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Abstract— Mechanical systems are typically composed of a
number of contacting surfaces that move against each other.
Such surfaces are subject to friction forces. These dissipate
part of the actuation energy and cause an undesired effect
on the overall system functioning. Therefore, a suitable model
of friction is needed to elide its action. The choice of such
a model is not always straightforward, as it is influenced by
the system properties and dynamics. In this paper, we show
the identification of different friction models and evaluate their
prediction capability on an experimental dataset. Despite being
state-of-the-art models, some modifications were introduced to
improve their performance. A pneumatic gripper was used to
collect the data for the models evaluation. Two experimental
setups were mounted to execute the experiments: information
from two pressure sensors, a load cell and a position sensor
was employed for the identification. During the experiments,
the gripper was actuated at different constant velocities. Results
indicate that all the identified models offer a proper prediction
of the real friction force.

I. INTRODUCTION
Friction is a fundamental quantity to be accounted for in

mechanical engineering. It usually degrades the behavior of
physical systems and, depending on the complexity of such
systems, might complicate the design of control algorithms.
Despite its effect is mitigable by means of lubricant films
with a certain thickness, a proper model of friction is
always required to effectively compensate for such an effect.
Nonetheless, friction is quite difficult to model; this is known
since several decades [1]. A number of models, characterized
by varying complexity, were proposed so far. Among the
classical ones, there is the Coulomb model, which dates back
to more than two centuries ago. According to this model,
when one surface slides over another one, the friction force
Ffd is proportional to the applied normal force Fn through
a constant, namely kinetic coefficient of friction µd. When
there is no sliding, the friction force can be as high as a value
Ffs = µsFn, with µs > µd. This phenomenon is known as
stiction. In all cases, the sign of the sliding velocity has to be
involved in the friction force computation. When the system
exhibits a certain degree of viscosity, i.e. friction force grows
along with velocity ẋ, a further term can be added in the form
µvẋ, being µv the viscous coefficient.

Thanks to its simplicity, the Coulomb model was largely
employed in physics and engineering, and its usage is still
quite common [2]. In general, simple models such as the
Coulomb’s one are easier to implement but they do not cap-
ture all the frictions phenomena, such as stick-slip. Moreover,
when there is no movement between two contacting surfaces,
the Coulomb’s model cannot predict friction.
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To achieve higher detail, effects such as the Stribeck one
are to be considered. A similar effect takes into account the
aforementioned stick-slip [3], which occurs at low velocities
and causes a non-linear drop in the friction force. Typically,
the expression of the Stribeck phenomenon features an
exponential function. Despite its greater completeness, even
the Stribeck model does not resolve the discontinuity at null
velocity introduced by the Coulomb model.

In this paper, we intend to identify one or more suitable
friction models for a real mechanical system, i.e. a pneumatic
gripper. Even though there exist more complex compensation
techniques (e.g. [4], in this initial study we concentrate on
model-based approaches. Four models will be first identified
and then evaluated, namely: Coulomb model with viscous
friction (CV), Karnopp model [5], Threlfall model [6], and
the Coulomb model with viscous friction and Stribeck effect
(CVS). The models were selected based on their variegated
characteristics: most probably, the highest degree of detail is
provided by the CVS model which combines the Coulomb
and viscous friction, along with the non-linearity typical of
stick-slip. Some modifications were introduced to all the
four models in order to remove the discontinuity at null
velocity and/or to achieve superior performance. Notice that
acronyms are given only for long names, i.e. only for CV
and CVS models. It is also worth mentioning that all the
selected models were static. i.e. they cannot work when ẋ
is non-constant. Dynamic models such as LuGre [1] will be
investigated in successive studies.

For all the models, the identification experiments were
therefore conducted at constant velocity, on two different
setups involving the gripper and two pressure regulators actu-
ating it. Pneumatic grippers are still the most used in robotics
[7], though friction was much more rarely investigated in
these systems rather than e.g. in pneumatic cylinders [8].
Therefore, the aim of this study is to analyze friction forces
in an off-the-shelf pneumatic gripper, providing insight on
how such forces influence its functioning. Moreover, the
understanding of friction would be of great help in the design
of control strategies for pneumatic grippers, which still lack
of reliable closed-loop force regulation [7]. In our previous
works [7]-[9], we showed two force-control architectures that
resorted to optimization algorithms [7], Kalman filters and
state observers [9]. Nonetheless, the performance of such
architectures was somehow limited by the lack of a friction
model.

The rest of the paper is structured as follows: Section II
shows the pneumatic gripper adopted and the experimental
setups, whereas Section III presents the friction models,
which are all static models. Section IV illustrates the identi-
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fication procedure and the experimental tests, as well as the
results. Finally, Section V concludes the article and gives
some hints about the future work.

II. MATERIALS: PNEUMATIC GRIPPER AND
EXPERIMENTAL SETUPS

This Section will present the employed device, i.e. the
pneumatic gripper, which is the same as in our previous
works [7]-[9]. Moreover, the chosen friction models will
be described. The manufacturer of the gripper cannot be
revealed due to disclosure restrictions. The two experimental
setups will be shown as well.

A. Pneumatic Gripper

The pneumatic gripper was constructed and actuated fol-
lowing a classical architecture. It is possible to divide it into
two subsystems. The first subsystem is the pneumatic one,
while the second subsystem is the mechanical transmission.
The pneumatic subsystem includes the entire pneumatic
cylinder (piston and air chambers, whereas the mechanical
subsystem includes the jaws, levers, and the section of the
piston rod that resides out of the cylinder’s chambers.

When the piston moves, it applies a force on the me-
chanical subsystem. This results into the actuation of the
levers, and thus of the jaws on which custom fingers can be
mounted (see next Section). Even though the levers rotate,
the consequent displacement of the jaws is linear. Such a
displacement is the most subject to friction forces, especially
when the gripper is commanded to reopen (as shown in
Section IV).

A representation of the gripper section is given in Fig. 1.
by increasing the pressure in the closing chamber the piston
moves down. On the contrary, by increasing the pressure in
the opening chamber the piston moves up. The motion of
the piston is converted into an opening/closing motion of
the gripper jaws by two levers. The levers are constrained
to the gripper main body by a pin joint. It is important to
notice that the jaws movement is symmetric, so that a certain
displacement d1 of one jaw implies a displacement −d1 of
the other jaw.

Fig. 1. Section of the pneumatic gripper [9]

Mathematically, it is necessary to consider that the force
coming from the piston is divided by the number of fingers,
i.e. of jaws. Indeed, the piston gives motion to all the levers
connected to it. Being the gripper composed of two jaws,
one has:

FJ =
(Fo − Fc)

2
. (1)

where Fo and Fc denote the force contribution from the
opening and closing chamber, respectively. Their difference
is such that:

FP = Fo − Fc. (2)

Clearly, both forces Fo and Fc depend on the applied
pressures Po and Pc in the relevant chambers through the
following formula:

Fo|c = Po|cAo|c, (3)

where Ao|c is the area of the opening or closing chamber,
and Po|c is the associated pressure. The two pneumatic
chambers have different areas; therefore, if both chambers
are supplied with the same pressure Po = Pc, the resulting
forces Fo and Fc will not have the same magnitude. Part
of FP is dissipated due the friction generated between the
jaws guides and the gripper body when the grasping force
changes.

The gripper chambers were supplied by two micro-
pressure regulators, one per chamber. Each regulator embed-
ded a sensor which allowed measuring the pressure fed to
the gripper chambers. More details about the experimental
setups will be provided in the next Subsection.

B. Setups

To perform the identification experiments, two setups were
conceived. In the first one (Fig. 2), namely spring setup,
the gripper was instrumented with a pair of flat, L-shaped
fingers, which were designed by means of a CAD software.
The fingers were mounted on the jaws: the load cell was fixed
on one of such fingers, to which a compression spring was
interfaced. On the other side, the spring was connected to the
remaining finger. Such a configuration allowed reproducing
the grasping of an object with a certain stiffness (i.e. the
spring stiffness). The described setup was already used in our
previous work [7], but in the present study a laser sensor was
added to measure the jaws position. During the experiments
on this setup, the gripper was controlled through the closed-
loop force control presented in [7] as well.

The second setup, namely no-spring setup, was con-
structed exactly as the first one except for the spring and load
cell which were no longer present. The aim of this choice was
to let the gripper move freely with a null stiffness between
the fingers. Consequently, in this setup the gripper could not
be controlled with the same force control used in the spring
setup. Rather, a position control based on the laser sensor
measurement was implemented. The position control used a
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Fig. 2. CAD of the spring setup (on the left) with its section (on the right).

PID block to adjust the actual position of the jaws resorting
to the feedback provided by the laser sensor.

Fig. 3 illustrates the pneumatic scheme adopted for the
experiments. The gripper was actuated by the two pressure
regulators, which were supplied by an air compressor. The
electronics unit managed all the analog inputs and outputs.
The inputs were: I) pressure measurements from the regula-
tors sensors; II) force measurement from the load cell; III)
position measurement from the laser sensor.

Fig. 3. Pneumatic scheme and connections.

The entire pneumatic system, along with all the sensors,
was commanded through a LabVIEW program; the desired
input for the regulators was generated at 1 kHz. Sensor
data were collected at the same frequency. For this task, a
connector block, namely NI SCB 68A, was interfaced to a
NI 6251 data acquisition device.

III. FRICTION MODELS

Here, the four selected friction models will be briefly
described. Modifications introduced in each model will also
be detailed.

A. CV Model

The Coulomb friction model was probably the first one
to be published in the scientific literature. Known for its
simplicity, this model assumes that friction force Ff is
linearly dependent on the normal force Fn applied onto

a certain surface. The mathematical formulation is rather
straightforward:

Ff =

{
µdFnsign(ẋ) + µvẋ |ẋ| 6= 0

min(F, µdFn)sign(F ) |ẋ| = 0.
(4)

In (4), µd is the dynamic coefficient of friction and F is the
resultant of all the forces acting on the surface, whereas µf is
the coefficient of viscous friction. The value of Ff depends
on the sign of the sliding velocity ẋ, and it is commonly
constant in absence of viscous friction (see CSV model). This
model has two drawbacks: I) it features a discontinuity at null
velocity, and II) only viscous friction is present when normal
force Fn is equal to zero. To get rid of both drawbacks, such
a model can be rewritten as follows:

Ff = (µdFn + µd1)tanh(kẋ) + (µf + µf1Fn)ẋ. (5)

This new formulation allows removing the aforementioned
discontinuity by means of the hyperbolic tangent function
replacing the sign function. The hyperbolic tangent yields
a smoothed trend at very low velocities; a similar result
can be obtained with several functions, e.g. exponential [10]
Moreover, (5) introduces two more coefficients µd1 and µf1

such that the Ff has not only a viscous term when the applied
normal force is equal to zero. In the next Section, results
will highlight the enhanced performance of this modified
version of the CV model. Fn is considered to coincide with
the output of the load cell for all the models.

B. Karnopp Model

The Karnopp model was conceived with the aim of
resolving the discontinuity of the Coulomb model for ẋ = 0.
It introduces an interval |ẋ| < V in which the velocity
is assumed to be null. Within this interval, the Karnopp
model accounts for stiction [10]. The formulation is not
so different from the Coulomb model, though viscosity is
generally neglected:

Ff =

{
(µdFn + µd1)sign(ẋ) |ẋ| > V

min(F, µsFn)sign(F ) |ẋ| ≤ V.
(6)

Again, a further coefficient µd1 is added. The stiction is
modelled for velocities lower than the threshold V through
the static coefficient of friction µs.

C. Threlfall Model

The Threlfall model uses an exponential function to avoid
the discontinuity in the vicinity of null velocity. It is defined
in this manner:

Ff =

{
(µd + µd1Fn)(1− e−3|ẋ|/ve)sign(ẋ) |ẋ| ≤ ve
0.95(µd + µd1Fn)sign(ẋ) |ẋ| > ve.

(7)
Interestingly, the exponential function confers this model

a soft transition form positive to negative velocities. This
characteristic makes redundant the use of function such as
the hyperbolic tangent; the original function sign(ẋ) might be
maintained, as for the Karnopp model. The transition around
the null velocity is defined in the band [−ve,+ve], i.e. where
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the exponential function works. Indeed, when the absolute
value of the velocity |ẋ| equals ve, the value of the term
(1 − e−3|ẋ|/ve) approximates 0.95. Hence, Ff is defined as
in the second equation of (7).

D. CVS Model

The CV model can be enriched inserting a mathematical
description of the stick-slip. This phenomenon induces the
friction force to vary with velocity in a non-linear fashion.
The Stribeck friction offers a good solution for modelling
such a phenomenon [3]. Plus, it creates a continuous transi-
tion from the stiction regimen to the Coulomb friction [2].
An analytical representation of the overall model including
stiction, viscosity and stick-slip might be given by:

Ff = (µdFn + µd1)(1− e−(v/vs)
2

)tanh(kẋ)

+ (µsFn + µs1)e
−(v/vs)

2

tanh(kẋ) + (µf + µf1Fn)ẋ.
(8)

Here, we replaced sign(x) with tanh(ẋ) as for the CV
model. Another solution is to combine the Stribeck friction
with the Karnopp model to solve the discontinuity at null
velocity [11]-[12]. The parameter vs denotes the Stribeck ve-
locity, and determines how fast will be the stiction-Coulomb
transition. The higher vs will be, the shorter will be such a
transition. The Stribeck effect was found to be very accurate
for approximating friction at low velocity [12].

IV. EXPERIMENTAL TESTS AND RESULTS

In this Section, the identification experiments that were
carried out will be shown together with the results.

A. Experiments and Identification Procedure

The experiments to identify the parameters of the four
models were conducted at constant velocity. In more detail,
the following tests were carried out on the pneumatic gripper:

- force-controlled ramps, 0-30 N: low velocity at 0.25
mm/s, 0.5 mm/s, 1.25 mm/s;

- force-controlled ramps, 0-60 N: low velocity at 0.5
mm/s, 1 mm/s, 2.5 mm/s;

- force-controlled ramps, 0-60 N: high velocity at 5
mm/s, 10 mm/s, 12.5 mm/s;

- position-controlled ramps, 0-3 mm: low velocity at
0.3 mm/s, 0.5 mm/s 1 mm/s.

The force-controlled tests were carried out on the spring
setup, whereas for the position-controlled tests the no-spring
setup was used. For all the force-controlled tests, the the-
oretical velocity was calculated by setting a given duration
of the test. Therefore, by commanding the gripper to reach
a desired force level (corresponding to a known stroke) in
a certain time interval, velocity could be retrieved. Two
desired force levels were applied for the force-controlled,
low-velocity tests: 30 N and and 60 N, generating a stroke
of 1.25 mm and 2.5 mm ca., respectively.

A pair of ramps, i.e. one for closing and the other one
for opening the gripper, was repeated three times for all the

force-controlled tests and one time for the position-controlled
tests. During the latter, the gripper was commanded to move
3 mm in a fixed time interval. An example of force-controlled
ramp is illustrated in Fig. 4. It can be observed that the
gripper closes rather easily (left ramp), whereas it remains
blocked when the force controller imposes an inverse ramp
(right ramp). Furthermore, the gripper cannot completely
reopen as a force offset is visible at the end of the trial
(Time=10 s).

Fig. 4. Force-controlled ramp.

To identify the parameters of all the models, the same
procedure was employed. First, the friction force Ffexp was
retrieved from the experimental data:

Ffexp = Fp − Fm − Fi, (9)

where Fp denotes the piston force actuating the gripper
jaws (hence, the fingers) and Fm is the force measured by
the load cell (assumed to coincide with Fn). The inertial
force Fi could be neglected, being the experiments done at
constant velocity. In any case, the contribution of this force
is very low, being the mass of the moving parts (fingers,
load cell and jaws) very little. The force balance in (9) can
be expressed as:

Ffexp = |Ao Ac||Po Pc|T − Fm, (10)

being the piston force Fp written as the difference between
the pressures Po and Pc, multiplying the relevant chamber
areas Ao and Ac (a priori known from the gripper CAD
model).

The identification procedure was the same for all the
models. Once that Ffexp was found, the parameters to
be identified were stacked in a vector Ip and obtained as
follows:

Ip = E†Ffexp, (11)

where E is the matrix containing the vectors which were
functions either of Fm or ẋ, or even of both. For instance,
(11) for the CV model had this form:

|µd µd1 µf µf1|T =

|tanh(kẋ)Fn tanh(kẋ) ẋ Fnẋ|†Ffexp.
(12)
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It is worth mentioning that some of the parameters were
empirically estimated, i.e. the threshold V of the Karnopp
model, the velocity ve of the Threlfall model and the Stribeck
velocity vs. A very narrow band was defined for the Karnopp
model by setting V to 0.2 mm/s, which was the same value
found for vs. ve was 0.5 mm/s in the Threlfall model.
The velocity ẋ was calculated by differentiating the filtered
position measured by the laser sensor. The applied filter was
an exponential smoothing function with low-pass action.

B. Results

Fig. 5 depicts the friction force Ffexp vs the measured
position, for the force-controlled experiments. The variation
of the friction force is linear, as expected from constant
velocities and from the presence of the spring governed by
a linear force-position law. Moreover, stiction is evident at
the beginning of the trials as a non-null force exists when
the gripper is not yet able to move. As for the load cell, the
laser sensor output was negative. Hence, decreasing position
along with negative friction force corresponds to the gripper
closing action; vice versa, the gripper opening is associated
with increasing position and positive friction force.

Fig. 5. Friction force Ffexp vs position.

Fig. 6. Friction force Ffexp vs velocity.

Fig. 6 depicts the friction force Ffexp vs the velocity
from all the experiments. Within the maximum theoretical
velocities, i.e. ±12.5mm/s, the force Ffexp manifests a
behavior in line with the classic Coulomb model. Outside this
region, viscosity seems to arise, even though very few data
points are available (0.1%). Note that these points appear
almost only when velocity is positive, i.e. when the gripper
is reopening. In this phase, spurious accelerations might take
place due to the higher difficulty met by the gripper to move,
as also shown in Fig. 4.

The CV model is plotted in Fig. 7 without µd1 and µf1

(panel A), i.e. in its canonical form although smoothed
by means of the tanh(kẋ) function. One can see that
viscosity dominates in the CV model if the viscous friction
is expressed through the mere µf and only dependence
on the velocity ẋ is expressed. As a consequence, the so
formulated model fails to predict friction on the collected
dataset. Removing viscosity, i.e. setting µf to zero does
not improve the prediction, even reintroducing µd1 in the
Coulomb friction (panel B).

Fig. 7. Friction force Ffpred predicted by the CV model with classic
definition (panel A) and without viscosity (panel B).

Considering instead the definitions of (5), (6), (7) and
(8), the results of the identification are shown in Fig. 8.
All the models reproduce the behavior of the real friction
force Ffexp in an acceptable manner. The most accurate
model is the CSV one, with a mean error of just 0.115
N. This is evident from the plot, as the CSV is the only
model featuring a precise fit even for the spurious data points
outside the region delimited by the maximum theoretical
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Fig. 8. Prediction of the friction models. A: CV model, B: Karnopp model, C: Threlfall model, D: CSV model.

velocities. Further, the CV model offers high accuracy being
its mean error as low as 0.205 N. Karnopp and Threlfall
models seem to slightly underestimate the friction force at
high values, i.e. close to 60 N. Their prediction tends to
diverge as velocity increases. Nonetheless, mean error is
0.508 N and 0.983 N, respectively. All the models appear
reliable, as the mean error is lower than 1 N in all cases.
Intuitively, the models performing best are the ones with
more parameters.

V. CONCLUSIONS

In this work, we evaluated the performance of four
friction models on a pneumatic gripper. The models were
modified w.r.t. their classical definition so as to study their
performance. Some experiments were carried out in order to
acquire the data to be employed for the models identifica-
tion. The gripper was mounted in two different setups and
controlled both in force and position at different constant
velocities. Results revealed that all the four models can
predict with good accuracy the friction force retrieved from
the experimental data. The most precise models are also the
most complex ones, i.e. the ones with the highest number of
parameters.

In future work, effort will be spent on investigating more
models, such as dynamic models (e.g. the LuGre model). Ex-
periments at non-constant velocity will be carried out so as to
include the inertial force in the friction analysis. Furthermore,
the investigated models will be integrated in closed-loop
control architectures to compensate friction online, during
the gripper operation.
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