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Abstract— Choosing a kinematic model for a continuum
robot typically involves making a tradeoff between accuracy
and computational complexity. One common modeling ap-
proach is to use the Cosserat rod equations, which have been
shown to be accurate for many types of continuum robots.
This approach, however, still presents significant computational
cost, particularly when many Cosserat rods are coupled via
kinematic constraints. In this work, we propose a numerical
method that combines orthogonal collocation on the local
rod curvature and forward integration of the Cosserat rod
kinematic equations via the Magnus expansion, allowing the
equilibrium shape to be written as a product of matrix
exponentials. We provide a bound on the maximum step size to
guarantee convergence of the Magnus expansion for the case of
Cosserat rods, compare in simulation against other approaches,
and demonstrate the tradeoffs between speed and accuracy for
the fourth and sixth order Magnus expansions as well as for
different numbers of collocation points. Our results show that
the proposed method can find accurate solutions to the Cosserat
rod equations and can potentially be competitive in computation
speed.

Index Terms— Continuum robots, soft robot modeling,
Cosserat rod, Lie group methods

I. INTRODUCTION

Continuum and soft robot architectures have been studied
for a variety of useful applications [1], [2], but their passive,
continuously flexible structures make them difficult to model.
There are many different kinematic and dynamic models
presented in the literature (see [1–4] for reviews), but one
commonly used method is to model the robot’s flexible
structure as one or more Cosserat rods. This approach has
been experimentally validated for concentric tube robots [5],
[6], tendon-driven robots [7], [8], multi-backbone robots [9],
and soft robots with fluidic [10] and tendon [11] actuation
in both kinematic and dynamic studies [12].

Experimental validations have shown relatively accurate
open-loop prediction of shape (position errors of 1-8% of
arc length are typical), however, computing the model in-
volves numerically solving a set of boundary value problems
(BVPs) which can be computationally expensive. Although
a number of works have demonstrated implementations fast
enough for control in the cases of concentric tube robots
[5], parallel continuum robots [13], and single-backbone
tendon-driven robots [12], less accurate modeling methods
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are still attractive due to their low computational cost when
compared to the Cosserat rod models [8]. Furthermore,
in cases where the model consists of many kinematically
coupled Cosserat rods (e.g. multi-backbone robots [9], [14]
and eccentric pre-curved tube robots [15]), the computational
cost of the Cosserat rod models is a significant obstacle and
more efficient numerical methods are still needed.

Another drawback of Cosserat rod modeling is that after
the BVP has been numerically solved (typically with a shoot-
ing method), it can be difficult to compute forward/inverse
Jacobians when many kinematic constraints are active. Al-
though in many cases the partial derivatives associated with
the Jacobian can be computed together with the forward
integration of the Cosserat differential equations (DEs) [16],
for more complicated continuum structures one typically has
to resort to finite-difference estimation. A numerical method
that results in an analytical expression can aid in computing
these matrices and conducting other analytical analysis of
the rod equilibrium shape for design and control.

This paper is motivated by these two limitations of
Cosserat rod models and is a preliminary step towards ad-
dressing them. We propose a method that solves for the rod’s
curvature distribution with global orthogonal collocation and
uses the Magnus expansion, a Lie group integration method,
to recover the shape of the rod. Solving the BVP in this
way provides some computational advantages and results in
a product of matrix exponentials expression for the shape,
which, as shown in [17], [18], allows the Jacobian to be
computed in closed-form. Although we consider the case of
a single rod and additional evaluation is need for practical
robotics scenarios, our results show that this method can
potentially be competitive with other approaches.

Collocation, and other weighted residuals methods, have
been demonstrated previously [4], [10], [19–21], but these
works apply polynomial interpolation on internal wrenches
or on the position and orientation instead of curvature.
Curvature-based parameterizations have been used in [17],
[22], but they do not combine this with collocation, and they
use constant-twist deformation elements, in contrast to the
global interpolation functions we use here. A polynomial
curvature model was used in [23], although this work was
focused on control of a planar robot and not modeling
of Cosserat rods. In [24], a curvature parameterization is
combined with collocation for Cosserat rod dynamics, but
the Magnus expansion is not used.

Our method is most similar to recent works [18], [25]
that also use polynomial approximations on curvature within
a Lie-group framework. The Magnus expansion is used in
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[18] and Chebyshev polynomials are used in [25]. This paper
complements and extends these works by 1) demonstrating
the computational benefits of combining Chebyshev orthogo-
nal collocation with the Magnus expansion for Cosserat rod
BVPs, 2) analysing the maximum step sizes to guarantee
convergence of the Magnus expansion, and 3) validating the
approach with high-order polynomials against two known
methods in a simulation study.

II. THE COSSERAT ROD EQUATIONS

Here we briefly review the Cosserat rod equations of static
equilibrium. We assume that shear strains and extension
are negligible, which has been shown to be a reasonable
assumption for long, slender rods [5]. We also assume the
rod is not subject to distributed loads, is not pre-curved, and
has a uniform cross-section and bending stiffness. Although
we consider this simpler case for brevity, the methods in this
paper extend to these more general cases, which have been
discussed in other work [7].

Fig. 1: Kinematic notation and frame assignment: (a) the rod
in its undeflected state with reference frames T∗(s), and (b)
the rod after undergoing a spatial deflection.

Under these assumptions, the shape of a deflected rod of
length L is parameterized as a matrix function of arc-length
s ∈ [0, L] given as a homogenous transformation T(s):

T(s) =

Å
R(s) p(s)
0 1

ã
∈ SE(3) (1)

where p(s) ∈ IR3 specifies the rod’s shape in 3D and R(s) ∈
SO(3) describes the orientation of each local material frame
(as shown in Fig. 1).

We assign reference frames T∗(s) to the unloaded rod’s
curve as shown in Fig. 1(a) with the z-axis of T∗ aligned
with the rod and pointing towards its tip. Defining u =
[ux, uy, uz]

T as a vector of curvatures, we describe the
motion of T(s) along the curve for unit-speed traversal
along the arc-length by a twist vector ξ = [uT(s), 0, 0, 1]T

expressed in the moving frame. Using the wedge operator ∧,
we map u to its skew-symmetric matrix û ∈ so(3) and ξ to
its se(3) element, which is defined as:

ξ̂(s) = X(s) =

Å
û(s) e3

0 0

ã
∈ se(3)

X(s) = T−1(s)T′(s)

(2)

where T′(s) is the derivative of T with respect to arc-length
and e3 = [0, 0, 1]T. We use a moving frame twist so that
the rod’s internal moment can be obtained directly from the
local curvature:

m(s) = R(s)Ku(s), m(s) ∈ IR3 (3)

where K = diag(EI,EI, JG) is the rod’s arc-length nor-
malized bending stiffness matrix. Note we have expressed
m(s) in world frame since external wrenches are more easily
expressed in world frame.

For a known tip-applied wrench, the Cosserat rod ordinary
differential equations (ODEs) simplify to [7]:

T′(s) = T(s)X(s)

u′(s) = g(u(s)) = −K−1
(
û(s)Ku(s) + ê3R

T(s)fe
)
(4)

where u′(s) denotes a derivative with respect to s and fe is a
force at the rod’s tip expressed in world frame. The boundary
conditions for a known applied tip wrench are given by:

u(L) = K−1RT(L)me (5)

where me = [me,x,me,y,me,z]
T is the tip moment ex-

pressed in world frame. Solving the ODE’s in (4) with the
boundary conditions (5) provides the frames T(s) along the
rod which gives the shape of the rod in space.

This boundary value problem (BVP) is typically solved via
the shooting method. This has been successfully applied to a
number of continuum robot architectures for forward/inverse
kinematics [26] and forward dynamics [12]. One drawback of
the shooting method is that it involves many forward integra-
tions of T′(s) and u′(s) and therefore can be computation-
ally expensive for Cosserat rod models with many kinematic
constraints (e.g. [9], [15]). Another drawback is that, once a
solution to the BVP is found, computing Jacobians requires
finite difference approximation. Several works addressed this
issue for some continuum robot architectures [13], [16], but
this difficulty remains for architectures with many coupled
Cosserat rods.

In the sections below, we describe a procedure for solving
(4) and (5) that uses collocation to solve u′(s), which cir-
cumvents the need to numerically integrate u′(s), and a result
from the geometric integration literature called the Magnus
expansion to forward integrate T′(s). The combination of
these two known techniques allows for the solution to the
BVP to be expressed as a product of matrix exponentials, an
analytical expression that can be used for further analytical
analysis (e.g. Jacobian-based studies [17], [22]).

III. SOLVING VIA ORTHOGONAL COLLOCATION

Here we show how to solve (4) via orthogonal collocation,
a direct variational approach that has been applied to a vari-
ety of DEs and BVPs [27–29]. First, we review polynomial
interpolation and collocation.

Any continuous function can be approximated by obtain-
ing the function values at a set of interpolation nodes, then
fitting an interpolating polynomial to those function values.
If we choose an interpolating polynomial of sufficiently
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Fig. 2: Example of polynomial interpolation of a function
u(s) = sin(8s) using a 2nd order and 5th order Chebyshev
polynomials with interpolation nodes at the zeros of the
nth order Chebyshev polynomial. Orthogonal interpolation
provides rapid convergence with increasing n.

high order, it can provide a reasonable approximation of the
function. Figure 2 shows an example of this, where u(s) =
sin(8s) is approximated to varying degrees of fidelity by ũ(s)
given as a 2nd order polynomial or a 5th order polynomial.
To avoid Runge’s phenomenon, the interpolation nodes are
chosen to be the zeros of an orthogonal polynomial. Here
we choose Chebyshev polynomials but other orthogonal
polynomials could also be used.

In a collocation method, an interpolating polynomial is
used to find an approximate solution to a DE. An inter-
polating polynomial is chosen to approximate the unknown
solution to the DE (which in our case is ξ(s), the unknown
twist distribution), a set of collocation points (similar to the
interpolation nodes above) are chosen, and it is enforced that
the interpolating polynomial satisfy the boundary conditions
as well as the DE at the collocation points. This results in a
set of algebraic equations that can be solved using standard
nonlinear root-finding approaches. We now discuss how to
carry out this procedure for a Cosserat rod.

In our context, we seek to find the unknown twist dis-
tribution ξ(s) that satisfies the ODEs (4) and the boundary
conditions (5). We choose to describe this unknown twist
distribution as a set of nth order Chebyshev polynomials
of the first kind, denoted as ξ̃(s) = [ũ(s), 0, 0, 1]T, where
ũ(s) = [ũx(s), ũy(s), ũz(s)]

T, s ∈ [0, L]. Note that here
we use three interpolating polynomials to approximate ξ(s),
but for a general Cosserat rod case where shear strains are
included, six interpolating polynomials would be needed.
We choose the collocation points c = [c0, . . . , cn]

T, ci ∈
[0, L], i = 0 . . . n to be the Chebyshev polynomial zeros and
call the function values ũ(ci) the collocation values.

The Chebyshev polynomials of the first kind can be
conveniently represented by a recurrence relation [29]:

Tn(x) = 2xTn−1(x)− Tn−2(x), n = 2, 3, . . .

T0 = 1, T1(x) = x
(6)

where Tn(x), x ∈ [−1, 1] is the nth Chebyshev polynomial.
To shift the Chebyshev polynomials to the domain s ∈ [0, L]
we apply the linear transformation

x(s) =
2s− L
L

(7)

and evaluate Tn(x(s)) via (6). Henceforth, we denote
Tn(x(s)) as simply Tn(s) with (7) implied.

In a typical direct variational method, one describes the
interpolating polynomial as an expansion in a basis of
orthogonal polynomials, which requires computing modal
coefficients from collocation values. For example, ũx(s) may
be represented by the nth order interpolating polynomial:

ũx(s) =
1

2
a0T0(s) +

n∑
i=1

aiTi(s) (8)

where the modal coefficients ai are found via:

ai =
2

n+ 1

n∑
k=0

ũx(ck)Ti(ck) (9)

In an orthogonal collocation method, computing the modal
coefficients is avoided by using a differentiation matrix. By
taking advantage of the discrete orthogonality of Chebyshev
polynomials, it has been shown that the derivatives at the
collocation points can be written as a linear combination of
the collocation values [29], [30]:

d

ds

Ö
ux(c0)

...
ux(cn)

è
= Dn

Ö
ux(c0)

...
ux(cn)

è
(10)

where the element in row (i+1) and column (j+1) of Dn

is given by:

dij =


1
2

T ′′
n+1(ci)

T ′
n+1(ci)

, i = j

T ′
n+1(ci)

(ci−cj)T ′
n+1(cj)

, i 6= j
(11)

Note that the above result requires that the collocation points
be the Chebyshev zeros and that Dn can be computed offline
if the order of the interpolating polynomial is chosen a priori.

We now assemble the collocation values into a matrix Uc

where each column contains an interpolating polynomial:

Uc =

Ö
ũx(c0) ũy(c0) ũz(c0)

...
...

...
ũx(cn) ũy(cn) ũz(cn)

è
=

Ö
ũT(c0)

...
ũT(cn)

è
(12)

We want the interpolating polynomials to satisfy the bound-
ary conditions and (4) at the collocation points. To ensure
a square error residual Jacobian, we remove the last row of
Dn to form Dn−1 and form a matrix of error residuals:

E =

Å
Dn−1Uc

ũT(L)

ã
−

á
gT(ũ(c0))

...
gT(ũ(cn−1))(

K−1RT(L)me

)T
ë

(13)

where we evaluate g(ũ(ci)) by plugging the collocation
value ũ(ci) into (4). Note that u(L) is not one of the collo-
cation values and must be computed from the interpolating
polynomial. We show how to do this in Section V.

Equation (13) is a set of nonlinear algebraic equations we
must now solve for the collocation values ũ(ci), i ∈ 0, . . . , n.
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This is achieved by minimizing the error in (13) using
a nonlinear solver (e.g. Levenberg-Marquardt). Specifically,
the error is defined as e = vec(E), where vec(E) arranges
the columns of E into a vector. Once ũ(ci) are found,
the modal coefficients and the interpolating polynomial ũ
are defined. Therefore, X(s) is defined in terms of the
Chebyshev polynomials.

Computing g(ũ(ci)) in (13) requires integrating T′(s) to
find R(s) at the collocation points. Examples of methods
to do this include explicit Runge-Kutta methods, quater-
nion integration [31], and a variety of geometric integration
methods [32], [33]. Although any of these approaches could
be combined with collocation, here we take the geometric
integration approach. We observe that T(s) is an element of
the Lie group SE(3), X(s) is an element of the Lie algebra
se(3), and that given a set of collocation values ũ(ci) (which
would be guessed at each iteration of a nonlinear solver),
the twist distrubtion X(s) is known via the interpolating
polynomial. Therefore, T′(s) in (4) represents a linear DE on
a Lie group, a class of problems that has received extensive
study in other work [33]. We use a known result from the
Lie group integration literature called the Magnus expansion
to forward integrate T′(s). Note that a similar Lie algebra
expansion was given in [34], which could also be used here
in place of the Magnus expansion.

The benefits of using the Magnus expansion are 1) the
integration is done on the Lie algebra se(3) and mapped to
SE(3) via an exponential mapping, so T(s) is guaranteed to
stay on SE(3), 2) the quadrature method given in [33] for
the Magnus expansion is numerically efficient and allows for
closed-form gradients to be computed, and 3) the resulting
solution to the BVP is given as a product of matrix expo-
nentials that can be used for further analytical study (e.g.
computing Jacobians). In the next section, we provide the
main results on the Magnus expansion without proof and
refer the reader to [33] for additional details.

IV. THE MAGNUS EXPANSION

It was shown in [33] that for sufficiently small s the
solution to T′(s) = X(s)T(s) can be expressed as a matrix
exponential of a twist ψ = [ψu,ψv]

T ∈ IR6:

T(s) = T0e
Ψ(s)

Ψ(s) , ψ̂(s) =

Ç
ψ̂u(s) ψv(s)

0 0

å
∈ se(3)

(14)

A short proof in [33] shows that the twist matrix Ψ(s)
satisfies the differential equation

Ψ′(s) = dexp−1−Ψ(s)(X(s)) Ψ(0) = 0 (15)

where the dexp operator is defined as:

dexp−1Ψ =

∞∑
i=0

Bi
i!

adiΨ (16)

where Bi are the Bernoulli numbers and adΨ denotes the
6× 6 adjoint representation of an element in se(3) [35]:

adΨ =

Ç
ψ̂u(s) 0

ψ̂v(s) ψ̂u(s)

å
(17)

To compute dexp−1−Ψ, one can either truncate the infinite
series or, for special cases, derive a closed-form expression
as done in [35] for se(3). The DE in (15) can then be
numerically integrated with a standard Runge-Kutta method
to find Ψ(s). To reduce the cost of numerically integrating,
we take an alternative approach that avoids computing (16).
In [36], Magnus solved (15) via Picard iteration, leading to
a solution for Ψ(s) written as an infinite series of terms
consisting of integrals of commutators. In [33], order analysis
showed which terms can be dropped for a given order,
resulting in the following fourth order Magnus expansion:

Ψ[4](s) =

∫ s

0

X(η) dη

+
1

2

∫ s

0

ï∫ η1

0

X(η2) dη2,X(η1)

ò
dη1

(18)

where the matrix commutator is given by [X1,X2] =
X1X2 − X2X1. We do not replicate it here, but [33] also
provides the sixth order expansion with 7 terms and up to 4
integrals per term.

At first glance, the fourth and sixth order Magnus expan-
sions seem expensive to compute, however, it was shown in
[33] that both expansions can be efficiently computed with
Gaussian quadrature. Gaussian quadrature is an approach for
approximating definite integrals via interpolating polynomi-
als and leads to expressing the integral as a weighted sum
of the function values, which we call quadrature values,
evaluated at the quadrature points, which are chosen to be
the zeros of an orthogonal polynomial.

In addition to showing how to compute the expansion
via Gaussian quadrature, it was shown in [33] that skew
symmetry of the commutators allows many of the terms
in the quadrature to be combined. It was also shown via
order analysis that if the quadrature points are chosen to be
symmetric about 1

2h, where h is width of interval between
two adjacent collocation points, many of the terms in the
quadrature can be dropped for a given order. We first provide
here the steps to compute the quadrature on the interval [0, h]
(as given in [33]) then describe how this can be combined
with the collocation method above.

To integrate between collocation point ci and ci+1, we
choose the quadrature interpolating polynomials to be the
Legendre polynomials shifted to [0, 1] and choose ν quadra-
ture points t = [t1, . . . , tν ]

T ∈ [0, 1] to be the zeros of the
Legendre polynomials since they are symmetric about 1

2 . We
then form the quadrature values:

Xk = hX(ci + tkh), k = 1, 2, . . . , ν (19)

Note that an order four quadrature requires ν ≥ 2 and an
order six quadrature requires ν ≥ 3. In [33], [37], a change
of basis is carried out to take advantage of the symmetry
of the Magnus expansion. The change of basis is done by
finding the solution of the following Vandermonde system:

ν∑
i=1

(
tk − 1

2

)i−1
Yi = Xk (20)
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Fig. 3: Collocation points and quadrature points for the case
of n = 2 and ν = 3. Using orthogonal polynomials and
their zeros results in quadrature values being linearly related
to the collocation values.

where Yi ∈ se(3) are solved for by inversion:

Vij =
(
ti − 1

2

)j−1
, Yi =

ν∑
j=1

(
V−1

)
ij

Xj (21)

This leads to a quadrature rule for an order four expansion:

Ψ[4](h) = Y1 +
1

12
[Y1,Y2] (22)

and the following quadrature rule for a sixth order expansion:

Ψ[6] = Y1 +
1

12
Y3 +

1

12
[Y1,Y2]

− 1

240
[Y2,Y3] +

1

360
[Y1, [Y1,Y3]

− 1

240
[Y2, [Y1,Y2]]−

1

720
[Y1, [Y1, [Y1,Y2]]] (23)

Note that in [33] the expansion is given for the form of
T′(s) = X(s)T(s), which corresponds to twists expressed
with respect to the world frame, but since we use the body
twist in (4) there is a difference in sign for some terms.

We propose finding the poses at the collocation points
T(ci) using a Magnus expansion step between each colloca-
tion point. We assign either ν = 2 or ν = 3 quadrature points
(for either fourth or sixth order expansions, respectively)
between each pair of collocation points as well as between
0 and c0 and between cn and L. This leads to a total of
m = ν(n+2) quadrature points along the length of the rod.
Fig. 3 shows an example of this for ν = 3 and n = 2. We
then compute a Magnus expansion between each collocation
point, starting from s = 0 and stepping to s = L. The frame
at each collocation point therefore given by a product of
exponentials where Ψi is expressed in frame T(ci):

T(ck) = T0

k∏
i=0

eΨi (24)

Although not detailed here, we note that since the shape
of the rod is given as a product of exponentials, closed-
form gradients of the residual vector e can be found which
facilitate faster solutions to (13). Furthermore, as shown in
[17], [22] Jacobians useful for studying the kinematics of
continuum manipulators can be found via (24).

V. DETERMINING CURVATURE AT QUADRATURE POINTS

Evaluating Ψi according to the quadrature formula above
((22) or (23)) requires knowing the values at the quadrature
points, ũ(qk) where qk = ci + tk h, k = 1 . . . ν. Given the
collocation values ũ(ci) (which are guessed at each iteration
of a nonlinear solver), we show here that the function values
of the interpolating polynomial at the quadrature points can
be found directly as a linear combination of the collocation
values. First, we define a matrix Uq that contains quadrature
values, similar to Uc:

Uq =

Ö
uT(q1)

...
uT(qm)

è
(25)

We then use (8) together with (9) to find a matrix relating
the collocation values and the quadrature values:

Uq = ABUc (26)

where the matrix B ∈ IR(n+1)×(n+1) transforms the col-
location values into modal coefficients which are then a
transformed by A ∈ IRm×(n+1) into quadrature values:

A =

Ö
1
2T0(q1) T1(q1) . . . Tn(q1)

...
...

...
...

1
2T0(qm) T1(qm) . . . Tn(qm)

è
(27)

B =
2

n+ 1

Ö
T0(c0) . . . T0(cn)

...
...

...
Tn(c0) . . . Tn(cn)

è
(28)

This same procedure is also used to find u(L) which is
necessary to compute the error residual for the boundary
condition in (13). Note that both A and B can be computed
offline as long as the collocation and quadrature points are
chosen beforehand.

VI. CONVERGENCE OF THE MAGNUS EXPANSION

One important note is that the infinite Magnus expansion
is not guaranteed to converge. In this section, we use known
sufficient conditions for convergence of the Magnus expan-
sion to provide the maximum step sizes that will guarantee
convergence. These bounds are not necessary conditions, so
we are able to violate the bounds in our simulation results,
but we discuss convergence here since it cannot in general
be guaranteed. For real matrices, the expansion converges in
the 2-norm provided that [38]:∫ h

0

‖X(ξ)‖2 dξ < π (29)

Here we relate this bound on convergence to the case of
the Cosserat rod and provide a bound on the maximum step
size as a function of the maximum curvature. Recall that the
Euclidian 2-norm is bounded by the Frobenius norm:

‖X‖2 ≤ ‖X‖F =
»

trace(XTX) (30)
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Fig. 4: Examples comparing the shooting method and our collocation approach for (a) force loads (which we also validate
with elliptic integrals) (b) moment loads which result in constant-curvature, and (c) combined force and moment.

Assume the curvatures u(s) are bounded by a known scalar,
i.e. ux ≤ uy ≤ uz ≤ β. We can then compute the Frobenius
norm explicitly and provide the following bound:

‖X‖F =
»
2u2x + 2u2y + 2u2z + 1 ≤

√
6β2 + 1 (31)

We then integrate (31) to find a conservative bound for
integration step h to guarantee convergence:∫ h

0

‖X(ξ)‖2 dξ ≤
∫ h

0

‖X(ξ)‖F dξ < π (32)

hmax <
π√

6β2 + 1
(33)

Given a particular task and continuum robot architecture,
the bound β might be known beforehand through a simula-
tion study. Another option is to choose β by considering the
strain limits of the rod material. Consider as an example a
superelastic nickel-titanium (Nitinol) rod, which can accept
a strain of 5% with minimal loss of superelasticity due to
cyclic fatigue [39]. The maximum bending strain is ε = ur,
where u is the rod’s curvature and r is the rod’s radius.
Assuming the continuum robot is designed to avoid violating
strain limits, we have ux ≤ uy ≤ uz ≤ ε/r = β.

TABLE I: Maximum Step Size for Gauranteed Convergence
with 6% Bending Strain

r (mm) β hmax (mm)
1 50 25.65
2 25 51.29
3 16.67 76.92
4 12.5 102.54

TABLE II: Step Sizes Used in Simulations (2 mm OD rod)

n 2 4 6 8 10
hmax (mm) 86.60 58.78 43.38 34.20 28.17

Table I shows the maximum step size that will guarantee
convergence of the Magnus expansion under the assumption
ε < 5%. For larger rod diameters the step sizes are not
restrictive, and for smaller rod diameters the particular task
can potentially be taken into account to determine a more

suitable bound β and allow larger step sizes. Online checks
may be necessary to check for convergence of the expansion
in cases where larger step sizes are used. In our simulations,
we used the step sizes in Table II without observing issues.

VII. SIMULATION RESULTS

In this section, we will compare the accuracy of the fourth
and sixth-order Magnus expansions with different numbers of
collocation points. In all examples we use a shooting method
as a ground-truth to compare our results against, since the
shooting method has been validated in previous experimental
studies [8], [9], [13]. We integrated (4) with a Runge-Kutta
solver and a Levenberg-Marquardt algorithm (ode45() and
fsolve() in MATLAB) to satisfy the boundary conditions with
a termination tolerance of 10−9. We used units of meters and
radians. In the planar examples with in-plane forces, we also
compared against the elliptic integral solution given in [40]
and experimentally validated in [41], [42]. For all examples
we simulated the case of a solid Nickel-titanium (Nitinol)
rod with a 2 mm diameter and a 200 mm length.

We first consider the planar case with an in-plane load. We
solved the elliptic integral equations in [40] with tip angles of
20°, 50°, and 80°, giving the position of the tip and resultant
tip forces of fe = [0, 1.04, 0.104]T N, fe = [0, 3.63, 0.362]T

N, and fe = [0, 18.9, 1.89]T N. We then used these forces
in the shooting method and our collocation method (with a
sixth order Magnus expansion and n = 10), both of which
are shown in Fig. 4(a). All three methods showed agreement
within 0.006 mm (0.003% of arc-length).

Next we consider a planar case with an in-plane moment
load, as shown in Fig. 4(b). In this case, our collocation
method returns the predicted constant-curvature shape, and
for all three cases shown in Fig. 4(b) the shooting and
collocation method (with a sixth order Magnus expansion
and n = 10) showed agreement within 3.98e-6 mm and
rotation error within machine precision.

The collocation method also agrees with the shoot-
ing method in cases with combined forces and moments,
as shown in Fig. 4(c). In the next study, we compare
the shooting and collocation methods for combinations of
forces/moments and compare different numbers of colloca-
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Fig. 5: Samples from the set of 729 rod shapes used when
comparing our approach to the shooting method.

tion points. We simulated combinations of ±1 N tip forces
and ±0.5 Nm moments applied to the tip of the rod (a total of
729 applied wrench cases). The solution speed of any BVP
solver is affected by how close initial guesses are to the
solution, so for each case, we begin the simulation with the
rod in its straight configuration and linearly interpolate from
a zero wrench to the final wrench in 3 steps. This is to more
realistically simulate a scenario where the model is being
continuously solved (e.g. kinematic control) and the previous
solution is used as the initial guess for the solver. With the
interpolated wrenches the total number of applied wrench
cases is 2,187, samples of which are shown in Fig. 5. We
solved for the equilibrium shape of the rod for each case with
different numbers of collocation points, n ∈ [2, 4, 6, 8, 10].
We also solved each case using the fourth-order Magnus
expansion (ν = 2) and the sixth-order Magnus expansion
(ν = 3). The tip pose found with each collocation method
was compared to the tip pose found with the shooting method
using the following metrics:

ep =
‖pc(L)− ps(L)‖

L
× 100

er = cos−1
Ç

trace
(
Rs(L)R

T
c (L)

)
− 1

2

å (34)

where we report the position error as percent of total arc-
length, pc(L),Rc(L) are the tip position/rotation found
using a collocation method, and ps(L),Rs(L) are the tip
poses found using the shooting method.

Tables III and IV show the results of the simulations.
The difference between the shooting method and our method
rapidly converges to zero with increasing n. Both the fourth-
order and sixth-order expansions provided rapid convergence
with increasing n, and for n ≤ 6 are comparable. However,
for n ≥ 8 sixth-order Magnus steps did a better job reducing
the ep and er to below 0.005%. This implies that for small n,
the primary source of the error is in the interpolation error in
collocation (and not the Magnus stepping), while for larger n
the error in the Magnus steps becomes more important. Any
method with n ≥ 6 was able to calculate the tip position with
agreement with shooting of less than 0.15% of arc length.

We also report in Tables III and IV the average speed at

which solutions were found across the set of 2,187 shapes,
running MATLAB 2019b on an i7-4770 3.4 GHz CPU.
The fourth order and sixth order Magnus expansions were
comparable in terms of speed, since the primary source of
computation effort is not in evaluating the Magnus expan-
sion but in computing the gradient of the error residual in
(13), which despite being available in closed-form, becomes
increasingly expensive as n increases. When n is not too
large, the gradient is cheap to compute which provides quick
solutions when combined with the efficient integration of
T′(s) via the Magnus expansion.

TABLE III: Fourth Order Magnus Tip Error as a Function
of Collocation Polynomial Order (L = 200 mm)

Pos. ep (%) Rot. er (deg)
Avg. Max Avg. Max. Speed (Hz)

n = 2 2.97 28.0 4.28 36.3 179.6
n = 4 0.141 2.15 0.235 3.78 112.1
n = 6 0.00573 0.147 0.00889 0.183 71.6
n = 8 0.00122 0.0173 0.00453 0.0571 46.3
n = 10 5.46e-4 0.00707 0.00448 0.0543 33.1

TABLE IV: Sixth Order Magnus Tip Error as a Function of
Collocation Polynomial Order (L = 200 mm)

Pos. ep (%) Rot. er (deg)
Avg. Max. Avg. Max. Speed (Hz)

n = 2 3.00 28.1 4.29 36.5 176.8
n = 4 0.140 2.26 0.234 3.79 106.2
n = 6 0.00467 0.115 0.00889 0.193 68.8
n = 8 1.95e-4 0.00493 0.00450 0.0553 42.5
n = 10 2.66e-5 0.00140 0.00448 0.0542 32.4

Our shooting method implementation in MATLAB solved
the BVPs at an average rate of 17.6 Hz (with residual
gradients estimated via finite differences). Our collocation
implementation was faster than the shooting method in all
examples, but we would like to stress that a fair comparison
between the shooting and collocation is difficult since either
method could be improved with more specialized implemen-
tations in pre-compiled code and by providing good initial
guesses (see [5], [13] for shooting method implementations
with >1kHz). The main takeaway from these results is that
our method can be competitive in terms of computation
speed, and due to the availability of closed-form expressions,
may improve speed in cases where lower-order polynomials
are sufficient. More importantly, the Magnus expansion lead-
ing to closed-form direct kinematics offers fast evaluation of
instantaneous direct kinematics Jacobians.

VIII. CONCLUSIONS

In this paper, we presented a numerical approach to solv-
ing the Cosserat rod BVP that combines orthogonal colloca-
tion and the Magnus expansion which, when solved, results
in a closed-form product of matrix exponentials equation.
We have discussed the convergence of the Magnus expansion
for the case of Cosserat rods and showed in simulation that
both the fourth order and sixth order Magnus expansions
provide accurate solutions to the BVP and that a small
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number of collocation points can provide reasonably accurate
results. Although our results are preliminary, we believe this
method has the potential to provide reduced computational
cost when solving Cosserat rod models. Future work will
study Jacobian-based analysis of the resulting product of
exponentials and implementations for robotic applications.
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