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Abstract— Modern high-definition LIDAR is expensive for
commercial autonomous driving vehicles and small indoor
robots. An affordable solution to this problem is fusion of
planar LIDAR with RGB images to provide a similar level
of perception capability. Even though state-of-the-art methods
provide approaches to predict depth information from limited
sensor input, they are usually a simple concatenation of sparse
LIDAR features and dense RGB features through an end-to-
end fusion architecture. In this paper, we introduce an inductive
late-fusion block which better fuses different sensor modalities
inspired by a probability model. The proposed demonstration
and aggregation network propagates the mixed context and
depth features to the prediction network and serves as a prior
knowledge of the depth completion. This late-fusion block uses
the dense context features to guide the depth prediction based
on demonstrations by sparse depth features. In addition to
evaluating the proposed method on benchmark depth comple-
tion datasets including NYUDepthV2 and KITTI, we also test
the proposed method on a simulated planar LIDAR dataset.
Our method shows promising results compared to previous
approaches on both the benchmark datasets and simulated
dataset with various 3D densities.

I. INTRODUCTION

A robust perception system that understands the surround-
ing scene is crucial for autonomous vehicles. Instead of
simply detecting the obstacles in 3D world coordinates,
this system should provide additional information such as
the heading angle, distance, and 3D shape of the obsta-
cles [1], [2]. To achieve this goal, current autonomous
vehicles are usually equipped with high-definition LIDAR
(Light detection and Ranging) (e.g. Velodyne LIDAR). How-
ever, this family of sensors has certain limitations. Firstly,
high-definition LIDAR is not affordable for commercial
autonomous vehicles. Even though it provides rich depth
information, it lacks detailed texture of the objects, which
makes object detection and classification difficult. Relying
on a single LIDAR is dangerous owing to potential sensor
failure. Finally, compared to a RGB image, the point cloud
of a LIDAR is sparse, especially for those objects that are
far away from the ego-vehicle.

Fusing multiple planar LIDAR with an RGB camera is
an affordable solution to these limitations. This system can
provide the autonomous vehicle with sparse 3D informa-
tion of the surrounding scene and semantic understanding.
However, this type of system has a few challenges: 1) It
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Fig. 1: We propose a novel late fusion architecture which better combines
dense context features with sparse depth features by inductive fusion block.
Our network takes data from affordable RGB camera and planar LIDAR
and generates a depth image with similar density to that of high-definition
LIDAR.

is difficult to detect and classify objects using the sparse
point clouds from planar LIDAR. 2) Though a single RGB
image has rich texture and semantic information, it does not
give direct information about the depth of the surrounding
environment. 3) How to fuse the sparse depth information
from planar LIDAR with dense RGB semantic features
from camera is still an unsolved problem. In this paper,
we complete a sparse depth map from planar LIDAR by
the guidance of semantic and texture information from the
RGB image. To achieve this goal, we improve the traditional
fusion architecture by introducing an inductive late-fusion
technique which achieves a more accurate depth map with
more detailed and smoother features, as shown in Figure 1.

We organize this paper as follows: Section II briefly
reviews the prior work in depth prediction and depth comple-
tion. Section III introduces the proposed network architec-
ture. Section III-A details the proposed inductive late-fusion
network. The experimental setup and dataset are explained
in Sections IV-B. Finally, Sections IV-D and V discuss the
experimental results and give conclusions.

II. RELATED WORK

In robotics perception and especially in autonomous driv-
ing, depth estimation is a difficult regression problem. It
provides enhanced input for other perception tasks such as
vehicle segmentation, tracking and state estimation [2]. The
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Fig. 2: Detailed architecture of proposed inductive late-fusion network. The red and blue blocks indicate the context feature extraction network and depth
feature extraction network. The corresponding Residual Block (RB) and Residual UpProjection Block (ReUpProj) are shown in the green blocks. The
proposed inductive late-fusion block is shown in the yellow blocks.

depth estimation problem can be further divided into different
categories according to different sensor inputs. It includes
depth in-painting for RGB-D camera and depth completion
for planar LIDAR [3], [4].

In the dense completion problem, a low-resolution or
sparse depth image is completed or super-resolved into a
high-quality pixel-wise depth image. In this case, more depth
points are augmented for the surrounding scenes and objects,
given an RGB image and sparse LIDAR point cloud [5]. This
depth augmentation algorithm enhances the accuracy of the
vehicle tracking task. However, this approach only considers
the dense completion task as interpolation, which does not
predict a pixel-wise dense depth image. To further improve
the prediction, [6] adapts a novel data term into the MRF
and improves the resolution of the depth image qualitatively
and quantitatively. As an improvement [7] considers the
relationship between the boundaries of image segmentation
and depth image and achieves a better depth prediction for
aggressively down-sampled RGB images. In order to recover
dense depth information from cropped input, [8] introduced
a novel super-resolved architecture, the Sparsity Invariant
Convolution network. However, this method is insufficient
for the perception system of autonomous vehicles, as multi-
modal sensing data need to be fused together. To better fuse
the input from the RGB image and sparse LIDAR, [3], [9]
proposed a self-supervised training pipeline that takes the
sequential information of the RGB image as a geometry con-
straint of the optimization. However, the performance of this
architecture is highly reliant on the accuracy of the transition
relation between nearby frames, which can be influenced by
moving objects within the scene. In contrast, [10], [11] fuses
the LIDAR and RGB image through deep CNN. With the

guidance of the surface normal and intention map, a more
accurate depth image is predicted. [12] even proposed an
architecture which handles potential sensor failures in real
autonomous driving cases. However, these depth completion
methods [10], [11], [13] take dense LIDAR instead of planar
LIDAR as input to predict a pixel-wise depth image. Instead
of simply concatenating different feature modulations via an
end-to-end network architecture, we propose a inductive late-
fusion block which fuses the planar LIDAR depth informa-
tion with context information. This architecture formulates
the fusion problem as a conditional distribution. With the
prior knowledge of the observed LIDAR depth feature and
RGB context feature, the underlying distribution of the depth
is learnt by an induction framework.

III. METHOD

In this section, we explain in detail how to tackle this
sensor fusion problem. Compared to state-of-the-art methods
which fuse LIDAR depth images with RGB images [10],
[11], [13], fusing sparse (planar) LIDAR and RGB images
is quite difficult. The challenge is to combine multi-modal
features, where the RGB features are dense but the LIDAR
features are sparse. Instead of fusing these two streams
of information by an end-to-end deep network, we pro-
pose a novel architecture which fuses the depth and RGB
features through induction. We combine a depth pathway
into our previously proposed depth completion network with
inductive fusion units adapted from the conditional neural
process technique [14]. This fusion architecture fits the
planar LIDAR and RGB image fusion scenario even with
an extremely low sparsity. Our proposed network has three
parts: depth feature extraction network, context feature ex-
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traction network and the inductive fusion block. The detailed
architecture is discussed in the following sections.

Fig. 3: Assuming this is an image plane with a dimension of 4 ∗ 4, the
figure shows an example of the observation set and target set shown in
purple and orange respectively. The black dots represent the pixels where
we have depth features.

A. Inductive Late-level Fusion

Due to the sparsity of the input depth image, we cannot
directly achieve dense depth features from the network. In
this case, instead of directly fusing the sparse depth features
with dense context features, we first formulate this fusion
problem by a probability model. We currently have two sets
of input, the observation set (N = n) and target set (N = m),
where n+m equals the total number of pixels in the image.
In the observation set, each pixel location has a context
feature vector and a depth feature vector associated with it.
However, in the target set, we only have the context features.
We define the observation set as O = {(xi, yi)}ni=1, where
xi represents the context feature vector and yi represents the
depth feature generated by the feature extraction network.
The target set is T = {xi}n+mi=n+1. An example observation set
and target set is shown in Fig. 3. We now define a mapping
function f : X −→ Y and let Pθ be a probability distribution
over the function f . For f ∼ Pθ we set ŷ = f(xi), where
ŷ is the ground truth depth for each pixel. So Pθ defines a
joint probability distribution over {xi}n+mi=n+1 and the depth
completion problem is formulated as a Gaussian Process
(GP) as follows:

Pθ(f(T )|O, T ) (1)

To solve this GP problem, an appropriate prior knowledge is
required. However, it is difficult to model the complex corre-
lation structure between depth value and RGB image using a
simple kernel function. Moreover, the GP is computationally
expensive, as the scale depends on the input and output
dimension, which is large in the depth completion problem.
In this case, we created a novel adaptation of the Conditional
Neural Process (CNP) [14] architecture that addresses the
above limitations.

In equation 1, θ represents all parameters of the inductive
fusion block, which defines the distribution P . In the depth
completion task, the pixels in each image patch do not have
the problem of ordering. In other words, the depth value of a
particular pixel is highly dependent on the surrounding pixels
but not the order of the pixels. As a result, the prediction is
permutation-invariant and has the following property, which

fits the assumption of CNPs:

Pθ(f(T )|O, T ) = Pθ(f(T
′)|O, T ′) = Pθ(f(T )|O′, T ) (2)

where O′ and T ′ are permutations of O and T . So, we can
apply the following equations from CNPs:

ri = hθ(xi, yi), ∀(xi, yi) ∈ O (3)

rj =
1

T

T∑
i=1

ri (4)

φi = gθ(xi, r), ∀(xi) ∈ T (5)

So, the inductive fusion block contains three subnets, the
demonstration network, aggregation network and prediction
network. For the demonstration network, as shown in 3, it
fuses the depth feature and context features and encodes the
information from two feature extraction networks for each
pixel location and achieves a higher-level description of the
prior knowledge of the regression task. Instead of directly
passing the higher-level descriptors to the decoder network,
which is also the prediction network, we aggregate them
into an intermediate feature representation rj for each image
patch. By virtue of the aggregation network, the features are
invariant to translation and rotation, which results in a robust
network. In the prediction network, target depth values are
estimated based on aggregated feature and context feature.

B. Depth Feature Extraction Network

To better extract the features from sparse depth image
input, we apply the Sparsity Invariant CNN (SCNN) [8] to
generate the feature representation of the depth. Different
from the vanilla convolution layer, SCNN introduces a sparse
convolution layer which propagates the features as well as an
observation mask along the forward path. The sparse depth
value is diluted to the nearby pixels and results in blurred
predictions. During this process, the observation mask is
also expanded by the max-pooling layer. To generate a
depth feature for each pixel, we delete the last layer from
the network in the proposed model. The detailed network
architecture is shown in the blue blocks in Fig. 2.

C. Context Feature Extraction Network

For the context feature extraction network, we follow our
previously proposed depth prediction architecture described
in [4]. In this architecture, we concatenate the popular Resnet
model-proposed Residual Up-Projection blocks shown in
the green blocks of Fig. 2. This model takes advantage
of residual learning techniques and captures more detailed
features from the input RGB image features [15]. In the depth
completion task, we find that the detailed features within
the depth images show similarity to the low-level features
in the RGB images. For example, the RGB image and
depth image have similar edges and corners. So, low-level
features from the shallow network contain useful features
for the depth prediction and reconstruction in higher layers.
To further improve the prediction results, we add three skip
connections to pass low-level features to the residual Up-
Projection blocks. Instead of using the whole network as
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a context feature extraction network, we get rid of the top
layers and the network outputs a context feature tensor.

IV. RESULTS AND DISCUSSION

In this section, we concentrate on explaining our exper-
imental setup and results. To verify the performance of
the proposed architecture and compare to the state of the
art, we evaluate our model on two public datasets: the
indoor scenes NYUdepthV2 dataset and the KITTI depth
completion dataset, which focuses on real on-road scenes.

A. Network Implementation and Training Strategy

For the demonstration network, we concatenate 4 Residual
Blocks with kernel size of 3 * 3. In the prediction network,
we concatenate 5 Residual Blocks and finally predict the
depth map. The detailed architecture is shown in Fig. 2. To
train the network, we start from the ImageNet pretrained
Resnet model and fine-tune the context feature network by
the NYUDepthV2 and KITTI dataset. For the depth feature
extractor, we pretrain the network by the NYUDepthV2
and KITTI dataset as well. Finally, we combine the depth
feature network with the context feature network through
the inductive fusion unit. In order to merely compare the
network architecture with previous works, we use the L-1
norm as our loss function throughout the training procedure,
both the pre-training and whole network architecture. The
whole network architecture is trained by the SGD optimizer
[24], with the default parameter setting from the Pytorch
optimization package [25].

B. Experiment Setup and Evaluation Metric

Dataset: We conduct the experiments on several bench-
mark datasets introduced by state-of-the-art methods, in-
cluding NYUDepthv2, KITTI Odometry and the reduced-
resolution KITTI dataset [4], [9]. We apply the same exper-
iment setup as in our previous paper [4], with data augmen-
tation including scale, flip, rotation and color translation [9].
We apply a uniform sampling strategy to generate different
input densities for evaluation.

Evaluation Metrics: In order to compare the proposed
method with benchmark results of the state-of-the-art meth-
ods, we apply the following standard evaluation metrics. We
not only directly measure the average error over all pixels by
root mean square error (RMSE), but also compare the Mean
Absolute Relative Error (REL), which prevents the scaling
problem, as follows:

erel =
1

N

∑
i

|ŷi − yi|
yi

(6)

In order to count the percentage of pixels within a certain
threshold, we also consider the δj metric, defined as follows:

δj =
count({yi : max( ŷiyi ,

yi
ŷi
) ≤ 1.25j})

count(yi)
(7)

where ŷi and yi are the prediction and ground truth depth
for each pixel. As a result, the method performs better if it
achieves a low RMSE and REL or a higher δj .

Fig. 4: Visualization result on NYUDepthV2 dataset. The images from left
to right are: RGB image, prediction results from [4], prediction results by
proposed method and ground truth. We are using 200 depth points in this
experiment setting.

C. Ablation Study

In order to study the function of the proposed late-fusion
block and prove its advantage, we also provide an ablation
study of different fusion architectures and their performance
over different input densities. We compare our late-fusion
block with a simple late-fusion network that uses 9 residual
blocks as the fusion network. We also change the size of
the depth feature network by varying the number of sparse
convolution layers (SCN). In this experiment, we compare
the depth feature network with 3 SCN and 5 SCN. The result
is shown in Fig. 5.

In comparison, the context feature network only achieves
a RMSE of 0.46m with a single RGB image as input.
In this case, the fusion method has much better perfor-
mance than the single RGB network. Even with an early-
fusion input as in [4], the context feature network only
achieves a RMSE of 0.20m on the NYUDepthV2 dataset.
As a result, the proposed late-fusion architecture benefits
the performance of the depth completion task. As we can
see in Fig. 5, as we increase the number of input depth
samples, we achieve better performance and the proposed
inductive late-fusion block outperforms the traditional late-
fusion network concatenated by convolution layers. As the
prediction network is estimating the depth value based on
the demonstration and observed context features, it gives
smoother prediction at image pixels which have similar RGB
patterns and geometry constraints. In other words, pixels with
similar context should have a similar depth value. Moreover,
pixels that are physically nearby but have distinct context
features should have different depth values. As a result, we
achieve a smoother prediction on flat surfaces and sharper
edges on contours of objects. Instead, traditional network
architectures are merely learning the distribution of depth
based on RGB image and depth samples, which results in a
blurred prediction on both surfaces and edges.
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TABLE I: Performance comparison of proposed network with previous single RGB-based and fusion methods on NYUdepthV2 dataset with 200 depth
points

Input #Sample Methods RMSE (m) REL δ1 (%) δ2 (%) δ3 (%)

RGB 0 Roy et al. [16] 0.744 0.187 - - -
0 Eigen et al. [17] 0.641 0.158 76.9 95.0 98.8
0 Laina et al. [18] 0.573 0.127 81.1 95.3 98.8

RGB+D 225 Liao et al. [19] 0.442 0.104 87.8 96.4 98.9
200 Ma et al. [9] 0.230 0.044 97.1 99.4 99.8
200 Lee et al. [20] 0.225 0.046 97.2 - -
200 Fu et al. [4] 0.203 0.040 97.6 99.5 99.9
200 Abdelrahman et al. [21] 0.192 0.030 97.9 99.5 99.8
200 Proposed 0.169 0.028 98.4 99.9 99.9

TABLE II: Performance comparison of proposed network with previous single RGB-based and fusion methods on KITTI Odometry dataset

Input #Sample Methods RMSE (m) REL δ1 (%) δ2 (%) δ3 (%)

RGB 0 Laina et al. [16] 8.73 0.280 60.1 82.0 92.6
0 Mancini et al. [22] 7.51 - 31.8 61.7 81.3
0 Eigen et al. [17] 6.16 0.190 69.2 89.9 96.7

RGB+D 200 Liao et al. [19] 4.50 0.113 87.4 96.0 98.4
200 Ma et al. [9] 3.85 0.083 91.9 97.0 98.9
200 Fu et al. [4] 3.67 0.072 92.3 97.3 98.9
200 Proposed 3.11 0.058 93.9 97.6 98.9

RGB+D 500 Ma et al [9] 3.38 0.073 93.5 97.6 98.9
500 Cheng et al. [23] 2.98 0.044 95.7 98.0 99.1
500 Proposed 2.84 0.045 95.3 98.1 99.2

Fig. 5: Ablation study of different network architectures and performance
with various input 3D densities.In this figure, the proposed late-fusion
block is compared with vanilla convolution networks. We also study how
different size of depth feature network influences the performance of depth
estimation.

D. Results and Discussion on Benchmark Dataset

In this section, we mainly discuss the experimental re-
sults on the benchmark dataset, NYUDepthV2 and KITTI
dataset. We take the reported accuracy of state-of-the-art
depth completion and depth prediction methods from their
original papers.

NYUDepthV2 Dataset: In general, taking multi-modal
sensor data as input improves the estimation result com-
pared to using a single sensor. In methods [9], [19], these
architectures apply the end-to-end network, which concate-
nates multiple residual blocks and deep decoder networks.
However, this family of methods loses detailed features
and context information through the encoding and decoding
architecture. On the NYUDepthV2 dataset, we achieve a
12.5% improvement with 200 dense inputs in terms of

RMSE. The detailed comparison is shown in TABLE I. By
applying our proposed architecture, we achieve an 11.9%
better performance compared with the baseline method [21]
on the NYUDepthV2 dataset. In Fig. 4, we show the visual-
ization result on the NYUDepthV2 dataset. Comparing with
ground truth, the prediction results of the proposed method
have much clearer context details. In all, combining REL and
RMSE in TABLE I and Fig. 4, we achieve a better estimation
on the boundaries as well as flat surfaces in the scenes.

KITTI Odometry Dataset and Reduced-Resolution
KITTI Dataset: In TABLE II, we notice that fusion of
sparse LIDAR input with dense RGB image has better depth
completion results. In comparing with our previous best
depth completion result using 200 depth samples as input,
we achieve a 14.7% improvement in terms of RMSE. The
visualization result is shown in Fig. 6. We also conducted
a performance comparison on the reduced-resolution KITTI
dataset and compared with a few state-of-the-art single RGB
images with LIDAR fusion algorithms. We take 200 depth
points to simulate the density of planar LIDAR in the band.
As we see from TABLE III, the proposed method performs
better than previous methods by around 20% and 25%
regarding RMSE and REL, respectively.

TABLE III: Performance comparison of proposed network on reduced-
resolution KITTI odometry dataset. We take a band of the LIDAR point
cloud and conduct depth completion within the band. We down-sample the
dense point cloud by randomly selecting 200 LIDAR points as input.

Methods RMSE (m) REL δ1 (%) δ2 (%) δ3 (%)

Ma et al. [9] 0.42 0.040 98.3 99.6 99.8
Fu et al. [4] 0.35 0.032 98.5 99.6 99.8

Proposed 0.28 0.023 98.9 99.7 100.0
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(a) RGB image (b) Ground Truth (c) [4] (d) Proposed

Fig. 6: Visualization result on KITTI dataset on official validation sets. The images from left to right are: RGB image, ground truth dense depth (brightness,
contrast changed for visual enhancement), predicted dense depth image from previous work [4] and prediction dense depth image by proposed method.
We are using 200 depth points in this experiment setting.

V. CONCLUSION

In this paper, we propose an inductive fusion architecture
which fuses planar LIDAR with RGB images to complete
the depth map of the surrounding environment. The proposed
inductive fusion block optimally combines the dense context
features from RGB images with the sparse depth features
from planar LIDAR. Our method outperforms conventional
methods on the NYUDepthV2 dataset and KITTI odometry
dataset. We also achieve promising results on the simulated
planar LIDAR dataset. Further work will apply the dense
depth image generated by the proposed architecture to per-
ception tasks such as object detection and vehicle heading
estimation. We will also apply the proposed method to real
planar LIDAR depth completion tasks.
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