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Abstract— Hybrid locomotion, which combines multiple
modalities of locomotion within a single robot, enables robots
to carry out complex tasks in diverse environments. This paper
presents a novel method for planning multi-modal locomotion
trajectories using approximate dynamic programming. We
formulate this problem as a shortest-path search through a
state-space graph, where the edge cost is assigned as optimal
transport cost along each segment. This cost is approximated
from batches of offline trajectory optimizations, which allows
the complex effects of vehicle under-actuation and dynamic
constraints to be approximately captured in a tractable way.
Our method is illustrated on a hybrid double-integrator, an
amphibious robot, and a flying-driving drone, showing the
practicality of the approach.

I. INTRODUCTION

A hybrid locomotor combines multiple movement modal-
ities into a single platform. Examples of hybrid locomotion
include amphibious vehicles with the ability to swim and
drive, or flying cars with the ability to drive and fly. Hybrid
locomotion can allow robots to tackle more complex tasks
in complicated environments, while achieving greater perfor-
mance, such as improved energy efficiency. For instance, a
flying-car can readily fly over obstacles or uneven terrain via
aerial mobility, while driving when possible to save energy
(see Fig. 1 for examples).

Prior works on hybrid locomotion have investigated the
design and feasibility of hybrid locomotion strategies ([1],
[2], [3], [4], [5], [6]); however, realizing the full poten-
tial of these robots not only depends on clever design,
but also on autonomous planning of their complex motion
strategies. The continuous inputs, combined with discrete
mode switches, produce entirely different energy costs, travel
times, and robustness, which ultimately dictate performance.
The complexity of combinatorial optimization of the switch-
ing sequences, as well as trajectory optimization within each
modality, makes this problem particularly challenging. Di-
rectly transcribing this problem into a mixed-integer program
[7], [8] may not scale well enough to handle switching
sequences and coordinates of high-dimensional problems.

This paper presents a novel motion-planning method for
hybrid locomotion using approximate dynamic program-
ming. Our solution relies on the following key insight: jointly
optimizing for the continuous and discrete decision variables
in the space of policies is difficult, but we can use the
approximate optimal cost of a continuous trajectory segment
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Fig. 1. Top Row: A ”Drivocopter” Drone (developed by the au-
thors) which can fly and drive. Video of operation can be accessed at
https://www.youtube.com/watch?v=QZyuvXfifvQ. Bottom Row: ”Ambot”
Amphibious Robot [1] capable of ground and marine locomotion.

as a proxy to the effect of optimal continuous policies within
each modality. This allows us to decouple the original mixed-
integer problem into discrete and continuous problems by
first performing a graph search with approximated energy
costs, then doing a final multi-phase continuous optimization
with the obtained sequence and switch coordinates.

Prior work on multi-modal planning often only consider
geometric graph-based planning ([9],[10],[11],[12]). By ig-
noring the continuous dynamics of the robot, these planners
often ignore dynamic feasibility. In addition, although en-
ergy expenditure is often the most relevant cost in hybrid
locomotion, most works often assume that energy is linearly
proportional to geometrical distance traveled ([9],[11],[13]),
which ignore how dynamic constraints affect the optimal
cost. As our cost is approximated from full-dimensional
trajectory optimization with rigid body and motor dynamics,
it accurately captures the robot’s dynamic characteristics,
including effects of underactuation that might occur in some
locomotion modalities.

Other relevant work can be found in the concept of
”Combined Task and Motion Planning” (TAMP) [14], [15],
[16], in which a discrete sequence of tasks must be found
simultaneously with the geometric motions that satisfy these
sequences. Most of these works are in the domain of ma-
nipulation, where there are little-to-no continuous dynamic
effects, which are often critical for locomotion. In addition,
whereas each discrete task changes the geometric precondi-
tions that affect the next task in a manipulation sequence,
we assume a fixed geometric map in our framework.

Within the field of robotic locomotion, there has been
considerable effort to solve the ”Hybrid Activity and Tra-
jectory Planning” (HATP) problem [9], [17], [18], [13],

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 7027



where individual tasks of multiple robots, as well as their
trajectories, must simultaneously be planned. Some of these
planners also take into account the dynamic behavior of the
robot. However, due to the difficulty of simultaneously doing
trajectory generation with task planning, these approaches
often consider simplified forms of dynamics, such as constant
rate [17], or first-order behavior [18], that admit fast and
convex formulations of trajectory planning. By alleviating
the need to compute exact control inputs in the discrete-
planning process, and capturing their effects with offline-
approximated costs, our approach allows tractable utilization
of realistic robot dynamics.

Our framework is most related to [13], which uses hi-
erarchical planning for multi-agent systems: a graph-search
first creates a global plan for multiple agents, and a local
controller is used for the agents to track the global plan.
The cost function in their graph utilizes the value function
of the closed-loop policy that is computed offline, which is
similar to our offline cost approximation. However, while
[13] utilizes distance-dependent energy costs with a double-
integrator model for their robot dynamics, we directly opti-
mize for electrical energy expenditure, thus capturing a more
detailed and dynamically accurate behavior of the robot. This
further emphasizes the full power of this framework.

The proposed method is primarily implemented in simu-
lation: the hybrid double-integrator with viscous friction is
shown as a low-dimensional case (Sec.IV). Then, example
trajectories for more realistic systems are given by con-
sidering amphibious (Sec.V) and flying-driving locomotion
(Sec.VI). As most hybrid planners ([17], [18]), our planner
does not guarantee probabilistic optimality due to the under-
lying heuristics required to solve the problem, but we show
that our method performs quantitatively well in practice.

II. PROBLEM FORMULATION

A. The Hybrid Locomotion System
We define a hybrid locomotion system as a type of hybrid

control system [19], [20] with additional constraints. The
hybrid locomotion system, H L , is defined as a tuple

H L = (FG,D,U ,S,∆). (1)

In the following descriptions of each system element, i
indexes the locomotion mode (i.e. flying or driving):
• FG = {(fi, gi)} describes the dynamics associated

with each locomotion mode, which are assumed to take
a control-affine form: ẋ = fi(x) + gi(x)u.

• D = {Di} is the set of domains, or state-spaces,
associated with the continuous dynamics of each mode.

• U = {Ui} is the set of admissible control inputs
associated with each mode.

• S = {Si,j} is the set of guard surfaces that describes
the boundaries between domains of mode i and j.

• ∆ = {∆i→j} is the set of reset maps that describe
discrete transformations on the guard surface Si,j

We additionally assume that each state x ∈
⋃
Di belongs

to a single mode i. i.e., the domains disjointly partition the
reachable state-space.

B. Optimal Trajectories in the Hybrid Locomotion System

To define an optimal hybrid trajectory, we formulate a cost
for each mode’s control-affine system in Bolza form:

Ji = Φi(x(t0), t0, x(tf ), tf ) +

∫ tf

t0

Li(x(t), u(t), t)dt. (2)

There also exists a constant switching cost J(∆i→j) to tran-
sition from one modality i to j. We formulate the problem of
finding the optimal trajectory for a hybrid locomotion system
as the following two-point boundary value problem:

min
u

∑
Ji + J(∆i→j)

s.t. ẋ = fi(x) + gi(x)u ∀x ∈ Di u ∈ Ui ∀i,
x(t0) = x0, x(tf ) = xf .

(3)

We want to find a trajectory that is dynamically feasible
within each modality, while optimizing the cost functional
throughout the entire trajectory, which would also require
optimizing the order of discrete modes to visit. This problem
can be transformed into an instance of a mixed-integer
nonlinear program [8].

III. PLANNING METHODOLOGY

Sec. III-A summarizes our planning method that combines
sampling-based planning with local trajectory optimization.
To extend this approach to problems with high dimensions,
Sec. III-B introduces virtual constraints and cost approxima-
tion to improve real-time performance.

A. Dynamic Programming with Continuous Optimization

1) Graph Structure: First, we discretize the problem by
sampling coordinates in the free state-space of each domain
Di. The vertices, V , of a digraph, G(V,E), are constructed
from these samples, similar to the framework of Probabilistic
Roadmaps (PRM) [21]. The edges represent locally optimal
paths between the vertices. Each edge is weighted with the
optimal transport cost. To avoid the situation where the two
vertices of an edge lie in different modalities, we additionally
impose the following constraints:

1) e = (xi → xj) ∈ E, xi, xj ∈ Dk for some mode k.
i.e., edges only connect states in the same mode.

2) We explicitly sample the guard surface and only allow
paths to cross a guard through a guard sample point.

Fig.2. A and B illustrate these conditions. The shortest-path
search is tackled by Djikstra’s algorithm [22] once the locally
optimal trajectory costs are known.

Fig. 2. A) red edges cross a guard surface between domains D1 and D2,
violating the constraint on edges. B) By sampling on the guard surface and
allowing no edges between D1 to D2, all graph edges are constrained to a
single mode. C) Node augmentation to handle modality switching costs.

7028



If there exists a switching cost from one modality to
another, we augment the sample on the guard surface x with
two connected nodes xi and xj that shares the same state-
space coordinates, and assign switching cost to the edge cost
between the two samples, as illustrated in Fig. 2.C.

2) Continuous Optimization of Trajectory Segments: As
each edge connects states in a single mode, we assign the
edge weight by solving the optimization problem:

w(x1 → x2) = min
u

Ji

s.t. ẋ = fi(x) + gi(x)u, x ∈ Di, u ∈ Ui,
x(t0) = x1, x(tf ) = x2,

(4)
where x1, x2 ∈ Di. The result of this problem is used as
the running cost in our dynamic programming framework.
This standard trajectory optimization problem can be solved
using existing methods, such as direct collocation [23].

3) Final Path Smoothing: The path(s) returned from
graph-search are smoothed via trajectory optimization, know-
ing the switching sequence and the guard surface points.
Given a path of samples P = (x1, x2, · · · , xk) resulting from
graph search, we partition the samples using their modalities:⋃

Pi = P1 = {xi|0 ≤ i ≤ k1,∀xi ∈ Dj1} ∪ · · · ∪
Pn = {xi|kn−1 ≤ i ≤ kn,∀xi ∈ Djn},

(5)

where ji denotes the mode of each partition, and xki
denotes

the sample on the guard surface where the trajectory switches
modes. The optimal trajectories between boundary points
are then found by re-solving the partition-wise trajectory
optimization problem. The total trajectory is reconstructed by
concatenating the partition-wise optimal trajectories. Existing
works have shown that this type of final smoothing, which
delays the final choice the control inputs until the end, often
leads to much enhanced performance [16], [18].

In addition, although we assume no significant presence
obstacles in this work, we note that the result of the path of
samples can be used as a nominal collision-free trajectory
that can be used to bound the final smoothing process [24],
[25], which is a direction we further plan to investigate.

B. Extension to High Dimensions

Although dynamic programming with running cost of
continuous trajectory optimization shows good promise, it
is computationally expensive, requiring O(|V |2) instances
of trajectory optimization. In high dimensions, the number
of samples increases exponentially if the resolution is main-
tained, and trajectory optimization methods scale poorly. The
two methods introduced in this section aim to make this
method tractable for high-dimensional systems.

1) Virtual Constraints for Search-Space Reduction: We
can reduce the dimensionality of the sample space by intro-
ducing heuristic virtual constraints that fix some coordinates
as functions of the sampled-coordinates. The state-space is
divided into sampled coordinates (xs) and auxiliary coordi-
nates (xa), which are functions of the sampled coordinates:

x = (xs, xa)T = (xs, v (xs))
T
. (6)

The state partioning into xs and xa is problem-dependent,
but can be understood in the context of model-order reduc-
tion: if the original system and the virtually-constrained sys-
tem show bounded difference in their evolution, it indicates
a good choice of coordinates and constraints. Point-mass
coordinates of position and velocity [20], or differentially
flat coordinates [26] can be good choices. Eliminating the
sampling of the subspace xa can significantly reduce com-
putation, making the method tractable.

2) Approximate Dynamic Programming: To find the
weight between two sampled coordinates xs1 and xs2 in the
graph, let us first define a function J : Rdim(xs)×Rdim(xs) →
R, which is described by the following optimization problem:

J(xs1, x
s
2) = min

u
Ji

s.t. ẋ = fi(x) + gi(x)u, x ∈ Di, u ∈ Ui,
x0 = [xs1, v(xs1)]T , xf = [xs2, v(xs2)]T

(7)
where (xs1, v(xs1))T , (xs2, v(xs2))T ∈ Di. Since this optimiza-
tion problem has to be solved O(|V |2) times, we choose to
learn a function approximator offline.

Using (xs1, x
s
2) as feature vectors, and J(xs1, x

s
2) as label,

we first produce a batch ((xs1, x
s
2) , J (xs1, x

s
2)) from multiple

trajectory optimization runs. Then, function approximators
from supervised learning algorithms such as Support Vector
Regression (SVR) [27] or Neural Nets are used to ap-
proximate J(xs1, x

s
2). Denoting the approximated function

as J̃(xs1, x
s
2), the weights on the graph are assigned by

w(xs1 → xs2) = J̃(xs1, x
s
2).

Since J̃ is learned offline, its evaluation does not require
a full instance of nonlinear programming, greatly reducing
online computation. Yet, as J̃ is learned from trajectory
optimization, all costs in Bolza form can be utilized, and
dynamic or temporal constraints can be incorporated.

IV. CASE STUDY: HYBRID DOUBLE INTEGRATOR

This section first verifies our low-dimensional method for
1D problem of a thrust-vectored mass on a linear rail, with
viscous drag appearing at p ≥ 0. This can be formulated as
a hybrid locomotion system with the dynamics of:

p̈ = u if p < 0, p̈ = u− ṗ if p ≥ 0. (8)

In addition, consider that we have the input constraint |u| ≤
1 for both domains. Converting this to a first-order system
x =

(
p, v
)T

, the system can be described as:

H L =



FG = {(f−, g−), (f+, g+)},
D = {{x|p < 0} , {x|p ≥ 0}}
U = {{u||u| ≤ 1} , {u||u| ≤ 1}}
S = {S+,− = {x|p = 0}} ,
∆ = {∆+,− = x+ → x−}

, (9)

where the dynamics are described by,

f− =

(
0 1
0 0

)
, f+ =

(
0 1
0 −1

)
, g+ = g− =

(
0
1

)
.

(10)
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Then, let us find a trajectory from xi to xf while minimizing
the input,

J− = J+ =

∫ tf

t0

u2dt. (11)

Using our framework, we first place a graph structure
on the state-space using knowledge of the domains Di,
then optimize each continuous trajectory using GPOPS-II
[23] with IPOPT [28] solver. The trajectory obtained using
graph search, and the final smoothened trajectory using the
knowledge of the switching sequence and the boundary
points on the guard surface is displayed in Fig.3.

Finally, since the switching sequence is trivial to guess for
this example, we utilize multi-phase optimization in GPOPS-
II with IPOPT, which puts an equality constraint from the
end of the first phase in D+ and the beginning of the second
phase in D− and compare the results. The trajectory using
multi-phase optimization is displayed in Fig.3.

To empirically study the effect of having increased number
of samples, we run the algorithm 10 times with different
inter-sample distances (controlled by Poisson disc sampling
[29] on the state-space), and show convergence in Fig. 4. Fig.
4 shows that our method results in a lower cost compared
to multi-phase optimization, with inter-sample distance as
large as 0.3. Although the dynamics are linear and cost is
quadratic, the problem is no longer convex in the switching
coordinate. Thus, our PRM framework, which searches more
globally over the domain, performs better than the local
optimum provided by IPOPT [28].

Fig. 3. Optimal Trajectories from xi = [0.8, 0.2]T to xf = [−0.8,−0.]T
(left), and from xi = [0.7,−0, 1]T to xf = [−0.5, 0.2]T (right). Red
trajectories are obtained using graph search, green trajectories are results
of final smoothened path, and the pink trajectory is result of Multi-phase
optimization in GPOPS-II [23]. The edges represent optimal trajectories
between each sample.

Fig. 4. Empirical convergence of cost with decreasing intersample distance.

V. 2D CASE STUDY: AMPHIBIOUS TANK (AMBOT)
This section describes optimal trajectories for the amphibi-

ous vehicle introduced in [1], which uses tank treads for
ground locomotion (skid-steer), and marine locomotion (pad-
dles). After describing the vehicle dynamics in both modes,
we obtain optimal trajectories for an example environment.

A. Dynamics
1) Ground and Marine Dynamics: We derive the Newto-

nian mechanics for planar motion, and incorporate first-order
armature motor dynamics. The ground states, xg ∈ R6, and
marine states, xm ∈ R8, are defined as{

xg = (pwb , v
b, θwb , ω

b)T

xm = (pwb , v
b, θwb , ω

b, φL, φR)T ,
(12)

where pwb ∈ R2 is the body position with respect to (wrt) a
world frame, vb ∈ R2 is the velocity in the body frame, and
θwb , ω

b ∈ R denote the orientation and angular velocity wrt
a world frame. Finally, φL, φR ∈ R denote the left and right
motor speeds. In both locomotion modes, the control action
ug = um = (uL, uR)T ∈ [−1, 1]2 correspond to commanded
motor speeds via fraction of applied motor voltage.

We model a no-slip constraint for ground operation. A
1st-order motor model relates motor torque (which generates
tractive forces on the vehicle) to command inputs. A drag
force proportional to the square of vehicle speed and a similar
1st-order motor model are used in the aquatic domain.

2) Hybrid Dynamics: The governing dynamical systems
for each mode are represented by the hybrid dynamics

FG =

{
ẋg = fg(xg) + gg(xg)ug x ∈ Dg

ẋm = fm(xm) + gm(xm)um x ∈ Dm,
(13)

where g,m denotes ground and marine modes. The domains
and guard surfaces Dg,Dm,Sm,g are obtained from terrain,
and Ug = Um = [−1, 1]2 for both inputs. We apply the
identity map to ∆m→g and ∆g→m.

3) Cost Function: We minimize the robot’s total energy
expenditure, modeled as:

Jg = Jm =

∫ tf

ti

( ∑
i=L,R

Vccui ·
kt
R

(Vccui − ktφi) + Pd

)
dt,

(14)
where Vcc is the battery voltage, kt is the motor torque-
constant, R the internal resistance, and Pd the constant power
drain. The first term models actuator power dissipation, and
the latter term models constant power drainage from on-
board electronics. We assume no switching costs associated
with the discrete reset map, J(∆m→g) = J(∆g→m) = 0

B. Learning the Cost Approximator
For ground operation, we divide the state-space xg ∈ R6

into sampled and auxiliary coordinates

xsg = (pwx , p
w
y , v

b
x, θ)

T , xag = (vby, ω)T = (0, 0)T . (15)

This heuristic division of coordinates recognizes that side-
slip is constrained for skid-steer vehicles, and angular veloc-
ity is small. For marine operation, xm is divided into
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Fig. 5. Left: 11520 ground trajectories colored by their cost. Right: xy-
energy contour for vbx = 1.0m/s, θ = π/2. The heatmap corresponds to
the energy cost to go from xsi = [0, 0, 0, 0]T to xsf = [x, y, 1.0, π/2]T .
The approximated cost captures complex effects of underactuation.{

xsm = (pwx , p
w
y , v

b
x, θ)

T

xam = (vby, ω, φL, φR)T = (0, 0, φn, φn)T ,
(16)

where track forces equal water drag at equilibrium speed φn.
The cost J(xsi , x

s
f ) in (7) is approximated from multiple

optimal trajectories evaluated offline. Using 11520 samples,
the function J(xsi , x

s
f ) is evaluated using GPOPS-II [23],

and SVR with Gaussian kernel trains the function J̃ with
Sequential Minimal Optimization [30]. The process is re-
peated for ground and marine locomotion. Fig.5 shows the
resulting trajectories and the learned function’s contour.

C. Results

We sample position using the method of Sec.III.A, and
grid the states vx, θ to create xs. The edge weights are
estimated from the learned function J̃ . Finally, the shortest
path is found by Djikstra’s algorithm [22]. Fig. 6 illustrates
this process. The final smoothed trajectory is shown in Fig.7.

The final trajectories differ noticeably from those produced
by a shortest-path planner due to the differences in Costs of
Transport. Since the robot expends more energy in water, it
drives further on the ground until it switches to swimming.
This example shows that our method exhibits reasonably
correct qualitative behavior.

Fig. 6. A: Model Environment. B: Graph Generation. C. Result of shortest
path search.

Fig. 7. Final trajectories for example of river crossing (left), and island
crossing (right). The Robot outline is displayed at equal time differences.

VI. 3D CASE STUDY: DRIVOCOPTER

This section models the Drivocopter flying-driving drone
of Fig. 1. It uses skid-steer driving and quadrotor flight.

A. Dynamics

We use the ground model of Sec.V with different param-
eters, while the flight dynamics are based on [31] and [32].

1) Flight Dynamics: Standard rigid-body dynamics [33]
describe flight motions driven by four rotor forces, which use
a speed-squared-dependent lift term and 1st-order armature
motor dynamics. The state vector xf ∈ R16 is

xf = (pwb , v
b,Θw

b , ω
b, φi)

T , (17)

where pwb ∈ R3 is the vehicle position wrt a world frame,
vb ∈ R3 is the 3D velocity in the body frame, Θw

b ∈ R3 de-
notes vehicle orientation w.r.t the world frame, parametrized
by ZYX Euler angles, ωb ∈ R3 is the body angular velocity,
and φi = (φ1, φ2, φ3, φ4) ∈ R4 are the motor rotational
speeds.

2) Hybrid Dynamics: Again, the two modalities of ground
and flight are represented by a hybrid dynamical system

FG =

{
ẋf = ff (xf ) + gf (xf )uf xf ∈ Df

ẋg = fg(xg) + gg(xg)ug xg ∈ Dg,
(18)

where f, g denotes flight and ground modes, the domains
and guard surfaces Df ,Dg,Sf,g are obtained from the
ground surface geometry. The motor inputs are Uf =
(u1, u2, u3, u4) = [0, 1]4 with Ug = (uL, uR) = [−1, 1]2.
Finally, ∆f→g (landing) and ∆g→f (takeoff) are discrete
transitions:{

∆f→g = (pwx , p
w
y , p

w
z , 0

9, φn)→ (pwx , p
w
y , 0

4)

∆g→f = (pwx , p
w
y , 0

2, θwb , 0)→ (pwx , p
w
y , p

w
z , 0

9, φn),
(19)

where φn is the motor speed needed to provide hovering
lift. During takeoff, we set pwz to be a meter higher than the
ground surface of the ground sample.

3) Cost Function: We use the same ground energy cost as
(14), and formulate the same energy for flight with different
motor parameters. The costs for reset maps J(∆f→g) and
J(∆g→f ) are constant takeoff and landing energy costs
obtained via trajectory optimization.

B. Learning the Cost Approximator

Fig. 9. Left: 17016 trajectories produced to learn the flight energy function.
Right: xz-projection of the learned function J̃(0, x).
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The ground states are divided into sampled / auxiliary
coordinates via (15). Flight states are divided by:{

xsf = (pwb , v
b)T

xaf = (Θw
b , ω

b, φi) = (01×3, 01×3, φn · 11×4)T ,
(20)

where the φn is the rotor rate at which the lift provided by
the propellers allows the drone to hover in stable equilibrium.
The cost J(xs1, x

s
2) is learned as in Sec.V.B from 17016

paths. Fig. 9 shows the trajectories and energy map. The
ground energy cost is found with Drivocopter parameters.

C. Results

Fig. 10. A. Model Terrain classified into drivable and undrivable terrains.
B. Poisson sampling on ground mesh. C. Poisson sampling on air and
shortest path search. D. Smoothened final path. E. Heuristic trajectories for
comparison in Tab.I. From back to front: F (red), DF (green), DFD (blue),
FDF (pink), DFDF (black), DFDFD (cyan)

A CAD environment model, consisting of two raised
platforms separated by a flat-bottom chasm, is meshed into
drivable and undrivable regions (Fig.10.A), and the ground
and free-space meshes are Poisson sampled (Fig.10.B). The
result of a shortest-path (Fig.10.C) is smoothened (Fig.10.D).
This process is depicted in Fig. 10. We hypothesized that

when the landing platforms are nearby, the drone should not
drive in the chasm, since gravitational losses exceed energy
gains by driving. As the landing platform becomes more
distant, the drone saves energy by driving in the chasm.
We tested this idea on 5 different terrains parametrized by
the distance between platforms (see Fig.8). Our planning
results show correct qualitative behavior. Illustration of the
trajectories is available in the video [34].

To illustrate how our results perform quantitatively, we
also generate a few heuristic trajectories with different
sequences (illustrated in Fig.10.E) and compare the final
cost of these heuristic trajectories with our method in Ta-
ble.I. Our method produces switching sequences that mostly
agree with lowest-cost producing sequences among heuristic
trajectories, and costs are quantitatively comparable to the
heuristically optimal trajectories. However, our comparison
is limited by the fact that the true optimal solution to the
original mixed-integer problem is not tractable to obtain.

VII. CONCLUSION

We presented a novel scheme to plan energy-efficient
hybrid locomotion trajectories using approximate dynamic
programming. Through capturing optimal policies within
individual modalities with the optimal cost function, we
showed that our approach is successful in decoupling the
continuous and discrete optimization problems. We have
also demonstrated that our approximated cost is successful
in capturing complex dynamic characteristics of the robot
through examples of practical hybrid locomotion: the hybrid
double-integrator, the Ambot, and the Drivocopter.

Improvements are possible by upgrading elements of this
framework. Better computational speed could be realized by
adaptive sampling [35]. An (A*) [36] graph search would be
enabled by transport energy heuristics, while other function
approximators, such as Neural Nets, might improve the cost
function learning module. More efficient implementations
[37] can be used for trajectory optimization.

We also note some major limitations of the planner. Our

Cost from Fixed Sequence Heuristic Trajectories (Joules) Our Method
Dist. (m) F DF DFD FDF DFDF DFDFD Sequence Cost (Joules)

110 12129.72 11991.18 11780.26 6612.62 6620.16 6642.41 DFDFD 6655.44
90 10167.32 9902.18 9867.10 6345.64 6558.94 6578.74 DFDFD 6600.45
70 8208.72 7941.78 7726.73 6470.98 6492.85 6511.88 DFD 8156.85
50 6248.72 6112.78 5894.58 6477.60 6449.91 6452.32 DF 6456.37
30 4244.2 4148.18 3815.68 6343.64 6365.65 6387.47 DFD 4033.92

TABLE I
COMPARISON OF COSTS FROM HEURISTIC TRAJECTORIES WITH FIXED SEQUENCES. D: DRIVING, F: FLYING

Fig. 8. Depiction of trajectory differences as the target platforms become more distant. At less than 75m separation, the robot always flies. After 95
meters separation, driving in the chasm saves energy.
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framework relies on approximating solutions to Boundary
Value Problems (BVP), but it is difficult to guarantee how
well the function approximator captures the cost landscape,
especially due to reachability constraints; even if the result-
ing BVP is infeasible, the cost approximator will still return
a finite cost. An RRT [38] approach to planning through
hybrid dynamical systems can address this issue [39]; while
all nodes are reachable in this approach, detecting where the
tree has crossed the guard surface is much more difficult.

For future works, we wish to understand how this planner
can extend to settings with many obstacles, by using our
sampled points as waypoints that can bound the result
of final path smoothing. In addition, we are interested in
studying cases where the map is not known in advance
[40]. Finally, efforts are underway to demonstrate our results
experimentally on the Drivocopter of Fig. 1.
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