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Abstract— Detecting persons using a 2D LiDAR is a chal-
lenging task due to the low information content of 2D range
data. To alleviate the problem caused by the sparsity of the
LiDAR points, current state-of-the-art methods fuse multiple
previous scans and perform detection using the combined scans.
The downside of such a backward looking fusion is that all the
scans need to be aligned explicitly, and the necessary alignment
operation makes the whole pipeline more expensive – often too
expensive for real-world applications. In this paper, we propose
a person detection network which uses an alternative strategy
to combine scans obtained at different times. Our method,
Distance Robust SPatial Attention and Auto-regressive Model
(DR-SPAAM), follows a forward looking paradigm. It keeps
the intermediate features from the backbone network as a
template and recurrently updates the template when a new
scan becomes available. The updated feature template is in
turn used for detecting persons currently in the scene. On the
DROW dataset, our method outperforms the existing state-of-
the-art, while being approximately four times faster, running at
87.2 FPS on a laptop with a dedicated GPU and at 22.6 FPS on
an NVIDIA Jetson AGX embedded GPU. We release our code
in PyTorch and a ROS node including pre-trained models.

I. INTRODUCTION

Detecting persons in the surrounding environment is a

key requirement for many robotic applications including

search and rescue, security, and health care. Currently, this

is often accomplished using multiple RGB(-D) cameras, in

combination with a deep learning based object detector [1],

[2], [3]. However, the limited field of view of such cameras

limits the detection to a narrow frustum. Furthermore, the

inaccurate depth measurements at far ranges make accurate

person localization difficult in 3D space. Instead, a 2D

LiDAR provides accurate range measurements with a large

field of view at high acquisition rates. Thus, it is a promising

sensor choice for detecting persons.

However, the limited information contained in the sparse

range measurements from a 2D LiDAR is a key challenge

towards reliable person detection. Recent developments have

shown that it is beneficial to combine several previous scans

in order to detect objects [4], [5]. In particular, Beyer et

al. reported improved detection results by accumulating five

previous scans, compared to their single scan baseline [4].

The downside, however, is the increased computational cost.

Due to the ego-motion of the LiDAR, as well as the motion

of objects in the scene, scans recorded at different times are

not perfectly aligned, and an expensive alignment operation

has to be carried out in order to fuse scans for downstream

processing. In the case of [4], the alignment is done using

1All authors are with the Visual Computing Institute, RWTH Aachen
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Fig. 1: The bird’s-eye view of a 2D LiDAR scan (blue dots)

with a person in the scene (green square). For each point

DR-SPAAM outputs a classification label and an offset to

the center of the person (red lines), which are then grouped

into detections using a post-processing step.

the odometry information in addition to repetitive sampling

on previous scans. This alignment has linear computational

cost with respect to the number of scans, and using five

previous scans already makes the overall detection pipeline

too expensive for real-time processing on mobile platforms.

In principle, aligning and fusing previous scans follows a

backward looking paradigm for aggregating temporal infor-

mation. In contrast, a forward looking paradigm simply keeps

a representation based on current measurements and recur-

rently updates this representation when a new measurement

becomes available. This representation, which incorporates

all previous measurements, is then used for downstream pro-

cessing. An example of such a forward looking paradigm is

found in the field of video object detection, where researchers

have used memory modules which recurrently take input

features at each frame of a video sequence and output a

refined prediction at the current frame [6], [7], [8].

In this paper, we propose a person detection network

which aggregates temporal information following a forward

looking paradigm. Our method uses the existing architecture

of the DROW detector [4], which takes as input a 2D scan

and predicts for each point a classification label and an offset

vector pointing towards the center of the person (Fig. 1). We

augment DROW with an auto-regressive model to aggregate

the intermediate features from the backbone network from

each scan, allowing our method to use information from

all past measurements. Instead of explicitly aligning the

intermediate features from different scans, we use a spatial

attention mechanism to associate features from neighboring

locations based on their similarity, significantly reducing the
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computational cost. We call our method Distance Robust

SPatial Attention and Auto-regressive Model (DR-SPAAM).

Evaluated on the original DROW dataset, DR-SPAAM out-

performs the previous approaches, while running at 87.2 FPS

on a laptop with a dedicated GPU, or at 22.6 FPS on an

NVIDIA Jetson AGX. The high frame rate of DR-SPAAM

makes it suitable for many robotic applications.

In summary, we make the following key contributions:

• We propose a spatial attention and auto-regressive

model that fuses information from previous LiDAR

scans without the need of explicit alignment operation.

• We propose DR-SPAAM, a fast 2D LiDAR based

person detector using the spatial attention and auto-

regressive model. Our proposed method outperforms the

previous state-of-the-art in 2D range data based person

detection both in speed and detection performance.

• We release our implementation in PyTorch, including

a ROS node with pre-trained models, to facilitate easy

deployment in robotic projects1.

II. RELATED WORKS

A. Person Detection from 2D Range Data

Person detection from 2D range data has a long standing

history in the robotics community. While early methods

are mainly based on heuristics to find specific shapes in

range data, the most common paradigm is to segment a

scan into connected segments, compute a set of hand-crafted

features for each of these, and finally classify them to create

detections [9], [10], [11]. Common methods can be divided

into approaches that detect, and then track, individual legs in

order to detect persons [10], [11], or approaches that directly

aim to include both legs in one segment [9]. Optimally,

one would learn the representation of persons directly from

data to avoid making such hard design choices. The DROW

detector [12] was the first deep learning based walking aid

detector working on 2D range data and was later extended to

additionally detect persons [4]. One key aspect that improved

the person detection results was the integration of temporal

information. However, this significantly increases the run-

time, making it infeasible for online use. We propose a new

person detector that combines the existing architecture of the

DROW detector with a forward looking temporal integration

module, outperforming the original DROW version both in

speed and in detection quality.

Others have used deep learning based methods on 2D

range data. Ondrúška et al. [13] create an occupancy grid

from a stationary 2D LiDAR and predict class labels and

future grid configurations based on RNNs for every grid

cell. In a later version they extend this approach to work

with moving LiDARs [14]. However, in both cases they do

not create object detections or tracks and as such cannot be

compared to a person detector.

1https://github.com/VisualComputingInstitute/DR-SPAAM-Detector

B. Object Detection in 3D Point Clouds

Many works have focused on detecting objects in point

clouds obtained from a 3D LiDAR, since such a task plays

an important role in autonomous driving applications. Point

clouds, as a data representation, inherently lack the definition

of structure and neighborhoods, and thus prohibit the use

of popular CNN architectures. To solve this problem, earlier

works have leveraged image-based object detection methods,

either by projecting the point cloud onto an image plane,

or by popping up 2D detections made on the RGB image

with known extrinsic calibration [15], [16], [17], [18]. The

runtime and accuracy of these methods, however, are bottle-

necked by the employed 2D object detector. Later develop-

ments in the field, including current state-of-the-art methods,

utilize the full point cloud without projection. Methods like

VoxelNet [19], or SECOND [20] run (sparse) convolutions

[21], [22] on structured 3D voxel grids converted from point

clouds, while other methods like PointRCNN [23] directly

process unstructured point clouds, using PointNet [24] in-

spired backbones [25], [26], [27]. Yet others combine both

design schemes into two-stage detectors [28], [29], [30].

A particularly interesting work is the VoteNet proposed

by Qi et al. [31]. Given a 3D point cloud, the first stage

of the VoteNet regresses for each point an offset vector

towards the object center (a vote), similar to the DROW

detector, but instead of using a post-processing step, it uti-

lizes another sub-network to group the per-point predictions

into bounding box proposals. Thus, the whole network is

end-to-end trainable. Similarly, 3D-MPA [32] uses voting

for instance proposals which are grouped into point-level

instance masks. This differentiable vote aggregation could

also be an interesting approach for 2D LiDARs. However,

our focus lies on the temporal integration of a sequence of

scans, and these two approaches are orthogonal.

Although from a hardware point of view, a 2D LiDAR

does share similar working principles with its 3D counter-

part, the methods operating on 3D point clouds cannot be

naively applied to range data obtained from a 2D LiDAR.

To the best of our knowledge, no work exists that directly

applies existing 3D methods to 2D range data, and given the

sparsity of information in 2D range scans, it remains to be

seen if a naive adaptation is possible at all.

C. Video Object Detection

Video object detection is a special object detection task,

where the input is a video sequence showing the same

objects in multiple frames. It is thus possible to utilize

information from one frame to aid detection in another.

This temporal propagation of information is important, since

objects can undergo large appearance changes caused by

fast motion, occlusion, or change of camera angle. Earlier

approaches [33], [34], [35] detect objects in each frame

independently and apply sequence-level post-processing on

the obtained bounding boxes. Such approaches cannot be op-

timized in an end-to-end fashion. Later approaches focus on

directly aggregating features across frames, either explicitly
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aligning features using optical flow [36], [37], [38], or using

a memory network to aggregate features [6], [7], [8].

Similar to these approaches, our method uses a network to

aggregate features across consecutive scans. Instead of using

a designated memory module, we use an auto-regressive

model, which propagates information from the previous scan

to the next with an exponentially decaying weight. In video

object detection, the key is to be able to aggregate long term

features, since neighboring frames often have similar appear-

ance and introduce little new information. Thus, a memory

network is often used. Instead, we focus on aggregating

short term features from consecutive scans, with the goal of

enriching the information available for detection. Hence, an

auto-regressive model is more suitable compared to a more

complex memory module. Furthermore, we propose to use a

similarity based spatial attention model [39], [40] to first fuse

nearby spatial information before the temporal aggregation.

III. METHOD

In this section we describe in detail our proposed method

for person detection. We first describe our baseline architec-

ture – the DROW detector [4], followed by a discussion on

different paradigms of aggregating temporal information. In

the end, we introduce our proposed DR-SPAAM detector,

which in contrast to [4], uses a forward looking approach to

aggregate information over time.

A. DROW Detector

The DROW detector [12], [4] was the first deep learning-

based approach that detects persons from 2D range data.

It consists of three stages. First, in order to normalize the

appearance across different depths, the raw scans are pre-

processed into small per-point windows, which are referred

to as cutouts. These cutouts are then separately classified

by a network as either object or background, and a possi-

ble object center is regressed for every cutout. Finally, all

regressed object centers (referred to as votes) are collected

and aggregated to a final set of detections.

During preprocessing, given a scan St ∈ R
N
>0 composed

of N points2 {stn}Nn=1 at time t, N cutouts {Ct
n}Nn=1 are

generated, each corresponding to a fixed-size window in

Euclidean space around the LiDAR point stn. This is done

by computing an angular opening atn for each point stn using

atn = 2 · arctan 0.5 ·W
stn

, (1)

where W is a hyperparameter specifying the cutout width.

The points within this angular neighborhood are then re-

sampled to a fixed number of M points and centered by

subtracting the distance stn of the central point. Background

and foreground points outside a depth range of ±d are

clipped away and replaced with a constant value, based

on the threshold d, and finally all values in the cutout

Ct
n are normalized to [−1, 1]. The now normalized cutouts

2A 2D LiDAR scan is composed of range measurements at different
angles. For simplicity, we refer to a range measurement s as a point, omitting
the angular component.

{Ct
n}Nn=1 are passed through a network for classification

and regression. During postprocessing, votes are accumulated

in a voting grid and a non-maximum suppression step is

applied to obtain a set of detections, which are further refined

by aggregating the class distributions of votes belonging to

a detection. The results of the DROW detector show the

benefit of the cutout preprocessing. In particular, it alleviates

problems caused by unequal sampling densities at different

distances (LiDAR points are sparser at far range), and also

allows the DROW detector to work with LiDARs with

different angular resolutions without requiring re-training.

Furthermore, the clipping operation removes the background

information, allowing the network to focus on the neighbor-

ing points that are in the same distance region. We refer the

reader to [12] for more details.

B. Temporal Information Aggregation

Since the measurements obtained from LiDAR sensors are

low in information content (especially at far range), some

detectors aggregate measurements made at different times

to obtain a richer representation of the space, and it has

been observed that this temporal aggregation improves the

performance of downstream tasks [4], [5]. Many common

techniques for accumulating the temporal information follow

the so-called backward looking paradigm, where measure-

ments within the past few steps are combined together. Spa-

tial misalignment often exists between these measurements,

due to the sensor ego-motion or dynamic objects, and this

misalignment has to be corrected based on odometry or point

cloud registration.

Similarly, the second version of the DROW detector also

accumulates temporal information by looking backward [4].

It computes cutouts on the past T scans {Ct−T
n , · · · , Ct

n}
and fuses features {F t−T

n , · · · , F t
n}, obtained from an inter-

mediate stage of the network, by a simple summation. The

fused features are then fed into the later stage of the network

for classification and regression. Due to the ego-motion of

the sensor, two range measurements stn and st−1
n made at

the same angular index n will not correspond to a single

aligned point in the world, and the DROW detector uses

robot odometry to correct the misalignment before fusing

the features F t
n and F t−1

n . However, odometry alone is not

sufficient to compensate for the misalignment caused by

dynamic objects in the scene. In the case of persons, this

is especially critical, since the LiDAR ray at the same nth

angular index could hit the leg of a person at time t−1, while

passing between the legs and hitting a distant background

structure at time t, resulting in significantly different features.

Thus Beyer et al. propose to fix the sampling location at

which the cutout is centered to the location of the current

point stn. However, this means the cutouts of previous scans

need to be recomputed at each time step. With the alignment

using odometry and fixed location sampling, the DROW

detector combines five scans from the past, resulting in

improved detection accuracy compared to using only a single

scan.

The performance gain from such a backward looking
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Fig. 2: Overview of the DR-SPAAM architecture. From the current LiDAR scan we create cutouts Ct
n for every point,

from which the network computers intermediate representations F t
n. Using our SPAAM module, we aggregate temporal

information from previous scans (c.f . Fig. 3 and Sec. III-C). Based on the merged representations F̃ t
n the network outputs

a classification label and predicts a relative object center for each point.

approach comes at the cost of increased computation time.

The misalignment between the current measurement and

each previous measurement has to be corrected, resulting

in a linear increase in computation time with respect to the

number of frames in the aggregation window. For the DROW

detector, using only five scans already makes the overall

detection pipeline too expensive for real-time applications

on mobile platforms.

An alternative approach to aggregate temporal information

is to follow a forward looking paradigm. Instead of explicitly

aligning and combining multiple previous measurements,

a forward looking approach simply keeps a representation

based on the current measurements and recurrently updates

the representation for each new measurement. Ideally, the

update step only incurs a small computational overhead. As

a result, a forward looking approach aggregates information

from the past without the unfavorable runtime scaling be-

havior with respect to the size of the temporal window.

C. DR-SPAAM Detector

We propose the Distance Robust Spatial-Attention and

Auto-regressive Model (DR-SPAAM), which follows a for-

ward looking paradigm to aggregate temporal information.

Instead of computing spatially aligned cutouts on the past

scans, we use a similarity-based spatial attention mod-

ule [40], which allows the network to learn to associate mis-

aligned features from a spatial neighborhood. Additionally,

an auto-regressive model is used to update the representation,

aggregating information forward through time. Our proposed

detector outperforms the DROW detector, while being ap-

proximately four times faster. Diagrams of DR-SPAAM and

of the proposed spatial attention and auto-regressive model

are shown in Fig. 2 and 3 respectively.

Due to the misalignment, features F t
n and F t−1

n computed

at two time steps cannot be naively combined. Instead of

explicitly modeling the alignment as in [4], we propose to

let the network learn to associate features using a similarity-

based attention mechanism. For a point stn, we look at its

spatial neighbors {st−1
n−w, · · · , st−1

n+w} at previous time t − 1
and compute a pairwise similarity

Ωnj = ψ(F t−1
j )T · ψ(F t

n) (2)

between the features extracted at each previous point st−1
j

and those from the current point stn. Here, w is a parameter

defining the size of the neighborhood, F t
n is the intermediate

feature of stn, and ψ is a generic mapping function, realized

by a neural network, that maps the feature to an embedding

space. We then use a softmax function to convert the similar-

ity into weighting factors and produce fused features F̃ t−1
n

from the previous frame:

F̃ t−1
n =

n+w∑

j=n−w

softmax (Ωn)jF
t−1
j . (3)

This model gives more weight to the points with a higher

similarity score, which are more likely to contain information

from regions near stn, while suppressing features from other

irrelevant points. The fused feature F̃ t−1
n from the previous

frame can then be combined with the current feature F t
n and

be used for further processing.

This model, however, only combines information from

two consecutive scans. In order to aggregate information

from previous scans further back in the past, we propose to

combine Eqn. 3 with an auto-regressive approach. We treat

the fused features F̃ t−1
n from time t− 1 as a template, and

when the new features F t
n at time t become available, we

compute an updated template:

F̃ t
n = αF t

n + (1− α)

n+w∑

j=n−w

softmax (Ω̃n)jF̃
t−1
j , (4)

where α ∈ [0, 1) is a parameter that controls the update rate.

Here the first term is our update to the stored template, and

the second term summarizes the information from the past.

Notice that unlike in Eqn. 2, the term Ω̃nj here denotes the

similarity between the current feature F t
n and the neighboring

features {F̃ t−1
n−w, · · · , F̃ t−1

n+w} from the previous templates,

rather than from the previous scan, i.e.

Ω̃nj = ψ(F̃ t−1
j )T · ψ(F t

n). (5)

The updated template F̃ t
n is then passed to the later stage of

the network for the final classification and offset regression.

Compared to the original DROW detector, our DR-

SPAAM detector has a significantly lower computational

complexity, requiring neither robot odometry nor the cutout

recomputation on previous scans. The auto-regressive model

also allows our detector to keep only a single template per

angular index, without having to store multiple past scans,

while being able to accumulate information within a larger

temporal window.

IV. EVALUATION

We evaluate our methods using the DROW dataset [12],

[4], which is recorded in an indoor rehabilitation facility

using a SICK S300 scanner. The dataset contains 24,012
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Fig. 3: The SPAAM module associates features from pre-

vious scans using similarity-based spatial attention. The

similarity-weighted features are then combined with the

current features in an auto-regressive fashion.

annotated scans, split into train (17,665), validation (3,919),

and test (2,428) sets. The annotation includes the locations

of three classes of objects: wheelchair, walker, and person.

In this work we specifically focus on detecting persons and

ignore the annotations of the other two categories, albeit our

method should be general enough to handle other classes

with adjusted hyper-parameters.

Following the standard in the object detection commu-

nity, we use average precision (AP) at different association

distances as our main evaluation metric. APd means that

a detection is considered as positive if there exists an

unmatched ground truth that is within dm radius of the

predicted location. Notice that [12], [4] reported the area

under the precision-recall curve (AUC), which is equivalent

to average precision by definition. Additionally, we report

the peak-F1 score (using 0.5 m association distance), which

is the maximum harmonic mean of the different precision

and recall values, as well as the equal error rate (EER), the

value at which precision and recall are equal.

All our models are trained on the train set with a batch

size of 8 scans for 40 epochs. For our DR-SPAAM detector,

we load 10 frames back into the past during training, since

scans that are further back in time are less relevant due

to the exponential decay. We use an Adam optimizer, with

initial learning rate 10−3 with an exponential decay (after

each iteration) to 10−6 during the complete training. For

the classification we use the binary cross entropy loss and

for the regression we use the L1-norm of the regression

error. To convert the network output into detections we

use the same postprocessing scheme introduced in [4]. We

use Hyperopt [41] to optimize the hyper-parameters of the

voting step by maximizing AP0.5 on the validation set for

each model individually. During evaluation, similar as during

training, we provide a temporal context of 10 past frames for

each test scan. However, our approach readily generalizes to

run on complete sequences.

A. Quantitative Results

We evaluate our proposed method using the test set and

report the average precision, peak-F1 score, and equal error

rate of our method at an association threshold of 0.5 m

in Table I. As an additional baseline, we also report the

TABLE I: Detection accuracy on the test set with 0.5m
association threshold. Note that DR-SPAAM and our re-

trained baseline DROW do not use odometry information.

Method AP0.5 peak-F1 EER

ROS leg detector [10] 23.2 41.7 41.0
Arras (re-trained) [9] 47.6 50.3 50.1
Leigh (re-trained) [11] 57.2 64.3 62.3
DROW (T = 1) in [4] 59.4 61.5 61.4
DROW (T = 5) in [4] 67.0 65.9 64.9
DROW (T = 5, + odom.) in [4] 68.1 68.1 67.2

DROW (T = 1) baseline 66.6 66.1 65.2
DROW (T = 5) baseline 67.9 65.1 63.8
DR-AM (w/o spatial attention) 66.3 65.2 64.0
DR-SPA (w/o auto-regression) 68.0 67.0 66.1
DR-SPAAM 70.3 68.5 67.2

performance of two re-trained DROW models, using a single

scan and five scans, respectively. Compared to the original

implementation, our re-trained models use a smaller cutout

window and more sampling points within each cutout, which

we selected based on a better performance on the validation

set (c.f . Sec. IV-C). In order to keep the comparison mean-

ingful, the same cutout parameters are used for both the re-

trained DROW baseline and DR-SPAAM, and no odometry

information is used. The original DROW score reported by

Beyer et al. on the person class in [4], as well as the score

of the Leigh [11] and Arras detectors [9], re-trained on the

DROW dataset, are also included in Table I.

As the results show, DR-SPAAM achieves the highest

AP0.5 of 70.3%, which is 2.4% above the baseline model and

2.2% above the original DROW in [4]. Thus, DR-SPAAM

establishes a new state-of-the-art, even though it does not use

odometry information. By comparing our re-trained DROW

models with the original DROW, we can also observe the

effectiveness of our proposed adjustment, especially in the

single scan case. Fig. 4 shows the precision-recall curves

of all different models. Here we can see that DR-SPAAM

outperforms all other setups, except for a small region in

the high precision regime, where the DROW (T=5) baseline

scores higher.

Table I also shows the results of an ablation study that

highlights the contribution of the different components in

our temporal aggregation module. DR-AM corresponds to

a network where the auto-regressive model is updated with

the new features directly, without using the weighted sum

from the spatial attention mechanism. It has a slightly worse

performance compared to a single-scan DROW baseline,

showing that it is not beneficial to naively combine mis-

aligned features. DR-SPA, on the other hand, only com-

bines the features from the current and the previous scan

using spatial attention, without using the accumulated feature

template from the auto-regressive model. This two-scan

approach already outperforms the five-scan DROW baseline,

showing the benefit of using a learning-based approach to

incorporate features from the previous measurements. The

full model, DR-SPAAM, outperforms the two-scan DR-SPA,

showing the benefit of aggregating information over a larger

temporal window.
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Fig. 4: Precision-recall curves for several baselines and our

DR-SPAAM detector, evaluated with association distance

0.5 m (solid) and 0.3 m (dashed).

B. Inference Time

DR-SPAAM not only achieves better detection, it also

has a significantly lower computational complexity, since it

eliminates the need to perform an expensive recomputation

of past cutouts. We implement all networks in Python

and PyTorch without using any inference time acceleration

framework (e.g., TensorRT), and profile the run time of

different components of the complete pipeline. The timing

results for two mobile platforms are reported in Table II.

Here we use a laptop equipped with a mobile NVIDIA

GeForce RTX 2080 Max-Q GPU and an Intel-i7 9750H

CPU, as well as a Jetson AGX Xavier. The table shows

that DR-SPAAM has a computation time similar to that

of a single-scan DROW method. This is expected, since at

each time step only the current scan needs to be processed

and the more expensive fusion of DR-SPAAM adds a small

overhead. However, even though the methods are similar in

speed, the single-scan DROW method has a by far lower

detection accuracy. DROW with temporal integration, on the

other hand, has a runtime that scales linearly with the number

of scans due to the required cutout recomputation on all

past scans, and already becomes significantly slower when

using five scans. Considering the Jetson AGX platform, a

frame rate of 2.6 FPS is too slow for a real-time application,

whereas our 9.7 FPS is still well within a usable range.

On the laptop, we can in fact run all models faster than

real-time, given that the DROW dataset was recorded at a

frame rate of roughly 13 FPS. However, DR-SPAAM can

run at significantly higher frame rates if needed, providing

detections with a lower latency and consuming less power,

which is a relevant aspect for mobile platforms.

The cutout generation and the voting are the expensive

TABLE II: Computation time (in milliseconds) and frame

rate of different setups on two different mobile platforms.

Laptop (RTX 2080) Jetson AGX

Method AP0.5 cutout net vote FPS cutout net vote FPS

DROW (T = 1) 66.6 7.0 1.4 6.1 68.6 63.3 4.8 29.3 10.4
DROW (T = 5) 67.9 34.3 1.5 19.2 18.2 306.3 5.1 78.1 2.6
DR-SPAAM 70.3 7.0 2.0 7.7 59.8 62.0 6.9 33.6 9.7

DR-SPAAM∗ 71.8 1.1 1.9 8.5 87.2 4.2 7.7 32.4 22.6

steps in the whole pipeline. To further increase the frame rate,

we resort to a faster implementation of the cutout generation

and the resulting model, DR-SPAAM∗, runs at 87.2 FPS

on a laptop with a dedicated GPU, or at 22.6 FPS on a

Jetson AGX, well-beyond the requirement for many real-time

applications. The new implementation increases the network

performance thanks to the improved numerical precision.

C. Hyperparameter Selection

The cutout operation is parameterized by the width (W) and

depth (D) of the window, as well as the number of points (N )

used for re-sampling. In [4] a larger (1.66 m×2.0 m) sized

window with 48 points was used in order to cope with the

bigger walking-aid classes. Since we are only concerned with

detecting persons, we propose to use a smaller sized window

that tightly fits the footprint of a person, thus reducing

distracting information from the surroundings. We conduct

an experiment on the size of the cutout window on the

validation set using a DROW network with a single scan.

The results are shown in Table III. Based on these results,

we set our cutout window to (1.0 m×1.0 m) with 56 points

and use these cutout parameters for all models we train.

One can observe that the scores on the validation set are

significantly lower than those on the test set. The origi-

nal DROW dataset is created for detecting three classes:

wheelchair, walker, and person. In this work, we have

only kept the annotations for the person class, and we

observed that the validation set happens to contain more

person annotations at farther distances. Even though we

use a distance robust preprocessing, at farther distances

information becomes so sparse that the detection will always

become less reliable, thus rendering the validation set more

challenging.

The Spatial-Attention and Auto-Regressive Model are

parameterized by the update rate α and the size of the search

window W . Although the meaning of these two parameters

is intuitively clear, it is not a trivial task to select the proper

combination. We train multiple DR-SPAAM networks with

different combinations of α and W . Based on the validation

set results (Table IV), we choose to use W = 11 and α = 0.5
for our final model. No clear pattern can be seen in these re-

sults, neither larger search windows nor specific update rates

consistently work better. A more thorough search through

the parameter space could potentially result in models that

perform even better.
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TABLE III: Validation set scores of DROW (T = 1) detectors

with different cutout parameters.

W D N AP0.3 AP0.5 peak-F1 EER

1.66 2.0 48 41.9 43.0 48.1 47.6
1.66 1.0 48 42.6 43.4 49.2 48.6
1.0 2.0 48 43.6 44.8 50.7 50.4
1.0 1.0 48 44.0 45.0 50.3 50.2

1.0 1.0 32 42.0 43.0 49.1 48.8
1.0 1.0 40 43.1 44.1 50.0 49.6
1.0 1.0 48 44.0 45.0 50.3 50.2
1.0 1.0 56 45.1 46.3 50.9 50.8
1.0 1.0 64 43.8 45.1 50.7 50.4

TABLE IV: Validation set scores of DR-SPAAM with dif-

ferent window sizes and update rates.

W α AP0.3 AP0.5 peak-F1 EER

7 0.3 45.0 46.2 52.5 52.5
7 0.5 49.5 50.9 54.6 53.6
7 0.8 46.8 48.3 54.1 54.0

11 0.3 51.5 53.0 56.8 56.4
11 0.5 52.7 53.9 57.3 57.3
11 0.8 47.4 48.7 53.6 53.2

15 0.3 51.5 52.8 56.1 55.3
15 0.5 50.7 52.1 55.0 54.7
15 0.8 47.0 48.2 53.1 53.0

D. Sampling Rate

Different LiDARs often have different sampling rates.

Since a detection network is likely to be deployed on dif-

ferent LiDAR sensors, its robustness against varying sensor

specifications should be examined. We take two networks,

DROW (T = 5) and DR-SPAAM, and evaluate them on the

test set using temporally sub-sampled sequences, simulating

different sampling rates. Table V reports the detection ac-

curacies at different temporal strides (a stride of n means

keeping only every nth scan).

The evaluation results show that DR-SPAAM is very

robust against changing sampling rate. Even at a five times

lower scanning frequency (roughly 2 Hz), the AP0.3 only

reduces by 2.1%. This result shows the benefit of a learned

spatial attention module, which combines information based

on appearance similarity without relying on a fixed temporal

context window. Hence, DR-SPAAM can be deployed on

LiDARs with a wide range of sampling rates, or operate

with a reduced sampling rate if the computation capacity is

limited. On the other hand, the DROW detector performance

degrades rapidly with increased temporal stride. Larger time

differences between consecutive scans lead to greater motion

induced misalignments, which in turn hurt the accuracy of

the DROW detector.

E. Temporal Association

During the temporal aggregation step, DR-SPAAM com-

putes the similarity between the aggregated template and the

latest scan features (Eqn. 5). This similarity can be further

exploited for associating points across different scans. Here

we provide a preliminary example. We take 200 consecutive

frames (roughly spanning 15 s) from a sequence and detect

TABLE V: Test set results with different temporal strides.

DROW (T = 5) DR-SPAAM

Stride AP0.3 AP0.5 p-F1 EER AP0.3 AP0.5 p-F1 EER

1 66.6 67.9 65.1 63.8 68.5 70.3 68.5 67.2
2 59.3 60.5 60.1 59.3 69.3 70.8 68.8 67.6
3 54.3 55.8 56.8 56.7 69.4 70.9 68.1 66.5
4 53.6 55.1 56.0 55.7 67.7 69.1 66.4 64.9
5 51.5 53.4 54.6 54.3 66.4 67.7 65.5 64.5

2D LiDAR

Fig. 5: Tracklets generated by DR-SPAAM using 200 con-

secutive scans. The blue points are the overlaid scans, and the

green squares are the ground truth annotations. Notice that

for clarity, we omit the points that have been classified as

persons from plotting. The colored lines are the tracklets, and

the coloring encodes the time of detections. The sequence is

taken from the training set, since the validation set does not

have any sequence recorded using a stationary LiDAR, which

is needed for plotting overlaid scans. Nevertheless, most of

the scans have not been annotated (shown as the missing

annotations along the tracklets) and have not been exposed

to the network during training.

persons using DR-SPAAM for each individual frame. For

each detection Dt
i , we find its corresponding points in the

previous scan, simply by selecting the ones with highest

similarity score. If these corresponding points were grouped

into a detection Dt−1
j , and if the distance between the two

detections are smaller than a threshold (0.5 m), we group both

detections into a tracklet. Otherwise a new tracklet is started

using Dt
i . After 200 frames, we compute the confidence of

each tracklet as the mean of all its detections. In Fig. 5 we

plot all tracklets that have a confidence greater than 0.35 and

that are composed of at least five detections. The trajectories

of persons in the scene are clearly visible. These associations

can provide extra information for tracking algorithms. Their

full potential is yet to be explored in future research. The

velocity and movement direction of the persons can also

be derived from the associated detection pairs, and this

information can be helpful for motion planning.

V. CONCLUSION

We propose the DR-SPAAM person detector that com-

bines the distance robust detection scheme of the DROW

detector with a powerful spatial attention and auto-regressive
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temporal integration model. The spatial attention is able

to associate misaligned features from different frames us-

ing their appearance similarity, while the auto-regressive

model aggregates temporal information forward through

time. Compared to the previous state-of-the-art approaches,

DR-SPAAM achieves higher detection accuracy, while being

significantly faster and able to run in real-time even on

low-powered mobile platforms. Experiments show that DR-

SPAAM generalizes well to LiDARs with different temporal

sampling rates, and with our provided code and ROS node,

we expect that our model will be useful for many robotic

applications.
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[9] K. O. Arras, Ó. M. Mozos, and W. Burgard, “Using Boosted Features
for the detection of People in 2D Range Data,” in IEEE International
Conference on Robotics and Automation, 2007.

[10] C. Pantofaru, “ROS leg detector package.” https://wiki.ros.
org/leg_detector, 2010. Accessed 2018-02-22.

[11] A. Leigh, J. Pineau, N. Olmedo, and H. Zhang, “Person tracking and
Following with 2D Laser Scanners,” in IEEE International Conference
on Robotics and Automation, 2015.

[12] L. Beyer*, A. Hermans*, and B. Leibe, “DROW: Real-Time Deep
Learning based Wheelchair Detection in 2D Range Data,” IEEE
Robotics and Automation Letters (RA-L), vol. 2, no. 2, pp. 585–592,
2016.

[13] P. Ondruska, J. Dequaire, D. Zeng Wang, and I. Posner, “End-to-
End Tracking and Semantic Segmentation Using Recurrent Neural
Networks,” in Robotics: Science and Systems Conference, Workshop
on Limits and Potentials of Deep Learning in Robotics, 2016.
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