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Abstract— We suggest a procedure for dynamic parameter
estimation of serial robot manipulators. Its basic idea relies on
the synthesis of an optimal manipulation trajectory, which is
based on properly introduced parameter aggregates to ensure
a collection of numerically well-conditioned data-sets, yielding
an accurate computation of parameter estimates. The optimal
trajectory itself is computed by using a memetic algorithm,
which represents a metaheuristic combination of genetic and
gradient based algorithms. The algorithm is experimentally
verified by estimating the parameters of the UR5 robot by
Universal Robots.

I. INTRODUCTION

In advanced use cases of industrial robots, one is typically
enforced to apply model-based control techniques, such as
computed torque control that rely on accurate mathemati-
cal modeling of the robot manipulator at hand. These ap-
proaches are often afflicted with insufficiently known values
of dynamical parameters involving inertia elements, friction
parameters, etc. Dynamic parameters are generally provided
by the robot manufacturers in form of data sheets, but
these parameters are usually related to specific usability
scenarios but may not cover the versatility of all scenarios,
e.g. in advanced application scenarios or are not sufficiently
detailed. As a consequence, the estimation of the dynamic
parameters is often a mandatory step in the design of proper
control policies.
In this paper, we present a general procedure for parameter
estimation of robot manipulators, which makes use of a
formulation of the dynamic robot models in terms of sym-
bolic parameter aggregates, i.e. a set of symbolic expres-
sions involving multiple parameters. Roughly speaking, in
this approach, one strives to construct proper manipulation
trajectories that enable collections of data sets which are
suitable for an accurate estimation of all involved parameters.
It is important to emphasize that the results of the iden-
tification procedure are highly dependent on the synthesis
of proper identifying manipulation trajectories which, typi-
cally, amount to proper formulations of the corresponding
optimization problems. For the cost function the 2-norm
condition number of the regressor matrix is commonly
chosen. Due to the periodic and non-convex nature of the
cost functions and constraints, the optimization problem
generally produces a large number of local minima. Some
approaches apply gradient based numerical local solvers [1],
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sometimes in conjunction with multiple starting points [2],
[3]. Genetic algorithms (GA) have been also used for finding
the global minima in certain problem classes, as they are able
to cover the whole search space [4], [5], [6]. In the present
paper, we combine the advantages of the latter approaches
by suggesting a customized metaheuristic algorithm, called
the memetic algorithm. Memetic algorithms (MAs - also
known as ”Hybrid Evolutionary Algorithms” (hybrid EAs))
combine different optimization ideas, such as population
based methods used in genetic algorithms and local search
methods, while trying to exploit any given knowledge about
the problem [7]. We study the benefits of this computation
technique in obtaining excitation trajectories that produce
a highly accurate parameter estimation. As a testbed for
verifying our procedure, we utilize the 6-axis industrial
collaborative robot UR5.

The paper unfolds as follows: First, we construct a mathe-
matical model for a serial manipulator in Section II in order
to obtain an identification model, which is linear in terms
of parameter aggregate expressions in Section III. In Section
IV we state the optimization problem which is then solved
by the proposed memetic algorithm. In Section V we test the
procedure estimating the parameters of the UR5 and Section
VI concludes the paper.

II. DYNAMIC MODEL OF SERIAL MANIPULATOR

A. Geometric Model
A serial manipulator can be described solely by the con-

nection of its links, e.g. by the modified Denavit-Hartenberg
(DH)-Convention in Khalil/Kleinfinger notation [8]. The
geometric model of serial manipulator is defined by four
DH-Parameters per link:
• α j: the angle between z j−1 and z j about x j−1;
• a j: the distance between z j−1 and z j along x j−1;
• θ j: the angle between x j−1 and x j about z j;
• d j: the distance between x j−1 and x j along z j.

B. Kinematic Model
To every link we attach a coordinate frame. The transfor-

mation matrix defining frame R j relative to frame R j−1 is
given as

j−1T j = Rot(x,α j) Trans(x,a j) Rot(z,d j) Trans(z,d j)

=


Cθ j Sθ j 0 a j

Cα jSθ j Cα jCθ j −Sα j −d jSα j
Sα jSθ j Sα jCθ j Cα j d jCα j

0 0 0 1

 ,
(1)

with S(·) := sin(·) and C(·) := cos(·).
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C. Dynamic Model
The inverse dynamics of a n-link serial manipulator is

described by
τ = f(q, q̇, q̈), (2)

where f(q, q̇, q̈) is the nonlinear function of motion of the
manipulator, q, q̇, q̈ are the generalized position, velocity
and acceleration of the respective link joints and τ are the
produced torques required for that motion. This equation can
be derived by the Newton-Euler-Algorithm in the following
form:

τ = M(q)q̈+G(q, q̇). (3)

M(q) is the so called mass matrix and G(q, q̇) is a vector
containing the terms which depend on gravity, coriolis and
centrifugal forces. The Newton-Euler equations, giving the
forces and moments of link j at the origin of frame R j, are
given as:

F j = m jV j + ω̇ j×P j +(ω j× (ω j×P j)), (4)

M j = J jω̇ j +ω j× (J jω j)+P j× V̇ j. (5)

F j are the forces and M j are the moments acting on joint j.
V j is the linear and ω j is the angular velocity. ω̇ j and V̇ j
are the respective accelerations. The inertial parameters are:
• m j: link mass of link j;
• P j: the first moments of link j, consisting of (c jm j),

the vector c j, pointing from frame R j to the center of
mass of j multiplied with the link mass:

P j =
[
Px j Py j Pz j

]T
=
[
cx j m j cy j m j cz j m j

]T (6)

• J j: the inertial tensor from the origin of R j, which is
constructed as follows:

J j =

Jxx j Jxy j Jxz j

Jxy j Jyy j Jyz j

Jxz j Jyz j Jzz j

 . (7)

Note that these equations are formulated in the link’s inertial
frame, which results in linearity in the dynamic parameters
[9], [10].

D. Extending the Dynamic Model: Friction and Rotor Iner-
tia

To model the robot accurately, friction and rotor inertia
cannot be neglected [11]. There are many friction models to
choose from. We decide to use the classic model, describing
the torques for every joint j exerted by friction as

τ f , j = Fc, j sgn(q̇ j)+Fv, j q̇ j, (8)

where Fc, j are the coulomb and Fv, j the viscous friction
coefficients. The friction torques can be added linearly to
the dynamic model.
Geared motors and transmission systems, which are build
into every link of the robot, are able to produce measurable
torques. For every link this portion is summarized by

τA, j = A j q̈ j, (9)

with the inertial parameter A j. These terms are taken into
account by adding A j to the mass matrix elements M j, j.

III. IDENTIFICATION MODEL

Linearity in the dynamic parameters is a key feature for
identifying robot parameters. By exploiting this feature the
dynamic model can be written as [11]:

τ = w(q, q̇, q̈)X, (10)

where X consists of the n parameter vectors for every link j

X j =
[
X(J)

j X(P)
j X(m)

j X( f )
j X(A)

j

]T

with X(J)
j =

[
Jxx j Jxy j Jxz j Jyy j Jyz j Jzz j

]
,

X(P)
j =

[
Px j Py j Pz j

]
,

X(m)
j = m j,

X( f )
j =

[
Fc, j Fv, j

]
,

X(A)
j = A j.

(11)

Applying the identification model at a sufficient number
of points on some trajectories, we construct the following
overdetermined linear system of equations in X:

Y = W(q, q̇, q̈)X+ρ , (12)

where W is an (r× c) observation matrix or regressor, r is
the total number of equations, c is the number of parameters
such that r� c. Y is a vector of torque measurement data and
ρ is the residual error vector. If W is full rank, the solution
is:

X̂ = (WT W)−1W Y = W+Y, (13)

where W+ is the pseudoinverse of W. Since some columns
of w(q, q̇, q̈) are linearly dependent, not all parameters can be
identified. Some cannot be identified at all, because they do
not have any or a neglectable effect on the dynamic model.
Others can only be identified in linear combination with other
parameters. To achieve a full rank observation matrix, some
columns and the according parameters are regrouped. This
new observation matrix has to be filled with numeric values,
such that the quality of the inverse (WT W)−1 gives good
results. This can be achieved by optimizing the data points
of a trajectory with respect to an objective function, e.g.
minimizing the condition number κ = cond(W(q, q̇, q̈)).
The set of identifiable inertial parameters are called ”base
inertial parameters”. These parameters are the actual physical
parameters or a linear combination of those. There are
numerous ways to reduce the model to this set of parameters,
e.g. numerically, using the SVD or QR-Decomposition [12]
or symbolically by finding a Groebner basis [13], [14] of
the equations. Deduced from the terms of the energy model
of serial robots there exists a closed form symbolic solution
[15]. These rules give the complete set of base parameters
and therefore the number of base parameters b. Note that,
the parameters are regrouped in terms of the modified DH-
Parameters (in Khalil/Kleinfinger notation) which suites the
described geometric model. Using these relationships on (10)
the dynamic model becomes

τ = w(B)(q, q̇, q̈) X(B), (14)
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where the vector of the regrouped parameters X(B) is b×1
and w(B) is n× b and has full rank. Finally, in a similar
manner as in (12), we can now associate the latter equation
with a measurement equation of the form

Y = W(B)(q, q̇, q̈)X(B)+ρ, (15)

with the matrix W(B) that holds the according submatrices
w(B) to be evaluated in every time step.

IV. EXCITATION TRAJECTORY

A. Trajectory Parameterization

The system (14) has to be evaluated at a sufficient number
of data points, such that the overdetermined system (12)
of this regrouped model gives a high quality least squares
solution (13). The entries of w(B)(q, q̇, q̈) consist of functions
with a variety of periodic terms (sin(·) and cos(·) terms of
q), multiplied by terms of q̇, q̈ and gravity. A good selection
of data points that satisfies a sufficient excitation of all
relevant terms inside w(B)(q, q̇, q̈) in one trajectory is called
”persistently exciting trajectory”. To find such a trajectory
is difficult and is best solved as a nonlinear optimization
problem

min
(q, q̇, q̈)

F(q, q̇, q̈) (16)

s.t. qmin ≤ q ≤ qmax,

|q̇| ≤ q̇max, (17)
|q̈| ≤ q̈max.

For the objective function F(q, q̇, q̈) there exist many ideas
[16], [11], [17], e.g. the D-optimality criterion [2], or the
Hadamard inequality [18], but the most common is the
condition number cond(W(B)(q, q̇, q̈)), which describes how
much the error in W(B) will cause errors in the solution X̂(B)

by inverting W(B). The optimization must respect constraints
due to maximal joint range, velocities and acceleration and to
prevent collisions with the robot’s workspace which includes
collisions with the robot itself.
The described optimization model only returns unconnected
points of configurations, which have to be connected to one
trajectory. One possible way is to apply interpolation (curve
fitting) to the points [19], but the resulting trajectory is
not guaranteed to have the same objective function value.
The common way is to integrate trajectory models and their
parameters into the optimization model. Trajectory models
might be spline-variants [3] or variants of periodic excitation
[20], [21], [22], [23]. A popular model is the Fourier series,
which is given for the joint j as follows:

q j(t) =
K

∑
k=1

 a( j)
k

ω( j)
f k

sin(ω( j)
f kt)− b( j)

k

ω( j)
f k

cos(ω( j)
f kt)

+q j,0 .

(18)
The fundamental frequency ω( j)

f of joint j can be chosen

to be equal for all joints (=: ω f ), to ensure periodicity. a( j)
k

and b( j)
k are the amplitudes for the 1 . . .K harmonic terms.

q j,0 is the offset and the trajectory evolves along time t. By
differentiating (18), the terms for velocity and accelerations
are obtained:

q̇ j(t) =
K

∑
k=1

(
a( j)

k cos(ω f kt)+b( j)
k sin(ω f kt)

)
,

q̈ j(t) =ω f

K

∑
k=1

(
b( j)

k k cos(ω f kt)−a( j)
k k sin(ω f kt)

)
.

(19)

Substituting the terms (18) and (19) in (16) for q, q̇ and
q̈, and writing the vectors a,b of the Fourier coefficients
and the starting joint configuration q0 as a vector v of
optimization variables, i.e. v =

[
aT bT qT

0
]T , the optimization

model becomes

min
v

F(v)

s.t. qmin ≤Dqv≤ qmax,

−q̇max ≤Dvv≤ q̇max,

−q̈max ≤Dav≤ q̈max,

D f v = 0.

(20)

The terms of (18) and (19) can be written as a matrix D. The
matrices Dq,Dv and Da are the corresponding Fourier terms
specific to the constraints (17). With the help of matrix D f
additional constraints for the first and final time (t0 and t f )

q(t0) = q(t f ),

q̇(t0) = q̇(t f ) = 0,
q̈(t0) = q̈(t f ) = 0,

(21)

are expressed also in Fourier terms. The constraints (21) are
included into the optimization model to use the trajectory
multiple times and to ensure reliable behavior. The frequency
ω f is predetermined.

B. Trajectory Optimization

Due to the periodic and non convex nature of the functions
in w(B), any considerable objective function is expected
to yield many local minima and has to be treated by a
global optimization approach. To this end, we propose a
memetic algorithm. Memetic algorithms extend the allegory
of the genetic algorithms to cultural terms. ”Memes” instead
of only ”genes” are transferred between individuals and
generations. The difference is that features of the individuals
are not only recombined or slightly mutated, but undergo
substantial improvement procedures until the result is passed
on to the next generation. The applied procedures use infor-
mation about the problem structure and the already known
solutions [7].
Our approach basically consists of two repeated steps: We
initialize a new generation gnew consisting of the starting
points v0 using different methods. The starting points are
then locally optimized by a nonlinear programming solver
(NLP-solver). The results are the obtained solutions v to the
problem. The basic structure of the procedure is shown in
Algorithm 1. We define a maximum number of generations
Gmax. Each generation has a population P which is the
number of individuals v.
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Algorithm 1 Memetic Algorithm: Top Level

1: while G≤ Gmax do
2: if G≤ GR then
3: generate gnew with randomGenerator(·);
4: else
5: generate candidates gcand with Algorithms 3, 4;
6: select gnew out of best gcand ;
7: end if
8: for all Individuals v0 in Generation gnew do
9: [v,F(v)] = NLP-solver(v0)

10: end for
11: add v to solutions V;
12: add F(v) to solution values F;
13: if new best solution obtained then
14: decrease mutating factors;
15: else
16: increase mutating factors;
17: end if
18: G++;
19: end while

Algorithm 2 Random Generator

1: for numberOfIndividuals = 1 to P do
2: generate random sequence of points q̄R;
3: solve the system v0 = D̄+q̄R;
4: add v0 to gnew
5: end for
6: return gnew;

Algorithm 3 Recombination

1: while rounds≤ maxRounds do
2: select randomly γ-many features of the Parents gbest ;
3: grecomb = permute every selected feature randomly

between the individuals;
4: for all v in grecomb do
5: evaluate the fitness function f (v);
6: end for
7: insert every improved v in grecomb into gcand ;
8: end while
9: return candidates gcand ;

Algorithm 4 Local Search

1: build δ by (27) with the points v and v′;
2: while loops≤ maxLoops do
3: vcand = v−δ �µ(0,σ);
4: evaluate the fitness f (vcand);
5: loops++;
6: if f (vcand)≤ f (v) then
7: add vcand into gcand ;
8: do localsearch with vcand and v′
9: end if

10: end while, return gcand ;

First we generate a number of GR random generations with
Algorithm 2. A sequence of points, choosing alternatively q,
q̇, or q̈ (=: q̄), is generated within the boundaries (17) as
well as in a band of some upper and lower boundaries as
follows:

qmin ≤−qub ≤ q ≤−qlb < 0,
0 < qlb ≤ q ≤ qub ≤ qmax,

0 < q̇lb ≤|q̇| ≤ q̇ub ≤ q̇max,

0 < q̈lb ≤|q̈| ≤ q̈ub ≤ q̈max,

(22)

while enforcing (21). The lower boundaries ensure a min-
imum of excitation. The random sequence q̄R is then ap-
proximated by a Fourier series, which is heavily inspired
by [2]. Depending on the choice of q̄ with a matrix D̄ of
the corresponding Fourier terms the resulting matrix-vector
equation

D̄v = q̄R, (23)

where

q̄R =


q̄1(t0) q̄1(t0 +1) . . . q̄1(t f )
q̄2(t0) q̄2(t0 +1) . . . q̄2(t f )

...
...

. . .
...

q̄n(t0) q̄n(t0 +1) . . . q̄n(t f )

 , (24)

and D̄ consists of the corresponding Fourier terms. Solving
(23)

v = D̄+q̄R (25)

provides the individual v. The vector v is not necessarily a
feasible starting point, but often only a few solver steps away
from feasibility as well as to local minima for the chosen
objective function. The individuals of gnew are then solved
by the NLP-solver and the objective function value and the
optimized individuals are saved.
If the number of randomly generated generations GR is
reached, the remaining generations are generated by local
search (Algorithm 4) and recombination (Algorithm 3) uti-
lizing a fitness function

f (v) = ξ1 F(v)+ξ2 c(v), (26)

where F(v) is the objective function and c(v) is the sum of
violated constraints. ξ1 and ξ2 are scaling terms, which can
be tuned for better objective function value or feasibility of
the obtained starting solutions v0. In Algorithm 3 we use
the P best individuals gbest and create candidates for a new
generation gcand out of them. By using recombination the
hope is that by exchanging various features, all the successful
features will be combined in one individual. The crossover
factor γ describes how many features will be transferred. We
randomly permute every feature over the whole generation
for multiple iterations and evaluate the fitness of the individ-
uals using (26). Everytime an improvement is achieved, we
add the corresponding candidate v0 to the next generation.
Algorithm 4 aims at finding candidates gcand for new starting
points in the neighbourhood of an already known local
minimum. Because of the periodic nature of the functions
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in w(B)(q, q̇, q̈), we assume that local minima exist in a set
of periodic distances

δ = β |v−v′|. (27)

These distances are unknown, but knowing about multiple
local minima we can use the distances between two local
minima by choosing β = 1 and v′ as another solution.
Another approach is to push a given solution over a distance
out of its own basin of attraction right into the next one. We
have no a priori information about these distances either but
knowing the distance between a solution vi and its starting
point v′ = v0,i, might be a good estimate. In this case we
choose β = 2. The assumptions above are only intuitions
and not reliable in any way. Furthermore no assumption can
be made about the direction of the steps to take. Therefore
we multiply the entries of δ elementwise with a vector of
Gaussian distributed numbers with zero mean and a standard
deviation of σ denoted by δ �µ(0,σ). We use local search
with both versions based on (27) consecutively on a random
selection of individuals in V.
The new generation gnew is selected by the best candidates –
according to (26) – produced by recombination (Algorithm
3) and both versions of local search (Algorithm 4). The
new generation is optimized by the NLP-solver. Depending
on whether a new best solution is found, the optimization
parameters [γ,σ ] are adapted. If we find a new best solution,
we decrease them, otherwise we increase them, providing
more randomness and therefore the procedure relies less on
the made assumptions.

V. APPLICATION: UR5

The Universal Robots UR5 is a six rotary joint manipula-
tor, designed to work in a collaborative environment, which
means that any error in the regarding task, control policy
or model design might result in damaging other production
means or human collaborators. For our further research
we need a very accurate model. Despite UR5’s popularity,
there is only one publication [24] about dynamic parameter
estimation of the UR5, in which a different kinematic model
is used in contrast to this paper. We show a modified DH-
Parameter kinematic model and a symbolic regrouping of the
base parameters.
We attach the coordinate frames R j according to the mDH-
Convention at the proximal end of the link as in Figure 1.
The associated mDH-Parameters are listed in Table I. Using
the recursive Newton-Euler formulation (4), (5) we derive
the dynamic model (3) considering the friction model (8).
Exploiting its property being linear in the dynamic pa-
rameters, we reformulate the model in the form of (10).
Since we do not want to make any assumptions about the
parameters, the full parameter vector (11) is used which
is subsequently regrouped using the relations of [15]. The
regrouped parameters are shown in Table II. Using the
regrouped parameters and only the associated columns of
the matrix w we build the system (14). The obtained matrix
w(B)(q, q̇, q̈) has the dimension 6× 52 and the associated
parameter vector X(B) is 52×1.

x0

x1
x2

y0y1

z0
z1
y2

z2

x3

y3

z3

x4

y4

z4

x5

y5 z5

x6

y6

z6

a3

a4

d4

d5

Fig. 1: UR5 with coordinate frames.

TABLE I: Modified Denavit-Hartenberg parameters for the UR5
(Khalil/Kleinfinger-Notation).

Link α j a j(m) θ j d j(m)

1 0 0 θ1 0

2 π
2 0 θ2 0

3 0 −0.425 θ3 0

4 0 −0.392 θ4 0.109

5 π
2 0 θ5 0.094

6 − π
2 0 θ6 0

The system is parameterized as described above. The con-
straints (17) are chosen to be

−2π
0

−0.7π
−2π
−2π
−2π

≤


q1
q2
q3
q4
q5
q6

≤


2π
π

0.7π
2π
2π
2π

 , (28)

|q̇| ≤ 3.2rad/s, |q̈| ≤ 25rad/s2. (29)

The constraints on q2 and q3 are essentially part of the non
collision constraints. This way we prevent q2 from hitting
the table and link 3 from colliding the end effector with
parts of the robot. Both joints are capable of rotating 2π
in both directions. For further non collision constraints we
chose simple rules instead of a full collision detection scheme
to save computational effort. We restrict the joint such that

|q2 +
π
2
+q3| ≤

3π
4

sin(q4) |cos(q5)| ≤ 0.15.
(30)

For the optimization 20 time samples over a period of T = 10
seconds are taken into account. We chose ω f = π/T for all
joints. The relations (22) are realized by setting the lower
and upper boundaries as a percentage of their corresponding
values of (28) and (29). The following results are created
choosing q̄ := q̇ and q̇lb = 0.2rad/s and q̇ub = 0.9rad/s.
For our objective function we choose the 2-norm condition
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TABLE II: Regrouped parameters and standard deviations.

X(B) Symbolic terms σi

1 (m3+m4+m5+m6)a2
3+(m4+m5+m6)d2

4 +
2d4Pz4 + (m4 + m5 + m6)a2

4 + Jyy3 + Jyy4 +
Jzz1 + Jyy2 +A1

0.0094

2 (m4 + m5 + m6)d2
4 + (m4 + m5 + m6)a2

4 +
Jxx2 −Jyy2 −(a2

4 +d2
4)(m4 +m5 +m6)−(m3 +

m4 +m5 +m6)a2
3

0.0077

3 Jxy2 0.0042
4 Jxz2 +a3(Pz3 +Pz4 +(m4 +m5 +m6)d4) 0.0055
5 Jyz2 0.0047
6 Jzz2 +(m3 +m4 +m5 +m6)a2

3 +A2 0.0070
7 (−m3−m4−m5−m6)a3 +Px2 0.0019
8 Py2 0.0014
9 (m4 + m5 + m6)d2

4 + Jxx3 − Jyy3 − (a2
4 +

d2
4)(m4 +m5 +m6)

0.0070

10 Jxy3 0.0035
11 ((m4 +m5 +m6)d4 +Pz4 )a4 + Jxz3 0.0038
12 Jyz3 0.0041
13 Jzz3 +(m4 +m5 +m6)a2

4 0.0045
14 (−m4−m5−m6)a4 +Px3 0.0013
15 Py3 0.0012
16 (m5 +m6)d2

5 +2Pz5 d5 + Jyy5 + Jxx4 − Jyy4 0.0095
17 Jxy4 0.0047
18 Jxz4 0.0054
19 Jyz4 0.0046
20 Jzz4 + Jyy5 +2Pz5 d5 +(m5 +m6)d2

5 0.0059
21 Px4 8.88e-4
22 (−m5−m6)d5 +Py4 −Pz5 0.0013
23 Jxx5 + Jyy6 − Jyy5 0.0048
24 Jxy5 0.0020
25 Jxz5 0.0030
26 Jyz5 0.0045
27 Jzz5 + Jyy6 0.0057
28 Px5 0.0013
29 Pz6 +Py5 0.0010
30 Jxx6 − Jyy6 0.0028
31 Jxy6 0.0013
32 Jxz6 0.0019
33 Jyz6 0.0013
34 Jzz6 0.0032
35 Px6 9.15e-4
36 Py6 9.24e-4
37 Fc,1 0.0131
38 Fc,2 0.0139
39 Fc,3 0.0139
40 Fc,4 0.0137
41 Fc,5 0.0127
42 Fc,6 0.0142
43 Fc,6 0.0124
44 Fv,2 0.0127
45 Fv,3 0.0104
46 Fv,4 0.0099
47 Fv,5 0.0113
48 Fv,6 0.0102
49 Fv,6 0.0035
50 A4 0.0030
51 A5 0.0059
52 A6 0.0047

number of the matrix

F := κ = cond(WB(q, q̇, q̈)) =
σmax

σmin
, (31)

where σmax and σmin are the largest and smallest singu-
lar value of WB. We ran Algorithm 1 multiple times for
a maximum number of generations Gmax = 10 of which
are GR = 4 random generations with a generation size of
P = 100. As a local nonlinear solver we selected Matlab’s
fmincon. In most new generations a new best individual is

0 50 100 150 200 250 300 350 400 450 500 550 600

50

100

150

200

250
GR1 GR2 GR3 GR4 GMA1 GMA2 GMA3 GMA4

Solutions vi

C
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tio

n
N

um
be

rκ

feasible infeasible Minimum of Generation

Fig. 2: Solutions for the optimized excitation trajectory obtained by Al-
gorithm 1. The vertical lines indicate the generation which the solution vi
belongs to. Note that the obtained minima utilizing random initialization are
all worse than the ones obtained by the MA. The best solution is obtained
in the third MA-generation. The fourth MA-generation did not yield any
improvements, which caused the algorithm to stop. The solutions are widely
scattered, and their quality is heavily dependent on initial conditions. By
finding better initial conditions for the NLP-solver, the MA is able to
obtain better solutions. Numerical issues lead the NLP-solver to converge
to infeasible solutions, which constitute a great proportion.

obtained. Algorithm 4 in both versions and Algorithm 3 are
more or less equally contributing to the search for new,
better candidates v0. Because of the implemented fitness
function f (v) the candidates are (often) close to feasible
and grant new feasible solutions v. In the end we achieved
a condition number of κ = 41. For comparison: The best
solution by far only using Algorithm 2 was κ = 67. The
optimization progress of our method over generations of
initial conditions is shown in Figure 2. The optimized trajec-
tories were carried out with help of ”Universal-Robots-ROS-
Driver”. The driver uses a position-controller, which also
takes velocities and accelerations into account. Supplied with
trajectory points (q, q̇, q̈) in a rate of around 0.160 seconds,
the robot follows the planned trajectory sufficiently, also
resulting in only minor deviations from condition numbers
of the planned trajectory. The identification trajectory in
joint space is given in Figure 4. We drive the trajectory for
20 periods. Measurements are taken by the robots internal
control unit in a rate of 125Hz, resulting in s = 25000 sam-
ples. Relevant measurements for the parameter estimation
which can be obtained directly are actual joint positions,
velocities and electric motor currents. Due to measurement
noise, we filter the velocities and currents using a robust local
regression (Matlab’s rloess) to obtain smooth signals. Using
the smoothed velocities, the accelerations are calculated
with central difference derivation. With the smoothed actual
currents i(a)j , it is possible to estimate the actual joint torques

τ(a)j . The control unit also gives access to data of the internal

controller, such as targeted motor currents i(t)j and targeted

joint torques τ(t)j . We assume a linear relationship between
currents and torques. For static configurations actual and
target currents are equal and it can be assumed that targeted
and actual torques are also equal for such cases

i(a)j

τ(t)j

i(t)j

= i(a)j ζ j = τ(a)j . (32)
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Fig. 3: Joint position, velocity and acceleration of the optimized persistently
exciting trajectory over one period.
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Fig. 4: End effector position over one period of the optimized persistently
exciting trajectory.

We chose poses, in which the static moment acting on
the observed joint is presumably close to its maximum.
Gathering data for multiple configurations the current-torque
constants ζ j for every joint can be obtained using averages.

We substitute the measured q, q̇, q̈ into W(B)(q, q̇, q̈) and
obtain W(B), which is of dimension 150000×52. To provide
the opportunity to compare our results with the existing ones
found by [24], we use the same statistical quality criteria. The
standard deviation for the i-parameter is

σi =

√
(W(B)T W(B))−1

i,i , (33)

and the normalized error of the estimated torques over the
whole regression is

ρN =
1
s

√
ρT ρ. (34)
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Fig. 5: Predicted torques τ̂ j compared to measured torques τ j . (a) CLS
regression method on the optimized trajectory, (b) uses the OLS regression
method on the same trajectory. (c) Torque prediction using estimated
parameters obtained by OLS regression on a validation trajectory. Note that
(b) OLS and (a) CLS look very similar.

We also calculate normalized errors for each single joint

ρN j =
1
s

√
ρT

j ρ j, (35)

where ρ j is the vector of residuals for the corresponding
joint. We estimate the parameters using ordinary least square
regression (OLS), which provides a good fit. Because of the
chosen kinematic model some of the parameters X(B)

1..36
were expected to be negative, but for the rotor inertia negative
values result in a non symmetric or not positive definite
mass matrix, which is physically impossible. The same result
was found in [24]. We also try a constraint least squares
(CLS) approach, forcing the rotor inertia to be positive.
Since the values for the rotor inertia are small anyway, the
constraint fit deteriorates negligibly in quality. We validate
the estimated parameters obtained from both methods by
testing how the calculated models predict the torques for
another excitation trajectory. We also calculate the errors
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TABLE III: Normalized errors.

ρN j Est.
OLS

Est.
CLS

Val.
OLS

Val.
CLS

1 0.0122 0.0123 0.0102 0.0094
2 0.0143 0.0146 0.0172 0.0199
3 0.0134 0.0132 0.0151 0.0170
4 0.0034 0.0043 0.0050 0.0058
5 0.0037 0.0038 0.0068 0.0061
6 0.0024 0.0033 0.0025 0.0036
ρN 0.0040 0.0040 0.0044 0.0049

of the validation. An overview of the estimation (”Est.”)
and validation (”Val.”) errors is shown in Table III. We see
that for both regression methods, the normalized errors are
small when using the identification trajectory as well as the
validation trajectory. Referring once more to Table II, we
see that the standard deviations σi for all parameters are
sufficiently small. Figure 5 shows how close the predictions
τ̂ j are to the actual measurements of the joint torques τ j.
Note that the predictions for the OLS and CLS parameters
are nearly indistinguishable. Because of that and since we are
mostly interested in validating the sufficiency of the achieved
condition number, we only show the OLS parameters for
validation in Figure 5(c).

VI. CONCLUSION

We built a dynamic model for the UR5 and identified its
dynamic parameters. For a good estimation, a persistently
exciting trajectory has been found by condition number opti-
mization. Optimization was done using a memetic algorithm.
We incorporated problem-specific knowledge to generate
suitable starting positions, resulting in a sufficient condition
number. Despite the good optimization result, it can not be
ensured whether this is a global minimum. In our trials we
used a very large population size and many generations to
study the programmatic behavior. But this is not required in
order to achieve good results in regular use cases.
The exciting trajectory was well suited to excite the dynam-
ics, granting small standard deviations for the parameters and
the subsequent regressions yield small normalized errors for
the predicted joint torques. While some negative parameter
values were expected due to the choice of the kinematic
model, we found negative rotor inertia parameters using
OLS. Even though this was mitigated by using constraint
least square regression, we provided no proof that the esti-
mated parameters lead to a positive definite mass matrix for
all possible generalized coordinates.
In further steps, this can be resolved by using a nonlinear
optimization model for the estimation as seen in [23], where
a positive definite mass matrix is integrated into the opti-
mization constraints.
The condition number, which was chosen as a objective
function for the trajectory optimization, is dependent on
the selection of base parameters and is not invariant to
reparameterization. To show the validity of the proposed
methods in broader generality, invariant objective functions
like D-optimality could be used.
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