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Abstract— In this paper, we consider a problem of foothold
selection for the quadrupedal robots equipped with compliant
adaptive feet. Starting from a model of the foot we com-
pute the quality of the potential footholds considering also
kinematic constraints and collisions during evaluation. Since
terrain assessment and constraints checking are computation-
ally expensive we applied a Convolutional Neural Network
(CNN) to evaluate the potential footholds on the elevation
map. We propose an efficient strategy for data clustering and
segmentation with CNN. The data for training the neural
network is collected off-line but the inference works on-line
when the robot walks on rough terrains and allows for efficient
adaptation to the terrain and exploitation of the properties of
the soft adaptive feet.

I. INTRODUCTION

Walking robots, like animals, adapt to the terrain when
walking on rough terrains. Robots can deal with small
irregularities without careful foothold selection [1] and react
dynamically to unexpected slippages. However, this approach
is risky when the robot is climbing a rough and challeng-
ing environment. Additional feedback from the perception
system allows analyzing the terrain profile and selecting
the optimal position for the foot [2], [3]. In this scenario,
the robot considers the elevation map of the terrain and
modifies the nominal position of the foot taking into account
the terrain slope and risky edges of the obstacles. Despite
the visual feedback, the deliberative approach to footstep
planning can be applied together with dynamic gaits [2].

Dynamic walking [1] and foothold adaptation based on
visual feedback can be also supported by the mechanical
adaptation of the robot. Even robotic manipulators use hands
with compliant fingers which can adapt to the shape of
various objects [4]. This approach improves the stability
of the grasp with the mechanical feedback only. A similar
method can be applied when designing the foot for a walking
robot [5]. The mechanical design of the foot used in this
research improves the properties of the contact between the
robot and the terrain and increases the stability of the robot
on rough terrain.

In this work, we combine two approaches and take ad-
vantage of mechanical and visual feedback. In this work,
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Fig. 1: Foothold selection procedure on the ANYmal robot:
the CNN provides the cost of each foothold on the local patch
of the terrain taking into account properties of the compliant
foot and robot constraints

we employ the SoftFoot-Q adaptive foot on the ANYmal
quadruped robot. SoftFoot-Q is a mechanically adaptive foot
for quadrupedal robots inspired by [5]. These compliant feet
increase the stability of the robot by improving grip and trac-
tion. The mechanical design compensates small irregularities
of the terrain and the robot can walk on moderately rough
terrains without visual feedback. However, when walking on
risky and rough terrains, the robot should still avoid regions
that are outside the workspace of the legs, avoid high slopes,
collisions and select footholds on the obstacles which provide
a better grip of the foot. To this end, in this work, we also
utilize visual feedback to select footholds.

The ANYmal robot and the example scenario considered
in this research are presented in Fig. 1. In contrast to our
previous research [3], the robot is equipped with an adaptive
soft foot. While planning the next step of the robot, the
nominal position of the foot is computed which results from
the desired length of the step and direction of motion. The
nominal foothold is modified according to the local elevation
map below the hip joint of the leg. The local elevation map
is provided to the input of the neural network (CNN) that
computes the cost map which is later used to find the best
foothold (red sphere in Fig. 1) taking into account the shape
of the terrain, motion constraints, and position of the nominal
foothold.

II. RELATED WORK

Foothold selection plays an integral part in quadrupedal
robot locomotion especially on challenging terrains. Most
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foothold cost evaluation methods utilize terrain properties
such as height-maps, slopes, and slippage [6]. Barasuol
et al. evaluate candidate footholds through visual pattern
classification based on height-maps. The algorithm is tested
on the quadruped HyQ on rough terrains with obstacles.
The 3D map is built using a motion capture system and
RGB-D sensor. During locomotion, the robot requests a local
height-map around the nominal foothold and evaluates this
candidate foothold through visual pattern classification [7].

Visual-based foothold selection requires long processing
time, therefore most evaluation algorithms resort to other
sensors such as LiDARs and force-torque sensors. In [8],
footholds are evaluated based solely on height-maps. The
costs are computed through matching with pre-selected ter-
rain templates. Kolter et al. [9] present a foothold eval-
uation method based on terrain elevations and slopes for
the quadrupedal robot ”Little Dog”. The algorithm consists
of a two-level control strategy. The high-level controller
evaluates foothold costs, while the low-level controller is
responsible for calculating feet trajectories to reach the
desired footholds. The controller aims at providing proper
footholds for traversing rough terrains.

Real-time foothold evaluation is designed for traversing
challenging terrains in the absence of prior information about
the terrain properties. Fankhauser et al. [10] present a real-
time foothold planning for the quadruped ANYmal that aims
in traversing rough terrains with stairs. The updated elevation
map is used to assess the traversability of nominal footholds,
while the trajectory planner guides the foot to the selected
safe location [10]. Villareal et al. present another real-
time dynamic foothold adaptation algorithm based on self-
supervised classification [2]. The proposed strategy enables
the integration of visual information in terrain perception
whilst maintaining online foothold evaluation.

All the approaches covered in the related work evaluate
candidate footholds for point-type feet. In this paper we
present a foothold selection algorithm for passive adaptive
feet. In particular, we employed the SoftFoot-Q, a compliant
foot for quadrupedal robots, which is loosely inspired by
[5]. These feet are mounted on the quadruped ANYmal to
provide increased compliance on different terrain types. The
presented approach utilizes the foot geometric information in
addition to terrain properties to select the most compatible
candidate foothold.

The problem of foothold selection is similar to the prob-
lem of multi-fingerd grasping and was studied widely by
the robotics community. Recent development in this field
includes the method which uses local geometrical properties
of the objects to find the acceptable positions of the fingertips
on the object’s surface [11]. The grasp configurations are
trained from real examples. The collision and kinematic
constraints are taken into account during the inference pro-
cedure. Recently, deep neural networks, such as the Convo-
lutional Neural Networks (CNN) gained high popularity in
robotics applications. In grasp, the CNN is applied to select
feasible grasp and robotics finger positions on the object’s
surface using point clouds [12] or depth images [13].

Most approaches for the foothold selection are based on
the local features computed for the terrain surface, such as
the inclination of the terrain, roughness, and local curvature
from the elevation maps [14]. These features are provided to
the input of the simple neural network which was trained on
the data provided by human experts. Another approach takes
the elevation map and estimates a probability map that is
related to the capability of each cell to provide stable support
for the robot’s feet [15]. The StarlETH robot is equipped with
a haptic device on the feet, which explores and evaluates
the potential footholds without human supervision [16]. The
HyQ robot focuses more on the reflexes which stabilize the
robot [17], and visual information about the terrain is used
to place the foot on the terrain surface without avoiding
risky footholds [7]. The robot corrects the nominal foothold
positions according to the output from the visual pattern
classifier applied on the terrain patches.

Great progress in the field of autonomous legged loco-
motion on rough terrain was done on the quadruped robot
LittleDog [18]. The authors proposed a terrain scorer which
computes the spatial relationship between a considered point
and its neighboring points and then rejects points which are
located on edges, large slope, the base of a cliff, or inside
of a hole.

A learning-based method was proposed to evaluate terrain
templates based on the human demonstration [8]. The terrain
scorer approach is also adapted in [9], where the weights of
geometric features of the terrain are obtained during training
and then used for the footsteps planning. The first CNN clas-
sifier for the footholds, which efficiently evaluates constraints
and a terrain patch during dynamic walking on rough terrain,
has been proposed by Villareal et al. [2]. Then, we proposed
the method which evaluates footholds for the ANYmal robot
using ERFNet neural network architecture [3]. In this paper,
we extend the previous method [3] and we show that neural
network can be applied to evaluate footholds for a compliant
and adaptive feet.

The foothold selection method for a six-legged robot is
represented by the method implemented on the Lauron IV
robot [19]. The foothold selection module considers points
around an initial foothold and takes into account elevation
credibility, the mean height, and the height variance of the
cells. The six-legged Messor robot learns which points on the
elevation map can provide stable support from simulation
data [20]. Then, the trained Gaussian Mixture is used to
select the footholds in the RRT-based motion planner [21].
The kinematic and self-collision constraints are also taken
into account. However, this process significantly slows-down
the foothold selection process.

A. Approach and Contribution

In this work, we extend our previous approach [3] to footstep
planning for a ball-like foot. We show that the proposed
framework can be also applied to various feet models other
than round-shaped feet. Additionally, we demonstrate how to
design the function which evaluates each potential foothold
for the soft adaptive foot. Moreover, we improve segmen-
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Fig. 2: Architecture of the proposed system: data collection and CNN training are performed off-line but inference is
performed on-line when the robot walks on rough terrain

tation results provided by the neural network and provide a
comparison to the other state-of-the-art results.

The main contributions of this paper include the following:

1) To the best of our knowledge, CNN that evaluates
potential footholds for compliant feet which can me-
chanically adapt to the terrain profile has not been
demonstrated before.

2) Analytical evaluation of the foothold cost which corre-
sponds to the adaptation to the terrain patch and allows
generating training data on the terrain map without the
need for sampling terrain using the real robot.

3) Improved segmentation-based evaluation of the poten-
tial footholds on the elevation map using a CNN.

III. FOOTHOLD SELECTION

A. General architecture

The architecture of the proposed system is presented in
Fig. 2. The core component of the system is the CNN neural
network which evaluates the elevation map below the hip
joint of the considered leg. Data for training the neural
network are collected off-line. After training, the CNN is
used to infer about the cost of potential footholds. We train
two neural networks: one for the right front leg and one
for the right hind leg. Because the mechanical design of the
robot is symmetrical, we use the obtained neural network to
find footholds for the left legs by flipping the local elevation
maps and transforming the results to the frame of the left
leg.

Neural networks need many training examples to find a
proper relation between input and output data and generalize
results. Collecting data from the real robot is difficult and
time-consuming. It requires measuring the quality of the
selected foothold (e.g. by measuring slippage). This problem
can be solved in simulation [20] but the simulation of the
soft foot used in this research is also slow because of its
mechanical complexity. Instead, we propose the analytical
function which describes how the feet adapt to the considered
terrain patch and how far is the obtained configuration of
the foot from the preferred one. Additionally, we check
the workspace of the leg and collisions with the terrain to
avoid constrained configurations of the robot when selecting

footholds. We use the proposed method to generate pairs of
input elevation maps and corresponding cost maps (Fig. 2).

During inference, we provide the local map of the terrain
below the hip joint to the input of the neural network. The
size of the local map is 40×40 cells and the size of each
cell is 2×2 cm. CNN provides the cost map which is used
to modify the nominal foothold – the desired position of
the foot for a given step length and assuming that the robot
is walking on flat terrain [3]. To find the best foothold we
consider the cost cfinal which takes into account the output
from the neural network cf and the distance from the nominal
foothold dn:

cfinal = cf + k · dn. (1)

B. Mechanically adaptive soft foot

The SoftFoot-Q is a novel passive robotic foot designed
specifically for quadrupedal robots, loosely inspired by [5].
The core idea behind its design is that a mechanically
adaptive sole can increase the support area, conform to the
shape of the ground and thus aid in reducing slippage and
enhance the stability of locomotion.

Fig. 3 highlights the main components and dimensions of
the foot, which is a closed kinematic chain composed of
the following components: i) an ankle base A meant to be
connected to the robot leg; ii) two arch links B connected
to the ankle by means of a revolute joint, which provides
pitching movements on the longitudinal plane; iii) two roll
links C connected to the extremities of the arches through
two revolute joints that make rolling motions possible along
the frontal plane; iv) four paddled chains D connecting the
two roll links and creating an adaptable sole presenting a
stiffening by compression behaviour: these flexible chains
deform as they contact the terrain, conform to its shape and
gradually become rigid in extension.

The roll joints are designed to be positioned as low as
possible, to increase the static stability of the foot. Indeed,
since all forces applied by the leg onto the foot have to
pass through the roll rotation axis, a higher position of the
roll joint would increase the chance for the force applied
by the foot to lie outside the support area. This problem is
exacerbated by the small width of the foot, which has to
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Fig. 3: CAD of the main components and dimensions of
SoftFoot-Q.
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Fig. 4: Parameters of the model and corresponding shape of
the foot: slope (a), curvature (b)

comply with specifications for its use on the quadrupedal
robot ANYmal [22]. Finally, although the relative motion
between the two arches tends to misalign the two roll links,
roll motion is still allowed by the play between the chain
links. Play is also of extreme importance in guaranteeing
adaptiveness to variations of the terrain profile on the lateral
direction.

C. Foothold selection with polynomial fitting

The Pisa foot can adapt to the terrain profile. In the
approach to foothold selection, we compute how the foot
can fit the local shape of the terrain and how far the obtained
configuration is from the preferred one. The example config-
urations of the soft foot are presented in Fig. 5. The preferred
configuration of the foot is presented in Fig. 5b. since the
mechanically adaptive sole has a stiffening-by-compression
behaviour and it tends to act like a rope in a tension state
when approaching a convex hull of the soil. We model the
shape of the foot using a second-order polynomial:

y =

N∑
n=1

M∑
m=0

cn,m · xmn , (2)

where xn is the input coordinate (x1 corresponds to the x
axis and x2 corresponds to the y), cn,m is the constant value,
N = 2, and M = 2.

During the polynomial fitting, we search for the values
of the parameters cn,m which fit the given terrain patch.
The example polynomials and corresponding foot shapes are
presented in Fig. 5. We limit the values of the polynomial
parameters cn,m to better represent the shape and constraints

a b c

Fig. 5: Example foot configurations and corresponding sur-
faces for c1,2 = 2.4 (a), c1,2 = −2.4 (b), c1,2 = −2.4 and
c2,2 = 12 (c)

a b c

Fig. 6: Illustration of the convex hull computation: initial set
of points representing the terrain surface (a), computation of
the convex hull (b), and regression result (c)

of the real foot. The parameters of the polynomial have
the physical meaning and it is easy to tune these values
(Fig. 4). cn,0 corresponds to the offset, cn,1 corresponds
to the slope value and cn,2 represents curvature along n-
th dimension. Finally, the cost of the foothold is evaluated
using the following formula:

pp = αRcR +

2∑
n=1

2∑
m=1

αn,m

cmax
n,m − cmin

n,m

· |cpref
n,m − cn,m| (3)

where αn,m are constants and cpref
n,m are preferred configura-

tion of the foot. The preferred configuration of the foot is
presented in Fig. 5b. The cR value represents the polynomial
fitting to the terrain patch:

cR =

L/2∑
x1=L/2

W/2∑
x2=−W/2

|p(x1, x2)− elev(x1, x2)|, (4)

where W is the width of the foot L is the length of the foot,
and p(x1, x2)− elev(x1, x2) is the difference between poly-
nomial and elevation of the map for the (x1, x2) coordinates.

The soft foot effectively compensates small irregularities
of the terrain. Thus, we close small holes in the elevation
map before the cR cost (4) is computed. To this end, we
compute the convex hull on the 3D point cloud created by
the local elevation map. We close holes smaller than two
cells only. The procedure is illustrated in Fig. 6.

D. Convolutional Neural Network

To estimate the cost of selecting the foothold, we ini-
tially engaged the solution proposed in [3]. Similarly, the
elevation map (40 × 40 cells) is provided to the input of
the CNN which returns the cost for each cell. As in the
above-mentioned work the regression problem was converted
into a classification problem by foothold cost discretization.
The discretization process was streamlined by automatically
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aligning histograms composed of cost ranges and the number
of pixels belonging to each of them. The ranges were created
by iteratively adding pixels to the current range in ascending
order (in terms of their cost value) until its size exceeds
5% of the total data set. The left end of the current range
is initially defined at point 0, the right end is defined as
the value of the last added pixel. For the next interval,
the left end is the right end of the previous range. The
schema is duplicated until the entire collection is divided into
classes. Similarly, as in [3], additional classes weighting was
performed. In this way, we obtained a data set balanced in
terms of the number of occurrences of each class, which was
used to teach the prediction model.

The Efficient Residual Factorized ConvNet (ERF) origi-
nally proposed in [23] was used to learn the foothold cost.
Despite the conversion of the estimation problem to the
classification problem, the goal is to minimize the error on
the output of the network. Due to the nature of the data,
the situation in which the model confuses adjacent classes
(adjacent classes represent similar cost) is preferred over
the situation in which distant classes are confused. For this
purpose, we propose an additional weighting of the loss
function, which multiplies the error by the absolute distance
between the predicted and the ground truth class.

Because the identifier of the class is proportional to
the cost, we can model the co-occurrence relations using
known probabilistic mechanisms. Hence, we proposed to
use Markov Random Fields (MRF) [24] on top of the
ERF model. The formula below defines the MRF operating
scheme:

P (x) =
1

Z
exp (−E(x))

E(x) =
∑
i

Φ(yi) +
∑
i,j

Ψ(yi, yj)

q = ERF (Image);
Φ = − log(q);
while q not converged do

Ψ = conv(q, kernel);
U = −(Φ + Ψ) ∗ s;
q = softmax(U);

end
return q

Algorithm 1: Mean field approximation is used on top
of the ERF model to estimate probability according to
the Markov Random Field. The Kernel is a randomly
initialized trainable tensor, with zero values in diagonal
(non-trainable), whereas s is a trainable scaling factor.
During training, only one iteration of the loop is performed
to propagate the error.

where P is a probability function of the image segmenta-
tion, x is the input data (grayscale image), Z is a normalizing
term, and E refers to energy function. The energy function
is composed of Φ – unary and Ψ – pairwise costs. To adapt

a b

c d

Fig. 7: Comparison between two foothold selection methods:
example terrain (a), foothold selection method for a ball-
like foot [3] (b), and polynomial fitting method for example
orientations of the foot (c,d). Dark red color represent good
footholds, yellow weak footholds

MRF into our model we used mean field approximation
method in which we treat negative log of the output from
the ERF model (probability distribution for each pixel) as Ψ.
The output of MRF is estimated using algorithm 1.

IV. RESULTS

In the first experiment we compute the cost function for the
elevation map presented in Fig. 7. We use (3) to determine
the cost map. The defined function is anisotropic so the
cost value for each cell depends on the orientation of the
foot. In Fig. 7c and Fig. 7d we show how the cost map
computed using (3) changes when the orientation of the foot
changes by π/2. We also compare the proposed method to
the method from [3]. The results are shown in Fig. 7b. When
the method from [3] is applied, the robot avoids small bumps
and selects flat patches or small concavities. In contrast, the
robot equipped with soft foot prefers small bumps but also
accepts flat terrain.

In order to justify the application of the proposed neural
networks we present qualitative results of the ablation study.
We compare the following three neural network configura-
tions:

• ERF with default segmentation loss function used in [3],
• ERF with difference weighting,
• MRF on top of ERF with difference weighting.

As in the paper [3], we note the metrics: accuracy and
intersection over union (IoU). Both metrics were performed
between the discretized ground-truth cost assignments and
the classification result of the neural network. The given met-
rics provide information about the accuracy of the predictions
of each class separately and how different areas (in terms of
class) are confused with each other. The results are presented
in Table I. MRF has significantly improved the results, with
an increase in the IoU metric to 66.22.

Detailed results for the MRF and ERF models are pre-
sented in Table II. The summary shows a clear improvement
for the MRF model.
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Accuracy [%] IoU

ERF basic 88.85 58.32
ERF diff weighting 89.23 60.59
MRF over ERF 89.89 62.22

TABLE I: Comparison between neural network architectures
on the validation dataset.

0 1 2 3 4 0 1 2 3 4

0 0.916 0.058 0.002 0.001 0.000 0.923 0.059 0.002 0.001 0.001
1 0.043 0.869 0.070 0.001 0.001 0.055 0.870 0.062 0.001 0.001
2 0.001 0.050 0.867 0.065 0.001 0.002 0.068 0.857 0.057 0.001
3 0.000 0.001 0.058 0.873 0.043 0.000 0.001 0.078 0.851 0.048
4 0.000 0.000 0.002 0.085 0.858 0.000 0.000 0.002 0.100 0.838
5 0.005 0.001 0.001 0.002 0.072 0.008 0.001 0.001 0.002 0.090
6 0.001 0.004 0.050 0.049 0.012 0.002 0.006 0.057 0.050 0.014
7 0.001 0.001 0.004 0.006 0.047 0.002 0.001 0.005 0.005 0.052
8 0.001 0.001 0.008 0.011 0.014 0.001 0.002 0.011 0.012 0.016
9 0.002 0.001 0.014 0.022 0.014 0.002 0.002 0.020 0.022 0.016
10 0.000 0.000 0.001 0.003 0.004 0.000 0.000 0.002 0.002 0.005
11 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.001 0.001 0.000
12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

MRF ERF

TABLE II: Slice of the confusion matrix for classes 0 to 4.
The results show a comparison of the ERF model and the
ERF with MRF module built on it. Bold numbers indicate a
better result.

We verified the foothold selection algorithm on the various
obstacle types in the Gazebo simulation environment which
has the same control interface as the real ANYmal robot1.
The example experimental sets are presented in Fig. 8. We
checked the algorithm on stairs, rough terrains, bumps, and
various geometric structures. The robot uses a locomotion
planner proposed by Fankhauser et al. [10]. We replaced
the module for the foothold selection. The direction of the
robot’s motion is given by the human operator. Then, the
robot adapts the position of the feet and optimizes the pose of
the robot’s body to climb obstacles. This adaptation strategy
slightly modifies the direction of motion given by the opera-
tor. It is noteworthy that at the present stage the compliance
of the feet is not taken into account in the simulation because
of its mechanical complexity, which makes it difficult to
simulate contacts for the numerous links each foot is made
of.

The example elevation maps, obtained cost maps and
selected footholds are presented in Fig. 9. The preferred
footholds are represented on the cost maps by dark red cells.
The selected foothold (red sphere) is always a compromise
between the preferences given by the neural network and the
position of the nominal foothold. Thus, the robot does not
select the cell with the lowest value in the cost map.

The first two examples show the behavior of the robot
on the stairs (Fig. 9a and Fig. 9b). The robot avoids the
bases of the step due to collisions. In contrast to our previous
work, when we considered ball-like foot [3], the robot prefers
positions that are closer to the edges. In this case, the robot
remains stable even if the adaptive foot is placed on the edge
of the step. Similar behavior can be observed when the robot

1short video from experiments is available at https://youtu.be/
p6CvUnqtkqQ

Fig. 8: Obstacles and feet trajectories during experiments
with the CNN-based foothold selection for the adaptive soft
foot

deals with a single step. Results are presented in Fig. 9c and
Fig. 9d. In contrast to the robot equipped with a ball-like
foot, the current planner has a larger set of feet positions
on the same terrain, which are acceptable and stable for the
robot.

The example cost maps obtained during the experiment on
rough terrain presented in Fig. 9e and Fig. 9f show that robot
prefers small bumps and avoids concavities. This behavior is
expected due to the parameters of the preferred configuration
of the foot defined in (3). The soft foot adapts better to
small bumps which provide better support for the robot.
In the examples presented in Fig. 9g the robot selects the
foothold on a slope even though the cost of the foothold in
this region is high. This happens because all footholds in
this area provide weak support. As a result, the robot selects
the foothold which is close to the nominal position of the
foot. In the last example in Fig. 9h, the robot selects the
preferred foothold on the edge because it is in the range
of the considered leg. In all examples presented in Fig. 9
the low-cost footholds are inside circular region. This shape
corresponds to the workspace of the robot which is used to
define motion constraints while training the neural network.

Additionally, we compare the operating times of the previ-
ous model (ERF) and the current one (MRF). Two tests were
carried out, for GPU and CPU. The GPU used is NVIDIA
GTX 1660, while the CPU is Intel Core i7-9750H CPU with
2.60GHz processor clock. For the purposes of the test, in
both cases, the models received batch data with a size of 32.
The ERF model achieved a result of 33.82 ms on the CPU
and 5.76 ms on the GPU, while the MRF reached 34.43 ms
and 5.98 ms, respectively. Tests were repeated 100 times.
The difference between the models is very small and allows
for real-time operation in both cases.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel foothold selection method
for legged robots equipped with passive compliant feet.
The proposed method utilizes the neural network which
predicts the cost map on the elevation map for each foot.
The neural network considers the local shape of the terrain
and parameters of the foot. It also stores information about
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Fig. 9: Example footholds during walking on irregular terrain: hot color map patch represents evaluated region below hip
joint (dark red – good foothold, yellow – week foothold, red sphere – selected foothold)

the kinematic model of the foot and can predict collisions
between the leg and the terrain.

To avoid time-consuming data collection we propose the
cost function which computes how the foot can adapt to the
given terrain patch. We also take into account the distance
from the desired configuration which guarantees the best
grip. The proposed cost function allows generating training
data for the neural network.

Finally, the obtained neural network is used on-line to
select footholds for the quadruped robot ANYmal on var-
ious obstacles. With the proposed method the robot avoids
risky configurations and selects footholds that provide stable
support. In the future, we are going to define the CNN-
based method which selects footholds and configuration of
the robot in a single step. Moreover, we will also study
and validate through rigorous experiments the impact of our
approach on the performance of the robot on rough terrain.
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