Kim et al. [11] use the 
time-series radar signal of the range-velocity image and 
classify target objects by convolutional recurrent neural 
network. Schumann et al. [12] take radar data as point cloud 
and process for object segmentation by using PointNet [13]. 
To the best of our knowledge, deep learning-based 3D object 
detection studies using radar that takes into account the 
height and z-position of objects have not been conducted. 

Camera-Range Sensor Fusion for Object Detection:  
Most sensor fusion works use camera and LiDAR, assuming 
all sensor data is useful. F-PointNet [14] and Du et al. [15] 
use the cascade approach that two successive stages detect 
objects on each modality. The first stage detects objects’ 2D 
bounding box on the image, and the second stage projects the 
2D box into the LiDAR point cloud to regress the 3D 
bounding box. The performance of a cascade approach is 
limited to the performance of the single sensor. Meanwhile, 
the parallel approach fuses feature representations from each 
modality. MV3D [16] generates 3D object proposals from the 
LiDAR BEV map, then projects them into other modalities to 
obtain RoIs from each modality and, fuses RoI features. 
AVOD [17] proposes 3D proposals by fusing RoI features at 
the region proposal stage to achieve high proposal recall. 
MMF [18] fuses feature maps instead of fusing RoI features 
by projecting the image feature map into BEV space. 

 
Fig. 2: The overall architecture of proposed GRIF Net. 3D anchors and 3D proposals in 3D space are projected into each modalities’ feature map and 
cropped into regular size RoI. GRIF adaptively combines RoI features to robustly predict the class probability and 3D box. See §III for more details. 
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The following attempts propose a camera and radar sensor 
fusion network. Chadwick et al. [19] focus on detecting 
distant vehicles by fusing image and object-level radar data. 
Objects detected by the radar are projected on the front view 
image as an additional channel of image and detect 2D 
objects using SSD [20] architecture. Lim et al. [21] project 
image into the bird’s eye view (BEV) by homography 
transform to match the coordinate systems of two sensors, 
assuming the planar road scene. Spatially aligned two feature 
maps from 2D range-azimuth heatmap and BEV image are 
concatenated to predict BEV bounding box using SSD [20] 
architecture. However, such fusion approaches are only 
evaluated on uncomplicated driving scenes and not 
thoroughly investigate how to combine two modalities. 

Multiple Modalities Combining Methods:  Some 
approaches utilize the Mixture of Expert (MoE) [22] in which 
the gating network explicitly assigns the weight of modalities. 
Mees et al. [23] detect people in various lighting conditions 
using an RGB-D camera. The separate detection networks 
first detect objects from RGB and depth input, and the gating 
network validates detected objects and predict the final 
classification score. AdapNet [24] produces weights of 
feature maps from image and depth by CNN and multi-layer 
perceptron (MLP), and fuses feature maps by element-wise 
sum for segmentation task. Kim et al. [25] project LiDAR 
point cloud into the image plane and combine LiDAR and 
image feature maps adaptively using trainable weight maps. 
Object detection is performed on the 2D image plane using 
SSD [20] architecture. Nonetheless, MoE fusion has not been 
used to detect 3D objects. 

III. GRIF NET: GATED ROI FUSION NETWORK 

As illustrated in Fig. 2, GRIF Net takes the monocular 
image and voxelized radar point cloud as input and predicts 
oriented 3D vehicles. It has two different feature extractors 
considering characteristics of modalities, and it generates two 
RoIs that corresponding to the coordinate system of inputs by 
projecting 3D anchors. Our method adaptively fuses two 
RoIs by GRIF on 3D region proposal network (RPN) and 
detection head to predict and regress 3D boxes. 

A.  Data Preprocessing 
Radar Point Cloud Representation:  The Frequency 
Modulated Continuous Wave (FMCW) radar used in 
nuScenes (Continental ARS 408-21) has a low distance 
measuring resolution and azimuth angle resolution, which are 
0.39 m and 4.5° in the range of 70m at ±45°, respectively. 
Meanwhile, the LiDAR (e.g., HDL-64E) has a high vertical 
and horizontal resolutions of 0.4° and 0.08°. Furthermore, the 
LiDAR is usually mounted on top of the vehicle, while the 
radar is mounted on the bumper, making it easy to be 
occluded by the vehicle ahead. For these reasons, the average 
number of radar points within the field of view (FoV) of the 
front camera is 107, while the LiDAR is 14795, which is 138 
times denser than radar. 

As allowed in nuScenes [4] submission rule, we 
accumulate 6 radar sweeps collected during approximately 
0.5 seconds to use the denser point cloud. While 
accumulating multiple radar sweeps, the displacement caused 
by the ego vehicle movement is compensated using accurate 
INS information provided by the dataset. Moreover, the 
displacement of each point caused by moving objects is 
compensated using the velocity of each point obtained by the 
Doppler Effect. By doing so, we get a richer point cloud 
without losing accurate contour of objects, as illustrated in 
Fig. 3. After that, we voxelize the accumulated radar points 
into a 3-channel voxel grid map with a 0.2-meter resolution. 
The voxel grid map is encoded with the absolute velocity, 
Radar Cross-Section (RCS) of point, and the voxel 
occupancy. The voxel occupancy is 1 if the grid contains the 
point, 0 otherwise. The velocity and RCS channels are 
normalized to have zero-mean. For each voxel, we select the 
point with the highest value if multiple points exist in a 
voxel. 

Multi-layer 3D Anchor:  We adopt RPN strategy to 
generate RoI proposals from image and radar by projecting 
3D anchors into both modalities’ feature maps. It is important 
that the anchors are positioned at the appropriate height in 
order to obtain an accurate ROI from the image. However, as 
shown in Table II, the standard deviation of the objects’ 
z-position in nuScenes [4] is 1.5 times larger than KITTI [5]. 
Thus, anchors of varying height improve the 3D detection 
performance, especially at long distances. 

The 3D anchor is parameterized by the center location x, 
y, z, size l, w, h, and orientation θ relative to the position of 
the ego vehicle. The size of 3D anchors is calculated into two 
clusters by k-means clustering on the training set. 3D anchor 
has an interval of 0.5 m on the x-y plane with two 
orientations, 0 and 90 degrees, and anchors are piled into 
three layers along the z-axis with 1 m interval. 

Dataset Type Distance [m] 
0-10 10-20 20-30 30-40 40-50 50-60 

nuScenes 
[4] 

ratio [%] 6 20 28 23 16 6 
mean [m] 1.51 1.57 1.64 1.69 1.72 1.59 
std. [m] 0.13 0.27 0.49 0.68 0.80 1.01 

KITTI 
[5] 

ratio [%] 10 23 23 18 12 12 
mean [m] 1.66 1.68 1.69 1.70 1.77 1.78 
std. [m] 0.11 0.19 0.29 0.44 0.55 0.61 

TABLE II: The z-position analysis in nuScenes and KITTI. 
  
 

 
Fig. 3: Examples of radar point cloud accumulation. Left: single sweep, 
Middle: only ego motion compensated multiple sweeps, Right: both ego and 
moving object motion compensated multiple sweeps. Black and red points 
represent LiDAR points and radar points. 
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B. Backbone Network 
Image Backbone Network:  The backbone network for the 
image stream is modeled after the Feature Pyramid Network 
(FPN) [26]. The image backbone network has four convol- 
utional blocks, and each block contains 2, 2, 3, 3 residual 
layers [27] followed by Batch Normalization and ReLU. The 
size of the input image decreases by the max pooling with the 
factor of 2, while the numbers of feature maps increase twice 
from 32 to 256 on every block. The last layer increases the 
size twice with 1×1 convolution and bilinear up-sampling, 
then element-wise adds to the third block and repeating to the 
second block. Therefore, the size of the last feature map is 2 
times down-sampled with respect to the input. 

Radar Backbone Network:  The backbone network for the 
radar stream is modeled after FPN and Sparse Block Network 
(SBNet) [6]. The radar point cloud is very sparse and most of 
the radar voxel is empty. Therefore, traditional convolution is 
inefficient because it operates across all the feature map 
where data is zero. Unlike the traditional convolution, SBNet 
performs convolution operation only on masked areas. 

We set the mask as the circle with a radius of 1 meter 
around the radar point, taking into account the receptive field 
and the accuracy of radar. The radar point can be treated as a 
potential object because the point is only reflected by the 
object or wall but not reflected by the ground, in contrast to 
the many LiDAR points are reflected by the ground plane. 
The mask occupies 26% of the voxel grid map on average, 
which theoretically 3.8× speedup the radar backbone network. 
The size and the number of layers of the radar backbone 
network are the same as the image backbone network, and 
the SBNet parameters have a block size of 13, 9, 7, and 5 at 
each convolutional block with a stride of 3, offset of 1 at all 
blocks. 

C. Detection Network 
3D Box Projection and RoI Extracting:  For both 3D 
region proposal network (RPN) and detection head, we 
project 3D boxes (3D anchors and 3D proposals) into feature 
maps to obtain RoIs from each view. As shown in Fig. 4, the 
3D box is projected onto the feature maps of the front view 
and the bird’s eye view by transformation matrix T so that 
the projected RoIs of each view corresponds to the 3D box in 
the 3D space, formulated as: 

RoI𝑣𝑣 = 𝑇𝑇3𝐷𝐷→𝑣𝑣(box3𝐷𝐷), 𝑣𝑣 ∈ {𝐹𝐹𝐹𝐹,𝐵𝐵𝐵𝐵𝐹𝐹} 
  

We employ RoIAlign [28] to minimize the quantization 
of the RoI boundaries since the 3D box has a continuous 
length in 3D space, but feature maps are quantized in 
different resolutions from different modalities. RoIAlign uses 
the bilinear interpolation to compute the exact values of RoI 
on the feature map and aggregate it into a regular size grid 
using the average. We use the grid size of 5 for both stages. 
The 3D RPN takes 3D anchors and predicts the 3D proposals 
using two convolutional layers of size 256. The detection 
head takes 3D proposals and refines the proposals into the 
oriented 3D box by three MLP of size 2048. 

Gated Region of Interest Fusion (GRIF):  Prior sensor 
fusion methods combine two features by concatenation or 
element-wise mean operation. However, the output of the 
concatenation or mean operation is sensitive to changes of 
the input data. In contrast, we combine RoI features from 
image and radar feature maps by convolutional Mixture of 
Experts (MoE), so that MoE explicitly assign weights to 
features, as described in Fig. 5. 

Given RoI features from two modalities  𝑓𝑓𝑀𝑀1 , 𝑓𝑓𝑀𝑀2 , gating 
network predicts weights 𝑤𝑤𝑀𝑀1 ,𝑤𝑤𝑀𝑀2  by the convolution and 
sigmoid layer. The convolution layer has a size of N×N×2 
without padding. Afterward, the RoI features are multiplied 
by weights and element-wise added together. The 
element-wise added RoI feature is divided by the sum of 
weights to normalize and used to predict object. The fusion 
method can be expended to an arbitrary n number of 
modalities as 

𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = � 𝑤𝑤𝑀𝑀𝑖𝑖 ∙ 𝑓𝑓𝑀𝑀𝑖𝑖
 𝑛𝑛

 𝑖𝑖=1
,   with � 𝑤𝑤𝑀𝑀𝑖𝑖

 𝑛𝑛

 𝑖𝑖=1
= 1 

D. Implementation Details 
We use the image size of 896×1600 and discretize the 

radar point cloud in the range of [0, 70.4] × [-40, 40] into the 
size of 352×400. Two anchors have length, width, and height 
of ((4.52, 1.91, 1.67), (5.52, 2.18, 2.11)) meters with a z 
center of (2.6, 1.6, 0.6) meters. The 3D region proposal stage 
generates 1024 proposals during training, while using 300 
proposals in inference, and applies Non-Maximum 
Suppression (NMS) on BEV space with 0.8 and 0.001 
Intersection over Union (IoU) threshold. We assign a positive 
and negative label to anchors with the matching threshold 
using the Euclidean center distance instead of IoU. For the 
3D RPN and detection network, the anchor closer than 1 and 
0.6 meters is assigned to the positive, and the anchor farther 

  
Fig. 4: 3D box projection and RoI extraction. The 3D box is projected into 
feature maps by each transformation matrix. Projected boxes are cropped 
into a regular grid RoIs by RoIAlign and combined by GRIF and used to 
predict the 3D box regression. 
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Fig. 5: Gated Region of Interest Fusion (GRIF). RoIs from image and radar 
are concatenated and output two scalar weights of each modality. 
C: concatenation, ×, ÷, +: element-wise product, divide, add 
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than 1.25 and 0.8 meters to the negative. During training, we 
randomly drop out the one of input with a 30% chance to 
avoid overfitting. 

We apply multi-task loss for classification, offset, and 
orientation in an end-to-end fashion. We use binary 
cross-entropy for the classification loss  𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 . For the 
regression loss  𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 and orientation loss 𝐿𝐿𝑑𝑑𝑖𝑖𝑟𝑟 , we compute 
the smooth 𝐿𝐿1  loss on each dimension of the object 
(𝑥𝑥, 𝑦𝑦, 𝑧𝑧,  log(𝑙𝑙), log(𝑤𝑤) , log(ℎ)) and orientation 𝜃𝜃 as [17]. 
The total loss is defined as: 

𝐿𝐿 = 𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐𝐿𝐿𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜆𝜆𝑟𝑟𝑟𝑟𝑟𝑟𝐿𝐿𝑟𝑟𝑟𝑟𝑟𝑟 +  𝜆𝜆𝑑𝑑𝑖𝑖𝑟𝑟𝐿𝐿𝑑𝑑𝑖𝑖𝑟𝑟  

where weights are 𝜆𝜆𝑐𝑐𝑐𝑐𝑐𝑐 = 3, 𝜆𝜆𝑟𝑟𝑟𝑟𝑟𝑟 = 5, and 𝜆𝜆𝑑𝑑𝑖𝑖𝑟𝑟 = 1. 
We initialize the model from random initialization and 

use mini-batch containing 1 frame with 800 and 1600 RoI 
samples for the 3D RPN and detection network. We train the 
network using Adam optimizer with an initial learning rate of 
0.0001. The learning rate is decayed by a factor of 0.1 at 
150k iterations, and training ends after 170k iterations. 

IV. EXPERIMENTS 
In this section, we evaluate the proposed method on the 

nuScenes [4] and show the effectiveness of the GRIF method 
quantitatively. We also conduct the number of ablation 
studies to verify the benefits of the components since 
apples-to-apples comparisons between radar and LiDAR 
methods are not available. Finally, we present qualitative 
results in challenging situations with some failure cases. 

A. Dataset and Metric 
The proposed method is trained and evaluated on the 

challenging nuScenes dataset. The nuScenes is collected with 
6 cameras, 1 LiDAR, and 5 radars that cover 360°. In this 
work, we use one front camera and 3 front radars. The data is 
taken from different scene locations with various weather and 
lighting condition, which is more diverse and challenging 
than KITTI. The nuScenes contains 19.4% and 11.6% of data 
collected in the rain and night. The dataset provides 1000 
selected scenes of 20 seconds duration each at 2Hz. Of the 
1000 scenes, 700, 150, and 150 are used for training, 
validation, and testing, respectively. We filter out vehicles 
farther than 50 meters or bounding boxes that do not contain 
any radar or LIDAR points, according to the official 
nuScenes evaluation rules. 

We evaluate predicted 3D objects using the average 
precision (AP) metric with a match threshold of 2D center 
distance 𝑑𝑑 ∈ 𝔻𝔻 = {0.5, 1, 2, 4}  meters instead of IoU as 

introduced in nuScenes. In addition to AP, we evaluate a 
maximum recall performance at 10% precision using 300 
proposals with the distance match threshold. 

B. Quantitative Evaluation 
Comparisons with alternative approaches on nuScenes: 
We evaluated 3D object detection results using AP for the car 
class on the validation set. Our single radar approach has 
radar stream only while the other architecture configurations 
(e.g., input representation, backbone, number of layers) are 
kept identical, and uses radar RoI as it without fusion. We 
compare the proposed method with previously published 
works in Table III and Fig. 6. Note that the results of other 
methods are from the nuScenes leaderboard. 

Our single radar method yields a low recall because many 
objects do not have any radar point on it due to the low 
resolution and occlusion, and it cannot be overcome by using 
only radar. We also hypothesize that the lack of contextual 
information makes it difficult to distinguish vehicles with 
metallic objects and lead to low precision. However, the 
performance or radar has been significantly improved by 
fusing with the image. The proposed radar and image fusion 
approach outperforms the single radar method and MonoDIS 
[8] by 22.5% and 30.5% AP at 1 m threshold. Also, we 
achieve a comparable result, which is 3.1% AP lower than 
the LIDAR-based PointPillars [29] at 1 m threshold despite 
using a very cheap and sparse radar point cloud. The 
performance differences at strict thresholds (0.5 and 1 m) are 
substantial because the characteristics of each modality vary 
considerably. At the same time, the performances at easy 
thresholds (2 and 4 m) are similar in all methods. 

Also, we argue that the performance of radar can be 
improved depending on the mounting position of the sensor. 
The LiDAR is mounted on the top of the vehicle, whereas the 
radar is installed on the front bumper so that the field of view 
of radar can be occluded by surrounding vehicles. Missing 
radar points by occlusion degrades the performance of the 
single radar method. The qualitative examples are introduced 
in §IV-D. 

Method Modality AP [%] 
0.5m 1.0m 2.0m 4.0m 

MonoDIS [8] Image 10.5 36.0 64.8 80.0 
PointPillars [29] LiDAR 53.0 69.6 74.1 76.9 

Ours Radar 25.5 44.0 51.7 54.2 
Radar+Img 44.1 66.5 71.9 74.9 

TABLE III: Evaluation results on the nuScenes. 

 

Fig. 6: Precision-recall curves at different thresholds. 
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Effect of GRIF:  In Table IV, we compare the recall 
performance of the proposed RoI fusion method GRIF with 
the element-wise mean and concatenation operation. We 
group the objects according to the number of radar points in 
the bounding box to evaluate the effectiveness of GRIF when 
the object has few radar points. Models use the same fusion 
method on both 3D RPN and detection network. As 
hypothesized, GRIF performs better than others in the case 
where the number of points is fewer. In particular, the recall 
of GRIF is 8.1% higher than the second-best concatenation 
method, where the number of points is less than 5 at 1 m 
threshold. However, we observe that GRIF does not provide 
much gain at other thresholds. We conclude that the 0.5 m 
threshold is too severe, and 2 m is too generous considering 
the accuracy of radar, so the improvement is not significant. 

Advantage in detection range:  Table V shows the AP 
comparisons between radar and LiDAR by the distance of 
objects. The LiDAR-image fusion method takes a LiDAR 
voxel representation as [16]. We train both models in the 
same manner but filter out ground truths up to 60 m rather 
than 50 m to verify the long-range performance. At range 
closer than 30 m and the 0.5 m threshold, the LiDAR 
performs better due to the precise and dense point cloud of 
LiDAR. On the other hand, at range farther than 30 m and 
over the 1 m threshold, the performance of radar is 
comparable and even exceed the LiDAR with the advantage 
of a long detection range. We hypothesize that the 

radar-based method is less sensitive to the distance because 
the LiDAR points become sparse as the distance increases, 
while the radar points are uniform compared to the LiDAR. 

C. Ablation Study 
We conduct ablation studies to analyze the effects of each 

component of our method in Table VI. We train models 
using a full train set and evaluate on a minival set obtained 
by extracting one frame out of every 10 frames from the val 
set. 

Multi-layer Anchor:  In Table VI-a, we compare the 
multi-layer anchor to the single-layer anchor with the 
z-center of 1.6 meters. As we hypothesized in §III-A and 
Table II, the multi-layer anchor improves AP performance by 
4.1 points and maximum recall by 3.7 points at 0.5 m 
threshold by detecting vehicles located at various z-location. 
The result shows that the object that cannot be detected on a 
single-layer anchor can be detected using anchors on other 
layers. 

Backbone Network:  Table VI-b shows the comparison of 
two backbone networks. The baseline ResNet-10 has the 
same numbers of residual blocks without SBNet [6], and 
FPN [26] is replaced by the 4× bilinear upsampling to make 
the last feature map the same size as ours. As expected, a 
deep and advanced backbone brings a significant AP gains in 
all thresholds. 

Modality  Dist. [m] AP [%] 
0.5m 1.0m 2.0m 4.0m 

LiDAR 
+ Image 

0-10 76.9 77.2 84.4 84.8 
10-20 76.6 83.6 85.0 85.0 
20-30 66.8 75.1 75.9 80.3 
30-40 50.3 60.8 63.3 69.3 
40-50 33.2 46.4 49.9 55.5 
50-60 30.2 38.1 43.6 46.0 

Radar 
+ Image 
(Ours) 

0-10 45.7 61.3 63.1 69.5 
10-20 51.6 67.3 73.0 74.2 
20-30 46.7 69.7 73.3 77.9 
30-40 34.7 58.5 62.8 67.9 
40-50 23.6 47.1 54.1 56.6 
50-60 20.1 38.7 45.4 47.6 

TABLE V: Comparison between radar and LiDAR by the distance of object 
in terms of average precision (AP). 
 
 

Fusion 
Method # of points Recall [%] 

0.5m 1.0m 2.0m 

mean 
0≤pts<5 17.6 34.3 47.5 
5≤pts<10 50.6 77.2 85.2 

10≤pts 51.8 80.2 85.7 

concat 
0≤pts<5 21.8 37.5 51.6 
5≤pts<10 51.4 78.4 88.6 

10≤pts 62.9 86.7 93.0 (+0.1) 

GRIF 
0≤pts<5 24.6 (+2.8) 45.6 (+8.1) 53.1 (+1.5) 
5≤pts<10 52.1 (+0.7) 80.9 (+2.5) 89.5 (+0.9) 

10≤pts 64.3 (+1.4) 88.9 (+2.2) 92.9 
TABLE IV: Effects of GRIF at the different number of radar points in the 
object bounding box in terms of maximum recall. Round brackets denote the 
gap from the second-best result. 
 
 

# of Layer AP [%] Recall [%] 
0.5m 1.0m 0.5m 1.0m 

single-layer 39.2 65.8 58.8 82.2 
multi-layer 44.0 69.9 62.5 85.3 

 +4.8 +4.1 +3.7 +3.1 
 

Backbone AP [%] 
0.5m 1.0m 2.0m 4.0m 

ResNet-10 41.2 64.4 69.9 72.4 
FPN+SBNet 44.0 69.9 71.9 76.5 

 +2.8 +5.5 +2.0 +4.1 
 

(a) Multi-layer Anchor (b) Backbone Network 

 

Method RoI 
Size 

AP [%] 
0.5m 1.0m 2.0m 4.0m 

RoIPool 3×3 38.8 63.5 69.9 75.9 
5×5 42.4 68.6 71.3 76.2 

RoIAlign 3×3 40.6 66.2 69.8 76.2 
5×5 44.0 69.9 71.9 76.5 

 

 

3D RPN Detection 
Network 

AP [%] Recall [%] 
0.5m 1.0m 0.5m 1.0m 

mean mean 38.9 63.8 55.3 79.1 
concat concat 41.1 65.4 58.7 82.2 
GRIF concat 40.8 68.0 59.8 82.4 
concat GRIF 42.4 68.4 58.9 84.0 
GRIF GRIF 44.0 69.9 62.5 85.3 

 

(c) RoI Extracting Method (d) RoI Fusion Method 
 

TABLE VI: Ablation study on the nuScenes minival set. 
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RoI Extracting Method:  RoI extracting methods are 
compared according to the RoI feature size and the extracting 
method, as shown in Table VI-c. The result shows that the 
RoI size plays a more important role in improving the 
performance than the RoI extracting method. At the 0.5 m 
threshold, RoIAlign [28] shows a gain of 1.6 points over 
RoIPool, and a 5×5 size grid improves AP about 3.4 points 
over a 3×3 size grid. As the one voxel of the last radar feature 
map occupies 0.4×0.4 meters, the misaligned voxel can lead 
to a significant performance difference at the strict threshold. 

RoI Fusion Method:  Table VI-d shows the effects of 
fusion methods on the 3D RPN and detection network. We 
observe that the effect of the fusion method on the 3D RPN is 
less significant than the detection network. We hypothesize 
that this could be because the RPN suggests hundreds of 
proposals so that most objects are detected on the RPN 
regardless of the fusion method. On the other hand, GRIF on 
the detection network improves both AP and recall over the 
concatenation, and the element-wise mean yields the worst 
performance. 

D. Qualitative Results1 and Discussion 
We qualitatively analyze the weights assigned to image 

and radar RoI by GRIF in Fig. 7. On RoIs with many radar 
points and sufficient visual cues (c, d, f), GRIF assigns more 
weight to the image, whereas on RoIs with radar points but 
weak visual cues (a, i), GRIF assigns more weight to the 

 
1                                                          
1 More qualitative results are at https://youtu.be/CyJrMpBhEGI 

radar. RoIs without any radar point (b, h) use almost image 
features. Interestingly, RoIs with one or two radar points (e, g) 
have similar weight distributions with the case (c, d, f). 

We visualize the qualitative detection results in Fig. 8 
(a~e). The proposed method produces accurate 3D bounding 
boxes in various environments. The network detects vehicles 

 
Fig. 7: Examples of weights assigned to image and radar feature at the 
detection head. # of pts is the number of radar points inside bounding box. 
 
 

a b c d e f g h i
# of pts 14 0 5 4 1 9 1 0 2
image 0.58 0.83 0.69 0.65 0.70 0.63 0.68 0.75 0.49
radar 0.42 0.17 0.31 0.35 0.30 0.37 0.32 0.25 0.51

a

b

c

d e

f
g i

h

 
Fig. 8: Qualitative results of 3D object detection and failure cases on val set. Black and red dots represent the LiDAR and radar point. Red and green boxes 
denote ground truths and detection results. Note that the LiDAR point cloud is used only for visualization. 
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located at various altitudes and far distances (Fig. 8a). The 
proposed method accurately estimates the orientation of 
vehicles and even detects vehicles without any radar point 
(Fig. 8b). It also operates robustly in the rainy road (Fig. 8c 
and d) and at night light condition (Fig. 8e). 

We observe several failure cases as highlighted with the 
blue circle in Fig. 8 (f~h). Our network tends to classify the 
pick-up truck as a car due to its similar appearance (Fig. 8f). 
The most common failure cases are due to the missing radar 
points on objects, even the proposed method attempts to 
overcome the abnormal sensor input. The field of view (FoV) 
of radar is often occluded by other vehicles on the crowded 
road (Fig. 8b). Moreover, the radar does not provide the point 
beyond the guardrail and detects through the barbed-wire 
fence of a parking lot. In the absence of radar inputs, GRIF 
Net succeeds in detecting some visible vehicles (Fig. 8g) but 
fails to detect vehicles with low visual cues (Fig. 8h). We 
claim that the low mounting position of the radar may affect 
detection performance. 

V. CONCLUSION 
We have proposed the camera-radar sensor fusion-based 

robust 3D object detection network, named GRIF Net. We 
introduce the multi-modal fusion method GRIF to overcome 
the characteristics of radar that the points are very sparse on 
the object. The GRIF utilizes a gating mechanism to choose 
the appropriate modality. The experiments on nuScenes 
verify the robustness of GRIF on the vehicles with very 
sparse radar points and show the effectiveness of the radar 
sensor in detecting vehicles over long distances. Our 
approach achieves comparable performance with the LiDAR 
method despite using the low-cost radar and shows the 
potential of the radar sensor in autonomous driving. 
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