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Abstract— The complexity of multiagent reinforcement learn-
ing (MARL) in multiagent systems increases exponentially with
respect to the agent number. This scalability issue prevents
MARL from being applied in large-scale multiagent systems.
However, one critical feature in MARL that is often neglected is
that the interactions between agents are quite sparse. Without
exploiting this sparsity structure, existing works aggregate
information from all of the agents and thus have a high sample
complexity. To address this issue, we propose an adaptive
sparse attention mechanism by generalizing a sparsity-inducing
activation function. Then a sparse communication graph in
MARL is learned by graph neural networks based on this
new attention mechanism. Through this sparsity structure, the
agents can communicate in an effective as well as efficient
way via only selectively attending to agents that matter the
most and thus the scale of the MARL problem is reduced
with little optimality compromised. Comparative results show
that our algorithm can learn an interpretable sparse structure
and outperforms previous works by a significant margin on
applications involving a large-scale multiagent system.

I. INTRODUCTION

Reinforcement Learning (RL) has achieved enormous
successes in robotics [1] and gaming [2] in both single
and multiagent settings. For example, deep reinforcement
learning (DRL) achieved super-human performance in the
two-player game Go, which has a very high-dimensional
state-action space [3], [4]. However, in multiagent scenarios,
the sizes of the state space, joint action space, and joint
observation space grow exponentially with the number of
agents. As a result of this high dimensionality, existing
multiagent reinforcement learning (MARL) algorithms re-
quire significant computational resources to learn an optimal
policy, which impedes the application of MARL to systems
such as swarm robotics [5]. Thus, improving the scalability
of MARL is a necessary step towards building large-scale
multiagent learning systems for real-world applications.

In MARL, the increase of complexity of finding an optimal
joint policy, with respect to the number of agents, is a result
of coupled interactions between agents [6]. However, in
many multiagent scenarios, the interactions between agents
are quite sparse. For example, in a soccer game, an agent
typically only needs to pay attention to other nearby agents
when dribbling because agents far away are not able to in-
tercept. The existence of such sparsity structures of the state
transition dynamics (or the state-action-reward relationships)
suggests that an agent may only need to attend to information
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from a small subset of the agents for near-optimal decision-
making. Note that the other players that require attention
might not be nearby, such as the receiver of a long pass
in soccer. In such cases, the agent only needs to selectively
attend to agents that “matter the most”. As a result, the agent
can spatially and temporally reduce the scale of the planning
problem.

In large-scale MARL, sample complexity is a bottleneck of
scalability [7]. To reduce the sample complexity, another fea-
ture we can exploit is the interchangeability of homogeneous
agents: switching two agents’ state/action will not make
any difference to the environment. This interchangeability
implies permutation-invariance of the multiagent state-action
value function (a.k.a. the centralized Q-function) as well as
interchangeability of agent policies. However, many MARL
algorithms such as MADDPG [8], VDN [9], QMIX [10] do
not exploit this symmetry and thus have to learn this inter-
changeability from experience, which increases the sample
complexity unnecessarily.

Graph neural network (GNN) is a specific neural network
architecture in which permutation-invariance features can be
embedded via graph pooling operations, so this approach has
been applied in MARL [11]–[13] to exploit the interchange-
ability. As MARL is a non-structural scenario where the
links/connections between the nodes/agents are ambiguous
to decide, a graph has to be created in advance to apply GNN
for MARL. Refs. [11]–[13], apply ad-hoc methods, such as
k-nearest neighbors, hard threshold, and random dropout to
obtain a graph structure. However, these methods require
handcrafted metrics to measure the closeness between agents,
which are scenario-specific and thus not general/principled.
Inappropriately selecting neighbors based on a poorly de-
signed closeness metric could lead to the failure of learning
a useful policy.

While attention mechanisms [14] could be applied to learn
the strength of the connections between a pair of agents
(i.e., closeness metric) in a general and principled way, such
strengths are often dense, leading to a nearly-complete com-
putation graph that does not benefit scalability. The dense
attention mechanism results from that the softmax activation
function operated on the raw attention logits generates a
probability distribution with full support. One solution to
enforce a sparse graph is top k thresholding [15], which keeps
the k-largest attention scores and truncates the rest to zero.
However, this truncation is a non-differentiable operation that
may cause problems for gradient-based optimization algo-
rithms, such as those used in end-to-end training. Therefore,
a sparse attention mechanism that preserves the gradient flow
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necessary for gradient-based training is required.
To address the non-differentiability issue in sparse atten-

tion mechanisms, we generalize sparsemax [16] and obtain
a sparsity mechanism whose pattern is adaptive to the
environment states. This sparsity mechanism can reduce
the complexity of both the forward pass and the back-
propagation of the policy and value networks, as well as
preserving the end-to-end trainability in contrast to hard
thresholding. With the introduction of GNN and generalized
sparsemax, which can preserve permutation invariance and
promote sparsity respectively, the scalability of MARL is
improved.

The discussion so far was restricted to homogeneous
agents and thus permutation-invariance is desirable. How-
ever, in heterogeneous multiagent systems or competitive
environments, permutation invariance and interchangeabil-
ity are no longer valid. For example, in soccer, switching
positions of two players from different sides can make
a difference to the game. To address this heterogeneity,
GNN-based MARL must distinguish the different semantic
meanings of the connections between different agent pairs
(e.g. friend/friend relationship versus friend/foe relationship).
We address this requirement by multi-relational graph con-
volution network [17] to pass messages using different graph
convolution layers on graph edge connections with different
semantic meanings.

To summarize, we propose to learn an adaptive sparse
communication graph within the GNN-based framework to
improve the scalability of MARL, which applies to both ho-
mogeneous and heterogeneous multiagent systems in mixed
cooperative-competitive scenarios.

A. Related Work

One of the existing works exploiting the struc-
ture in MARL is the mean-field reinforcement learning
(MFRL) [18] algorithm, which takes as input the observation
and the mean action of neighboring agents to make the
decision, and neglects the actions of all the other agents. This
simplification leads to good scalability. However, the mean
action cannot distinguish the difference among neighboring
agents and the locality approximations fail to capture infor-
mation from a far but important agent for optimal decision-
making, which leads to sub-optimal policies. Multi-Actor-
Attention-Critic (MAAC) is proposed in [19] to aggregate
information using attention mechanism from all the other
agents. Similarly, [11], [13], [20] also employ the attention
mechanism to learn a representation for the action-value
function. However, the communication graphs used there are
either dense or ad-hoc (k nearest neighbors), which makes
the learning difficult.

Sparse attention mechanisms were first studied by the nat-
ural language processing community in [16], where sparse-
max was proposed as a sparse alternative to the activation
function softmax. The basic idea is to project the attention
logits onto the probability simplex, which can generate zero
entries once the projection hits the boundary of the simplex.
While generalized sparse attention mechanisms were further

studied in [21]–[23], they are not adaptive to the state in the
context of MARL, in terms of the sparsity pattern.

Given this state of the art, the contributions of this paper
are twofold. First, we propose a new adaptive sparse attention
mechanism in MARL to learn a sparse communication
graph, which improves the scalability of MARL by lowering
the sample complexity. Second, we extend our GNN-based
MARL to heterogeneous systems in mixed cooperative-
competitive settings using multi-relational GNN. The evalu-
ations show that our algorithm significantly outperforms pre-
vious approaches on applications involving a large number
of agents. This technique can be applied to empower large-
scale autonomous systems such as swarm robotics.

II. PRELIMINARIES

A. Multiagent Reinforcement Learning

As a multiagent extension of Markov decision pro-
cesses (MDPs), a Markov game is defined as a tuple
〈N,S,{Oi}i∈N ,{Ai}i∈N ,{ri}i∈N ,γ〉, where N = [1, . . . ,n] is a
set of agent indices, S is the set of state, {Oi}i∈N and {Ai}i∈N
are the joint observation and joint action sets, respectively.
The ith agent chooses actions via a stochastic policy πθi :
Oi×Ai → [0,1], which leads to the next state according to
the state transition function T : SA1 . . .An→ S. The ith agent
also obtains a reward as a function of the state and agent’s
action ri : S{Ai}i∈N → R, and receives a private observation
correlated with the state oi : S×{Ai}i∈N → Oi. The initial
states are determined by a distribution ρ : S→ [0,1]. The
ith agent aims to maximize its own total expected return
Ri = ∑

T
t=1 γ trt

i , with discount factor γ and time horizon T .

B. Multi-head attention

The scaled dot-product attention mechanism was first pro-
posed in [14] for natural language processing. An attention
function maps the query and a set of key-value pairs to the
output, which is the weighted sum of the values. The weight
assigned to the each value calculated via a compatibility
function of the query and the corresponding key. In the
context of MARL, let hi, i ∈ N be the representation of
the agents. Key, query and value of agent i is defined as
Kl

i = WKhl
i ∈ RdK , Ql

i = WQhl
i and V l

i = WV hl
i , respectively

with WK ,WQ and WV are parameter matrices. The output for
agent i is then

Atti(h) = ∑
j

wi jVj, (1)

where wi• ∈ Rn, the i-th row of the weight matrix w, is
defined as

wi• = σa

( (Ki)
T Q√

dK

)
(2)

with σa being the softmax function in previous works
of GNN-based MARL. The weight wi• is dense as
softmaxi(z) 6= 0 for any vector z and i.

To increase the expressiveness, multi-head attention is
applied here via simply concatenating the outputs from a
single attention function [14].
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C. Relational GNN

In heterogeneous multiagent systems, different agent pair
can have different relations, such as friend or foe in a two-
party zero-sum game. As a result, information aggregation
from agents with different relations should have different
parameters. Work in [17] proposed relational graph convolu-
tional network to model multi-relational data. The forward-
pass update of agent i in a multi-relational graph is as follows

h(l+1)
i = σ

(
∑

r∈R
∑

j∈N r
i

1
ci,r

W (l)
r h(l)j +W (l)

0 h(l)i

)
, (3)

where N r
i denotes the set of neighbor indices of agent i

under relation r ∈ R and ci,r is a normalization constant.
To distinguish the heterogeneity in MARL, similar to this
convolution-based multi-relational GNN, we apply different
attention heads on agent pairs with different relations.

III. APPROACH

In this section, we present our approach to exploit the spar-
sity in MARL by generalizing the dense soft-max attention
to adaptive sparse attention. Moreover, our approach to ap-
ply multi-relational attention mechanism for heterogeneous
games involving competitive agents is also introduced.

A. Learning a communication graph via adaptive sparse
attention

The scaled dot-product attention is applied to learn the
communication graph in MARL. If an attention weight
between a pair of agents is zero, then there is no communica-
tion/message passing between them. Thus, the normalization
function σa(•) in (2) is critical to learn a communication
graph. As usually used in the attention mechanism [14] or
classifications, σa(•) is usually set to be softmax, which can-
not induce sparsity. We propose an adaptive sparse activation
function as an alternative to softmax.

Let x ∈ Rd be the raw attention logits and y be normal-
ized attention strength in the (d−1)-dimensional probability
simplex defined as ∆d := {y ∈ Rd |y ≥ 0,1T y = 1}. We are
interested in the mapping from x ∈ Rd to y ∈ ∆d . In other
words, such a mapping can transform real weights to a
probability distribution, i.e., the normalized attention strength
between a pair of agents. The classical softmax, used in most
attention mechanisms, is defined component-wisely as

yi = softmax
i

(x) =
exi

∑
d
i=1 exi

. (4)

A limitation of the softmax transformation is that the result-
ing probability distribution always has full support, which
makes the communication graph dense, resulting in high
complexity. In order to reduce the complexity, our idea is
to replace the softmax activation function with a generalized
activation function, which could adaptively be dense or
sparse based on the state. To investigate alternative activation
functions to softmax, consider the max operator defined as

max(x) := max
i∈[d]

(xi) = sup
y∈∆d

yT x, (5)

TABLE I: List of different regularizers and their correspond-
ing mappings y = ΠΩ(x), where x is the raw attention logits
and y is the probability distribution in ∆d .

Entropy Ω(y) ΠΩ(x) Ref.

Shannon ∑i yi log(yi) softmaxi(x) = exi

∑
d
i=1 exi

[22]

l2 norm − 1
2 ∑i y2

i argminy∈∆d ‖y− x‖2 [16]

Tsallis

{
∑i(yi−yα

i )

α(α−1) , α 6= 1
∑i yi log(yi),α = 1

No closed-form [24]

Generalized
1
q ∑

i
(yi−

eqyi −1
eq−1

) No closed-form [25]

where [d] = {1, . . . ,d}. The second equality comes from that
the supremum of the linear form over a simplex is always
achieved at a vertex, i.e., one of the standard basis vector
{ei}i∈[d]. As a result, the max operator puts all the probability
mass onto a single element, or in other words, only one
entry of y is nonzero corresponding to the largest entry of x.
For example, with x = [0, t]∈R2, the probability distribution
w.r.t. the logit t, i.e., (argsupy∈∆d yT x)2, is a step function,
as (argsupy∈∆d yT x)2 equals 1 if t > 0 and 0 otherwise. This
discontinuity at t = 0 of the step function is not amenable
to gradient-based optimization algorithms for training deep
neural networks. One solution to the discontinuity issue
encountered in (6) is to add a regularized Ω(y) in the max
operator as

ΠΩ(x) = argmax
y∈∆d

yT x+ γΩ(y) (6)

Different regularizers Ω(y) produce different mappings with
distinct properties (see summary in Table I). Note that with
Ω(y) as the Shannon entropy, ΠΩ(x) recovers softmax. With
the states/observations evolving, the ideal profile of ΠΩ(x)
should be able to adapt the sparsity extent (controlled via
γ) and the pattern (controlled via the selection of Ω(y))
accordingly.

Note that the Tsallis entropy and the generalized entropy
in Table I do not have closed-form solutions [22], which will
increase the computational burden since iterative numerical
algorithms will have to be employed. Sparsemax has a
closed-form solution and can induce sparsity, but sparsemax
is not adaptive and lacks flexibility as it is unable to switch
from one sparsity pattern to another when necessary. We aim
to combine the advantages and avoid the disadvantages using
this new formulation

ΠΩ(x) = argmin
y∈∆d

||y− γG(x)||2, (7)

with G(x) : Rd→Rd and γ being a learnable neural network
and a scalar, respectively. By choosing different G(x), ΠΩ(x)
can exhibit different sparsity patterns including softmax and
sparsemax. With G(x) fixed, the parameter γ can control how
sparse the output could be, similar to the temperature pa-
rameter in softmax. The summary in Table II shows that (7)
will lead to a general mapping and can combine properties
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TABLE II: List of different G(x) and their resulting mappings ΠΩ(x)

γGi(x) exi
∑i exi

x2
i

∑i x2
i

xi

ΠΩ(x) softmax softmax sparsemax

Property Translation invariance
ΠΩ(x) = ΠΩ(x+ c1)

Scaling invariance
ΠΩ(x) = ΠΩ(cx)

Translation invariance
ΠΩ(x) = ΠΩ(x+ c1)

Example ΠΩ([100,101]) = ΠΩ([0,1]) ΠΩ([1,2]) = ΠΩ([1,2]×10−3) ΠΩ([100,101]) = ΠΩ([0,1])

such as translation and scaling invariance adaptively. Work
in [23] proposed sparse-hourglass that can adjust the trade-
off between translation and scaling invariance via tunable pa-
rameters. However, it is unclear under which circumstances
one property is more desirable than the other, so there is
little to no prior knowledge on how to tune such parameters.
In contrast, our formulation in (7) can balance such trade-off
via learning G(x) and γ while work in [23] is based on a
fixed form of G(x) with tunable parameters.

While we can let the neural network learn G(x) : Rd→Rd

without any restrictions, there is indeed prior knowledge that
we can apply, e.g., monotonicity. It is desired to keep the
monotonicity of ΠΩ(x), i.e., ∀xi > x j,(ΠΩ(x))i > (ΠΩ(x) j, as
larger attention logit should be mapped into larger attention
strength. As sparsemax is monotonic, this requires that ∀xi >
x j,Gi(x) > G j(x), or in other words, the order of the input
of G(x) coincides with that of the output. To keep this
property, G(x) is designed component-wisely as Gi(x) =
ψ(φ1(xi),∑i φ2(xi)), with ψ : R2→ R1,φ1,φ2 : R1→ R1 are
neural networks with hidden layers. Note that Gi(x) should
be coupled with all of the entries of x instead of be a
univariate function only depending on xi, as demonstrated
in Table II. As the second argument of ψ (i.e., ∑i φ2(xi)) is
invariant to Gi(x),∀i ∈ [d], the order preserving of G(x) :
Rd → Rd is equivalent to the monotonicity of ψ(•) and
φ1(•). In order to keep this monotonicity, we enforce all
the weights of the networks ψ and φ1 to be positive [26],
by applying an absolute value function on the weights. This
architecture can accelerate the learning process with extra
prior knowledge, as it is monotonic by design.

B. Message passing in MARL via GNN

We will present how the information is aggregated to learn
a representation for per-agent value/policy network using
a graph neural network. The scaled dot-product attention
mechanism (Section II-B) with our generalized sparsemax
as the activation function, denoted as sparse-Att, is applied
to learn a communication graph and pass messages through
the connections in the graph.

We start with homogeneous multiagent system, where the
relation between any agent pair is identical. A graph is
defined as G := (V ,E ), where vi ∈ V represent an agent and
the cardinality of V is |V |. Moreover, ei j ∈ E is 1 if agent i
and j can communicate directly (or agent j is observable
to agent i), and 0 otherwise. This is a restriction on the
communication graph and E is the set of all possible edges.
Then sparse-Att aims to learn a subset of E via induced
sparsity without compromising much optimality. For agent i,

let Ui = fa(Xi) and Ei be its observation and entity encoding
respectively, where Xi, i ∈ V is the local state and fa is a
learnable agent encoder network. Then the initial observation
embedding of agent i, denoted as h(1)i , is

h(1)i = fmp(Ui‖Ei), (8)

where fmp is another learnable network and the operator ‖
denotes concatenation. Then at hop l (l-th round of message
passing), agent i aggregates information from its possible
neighbors belonging to the set N = { j ∈ V |ei j = 1} as
follows

h(l+1)
i = fmp

(
h(l)i ‖sparse-AttNi (h(l))

)
. (9)

With l ≥ 2, the multi-hop message passing can enable the
agent to obtain information from beyond its immediate
neighbors. In the message aggregation from all of the agents
N , identical parameters are used in sparse-AttNi , which en-
forces the permutation-invariance. This property is desirable
because homogeneous agents are interchangeable.

However, interchangeability is no longer applicable to
heterogeneous systems or mixed cooperative-competitive en-
vironment. For example, with V1,V2 ⊆ V being a two-team
partition of V , agents cooperate with other agents from the
same team but compete against agents from the other team.
For agent i ∈ V1, its teammate neighborhood and enemy
neighborhood are N+ = { j ∈ V1|ei j = 1} and N− = { j ∈
V2|ei j = 1}, respectively. The edges connecting teammates
and enemies are called positive and negative edges. Then
based on multi-relational GNN, agent i aggregates informa-
tion at hop l in the following way

h(l+1)
i = fmp

(
h(l)i ‖sparse-AttN+

i (h(l))‖sparse-AttN−i (h(l))
)
,

where sparse-AttN+
i and sparse-AttN−i are different attention

heads. Additionally, balance theory [27] suggests that “the
teammate of my teammate is my teammate” and “the enemy
of my enemy is my teammate.” In a two-team competitive
game, any walk (a sequence of nodes and edges of a
graph) between an agent pair in the communication graph,
comprising of both positive and negative edges, will lead to
the same relation between the agent pair [28]. This property
eliminates the ambiguity that the information aggregated
from the same agent (but different walk) might have a
different teammate/enemy property.

The proposed algorithmic framework is illustrated in
Fig. 1. After L rounds of message passing, each agent
has an updated encoding h(L+1)

i . This encoding is then
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Fig. 1: Our sparse-Att framework consists of three modules: en-
coder, multi-relational sparse attention mechanism, and value/policy
network, with homogeneous agents sharing all parameters. Agents
employ different attention heads to aggregate information along-
side connections with different semantic meanings, followed by a
concatenation. L is the number of the message-passing rounds; see
(9). “concat” denotes the concatenation operation. Here only two
classes (shown in red and blue) of heterogeneous agents are shown
for simplicity.

fed into the value network and the policy network, which
estimate the state value and a probability distribution over
all possible actions, respectively. As homogeneous agents are
interchangeable, they share all of the parameters, including
entity encoding, policy, value and message passing. Proximal
policy gradient (PPO, [29]) is employed to train the model
in an end-to-end manner. As only local information is
required, the proposed approach is decentralized. Moreover,
our approach maintains the transferability of GNN-based
approaches as all the network dimensions are invariant to
agent/entity number in the system.

IV. EXPERIMENTS

A. Task description

The proposed algorithm is evaluated in three swarm
robotics tasks: Coverage, Formation, and ParticleSoccer [30],
first two of which are cooperative and the third is com-
petitive. The tasks are simulated in the Multiagent Particle
Environment1(MAPE [8]). The agents in MAPE can move
in a 2-dimensional space following a double integrator dy-
namic model. The action space of the agents is discretized,
with each agent can accelerate/decelerate in both X and Y
direction. The three tasks are briefly introduced as follows.

Coverage: There are nA agents (light purple) and nL
landmarks (black) in the environment (see illustration in Fig.
2a). The objective for the agents is to cover the landmarks
with the smallest possible number of timesteps. Agents are
not assigned to reach a certain landmark, but instead, have
to figure out the assignment via communication such that the
task can be finished optimally.

Formation: There are nA agents (blue) and 1 landmarks
(black) in the environment (see illustration in Fig. 2b), with
nA being an even natural number. The agents need to split
into two sub-teams of equal size, with each of them building

1https://github.com/openai/multiagent-particle-envs

(a) Coverage (b) Formation (c) ParticleSoccer

Fig. 2: Three different simulation tasks used in this work.

a formation of a regular pentagon. The two regular pentagons
with different sizes are both centered at the landmark.

ParticleSoccer: There are nA agents and 3 landmarks in
the environment (see illustration in Fig. 2c), with the bigger
landmark as a movable ball and the two smaller ones as a
fixed landmark. A team wins the game via pushing the black
ball to the opponent team’s goal. The goal color of the light
blue (red, resp.) team is blue (red, resp.).

B. Implementation specifications

The agent encoder fa(•) and the entity encoder take
input the 4-dimensional agent states and 2-dimensional entity
states, respectively. The queries, keys, and values in all of
the sparse attention mechanism are 128-dimensional. The
communication hop is L = 2. All neural networks are fully
connected with the ReLU activation function. In the sparsity-
promoting function (7), φ1,φ2 and ψ all have one hidden
layer with dimensions being 16, 16 and 64, respectively. The
absolute value function is used to keep the weights of the
monotonicity-preserving neural network positive.

Evaluation is performed every 320 episodes and PPO
update is executed for 4 epochs after collecting experience
of 4096 timesteps.

C. Results

In the cooperative scenarios i.e., Coverage and Formation,
two metrics are used to evaluate the algorithms. The first is
the average reward per step and the second is the task success
rate. Higher means better performance for both metrics.

We compare our algorithms with two baselines: GNN-
based MARL with dense attention mechanism [11] and
MAAC [19]. These two algorithms are considered to be
strong baselines as they reported advantageous results against
algorithms including MADDPG [8], COMA [31], VDN [32]
and QMIX [10]. Public repositories23 are used for compar-
ison. As both repositories also apply their algorithms on
MAPE, the default hyperparameters are used for comparison.

In simulation, we set nA = 30 and nA = 20 for Coverage
and Formation, respectively. Fig. 3 and Fig. 4 demonstrated
that our algorithm can achieve higher rewards than the two
baselines with fewer episodes. This validates that sparse-
Att can accelerate the learning process via aggregating
information from agents that matter the most. Moreover, in

2https://github.com/sumitsk/matrl.git
3https://github.com/shariqiqbal2810/MAAC
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Fig. 3: Reward comparison of our algorithm against two
baselines for the Coverage task.

Fig. 4: Reward comparison of our algorithm against two
baselines for the Formation task.

terms of the second metric, i.e., success rate, our algorithm
consistently outperforms the two baselines by a significant
margin (with a much smaller variance), as shown in Fig. 5.
The evaluations of both metrics for two scenarios provide
strong support for the advantages of our algorithm.

For the competitive ParticleSoccer task, we set nA = 20
with both red team and blue team of size nA

2 = 10. As this
task is competitive, the above two metrics are no longer
applicable. Instead, we let the red (blue, resp.) play against
a blue (red, resp.) team from another algorithm. Table III
presents the results of the inter-algorithm competition. The
overall score of each algorithm equals the sum of the winning
evaluation episodes of its red team and blue team playing
against blue and red team respectively from other algorithms.
The overall scores in Table III show that our algorithm can
learn strong policies.

D. Interpretability of the sparse communication graph

Let us proceed by considering the inherent sparity in For-
mation and ParticleSoccer. As mentioned in the description
of the Formation scenario, the formation of each pentagon is
related to half of the agents, while the sub-team assignments
need to be learned. In the implementation, the reward is set
to require that the first nA

2 agents closest to the landmark

(a) Coverage (b) Formation

Fig. 5: Performance comparison of three algorithm on two
scenarios. Multiple policies learned from each algorithm are
evaluated and the mean/standard deviation are plotted.

TABLE III: Evaluation of three algorithms in the competitive
ParticleSoccer task. Each pair is evaluated for 50 episodes
and the (•,•,•) in each cell denotes the number of red
team winning episodes, blue team wining episodes and the
draw episodes. A draw means that neither team scores
within a given episode length. winred and winblue are the
winning episodes of the red and blue team, respectively when
competing against blue and red team from other algorithms.

Red
Blue sparse-Att

(ours) dense-Att MAAC winred

sparse-Att
(ours) (48,0,2) (15,0,35) (26,0,24) 41

dense-Att (9,1,40) (5,0,45) (3,0,47) 11
MAAC (7,0,43) (2,0,48) (3,0,47) 9
winblue −15 −17 −29 N/A

sparse-Att
(ours) dense-Att MAAC

overall scores:
winred +winblue

26 −6 −20

build the formations of the inner pentagon and the remaining
nA
2 agents to build the formations of the outer pentagon.

With the convergence of the learning algorithm, once a sub-
team partition is learned to complete the two sub-tasks, the
learned agent indexing of each team should not vary due
to the distance sorting and the two pentagons are relatively
far away. As a result, the reward to complete each sub-task
is only related to the corresponding sub-team and hence the
two sub-teams are decoupled from each other. The adjacency
matrix of the learned communication graph shown in Fig. 6a
validates that the inter-team communication is very sparse.
This adjacency matrix is up to row/column permutation as
indexing of each sub-team is learned without being known
as a prior. Moreover, in a sub-team, the algorithm learns
a communication graph similar to a star-graph. It can be
understood that each sub-team selects a leader. As a star-
graph is a connected graph with possibly minimum edges,
this communication protocol is both effective and efficient.
Also, the length of the path between any agent pair in a
star graph is no greater than 2, which echos the two-hop
communication (L = 2) we used in the simulation. That is
because due to the two-hop message-passing, the agents can
eventually communicate with agents as far as two edges
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Fig. 6: Sparse communication graph for two scenarios. For
the Formation, our sparse-Att learns to split into two sub-
team as desired and the learned sparse star-like communica-
tion graph makes communication both effective and efficient.
In the ParticleSoccer, sparse-Att learn to pay more attention
to teammates and a necessary subset of enemies.

away, which includes all of the agents in a star graph. Note
that the sparsity on the diagonal entries of the communication
graph does not mean that the agent’s own information is
neglected, as it is separately concatenated; see (9).

Also, in the ParticleSoccer scenario, from each team’s
perspective, agents need to coordinate tightly within the team
to greedily push the ball to the other team’s goal while
only attending to a small number of agents from the other
team. This leads to dense intra-team communication but
relatively sparse inter-team communication. This is validated
by the approximately block-diagonal adjacency matrix of the
learned communication graph in Fig. 6b.

V. CONCLUSIONS AND FUTURE WORK

This paper exploits sparsity to scale up Multi-Agent Rein-
forcement Learning (MARL), which is motivated by the fact
that interactions are often sparse in multiagent systems. We
propose a new general and adaptive sparsity-inducing acti-
vation function to empower an attention mechanism, which
can learn a sparse communication graph among agents. The
sparse communication graph can make the message-passing
both effective and efficient such that the scalability of MARL
is improved without compromising optimality. Our algorithm
outperforms two baselines by a significant margin on three
tasks. Moreover, for scenarios with inherent sparsity, it is
shown that the sparsity of the learned communication graph
is interpretable.

Future work will focus on combining evolutionary popula-
tion curriculum learning and graph neural network to further
improve the scalability. In addition, robust learning against
evolving/learned adversarial attacks is also of great interest.
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