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Abstract— Tactile perception is crucial for a variety of
robot tasks including grasping and in-hand manipulation. New
advances in flexible, event-driven, electronic skins may soon
endow robots with touch perception capabilities similar to
humans. These electronic skins respond asynchronously to
changes (e.g., in pressure, temperature), and can be laid out
irregularly on the robot’s body or end-effector. However, these
unique features may render current deep learning approaches
such as convolutional feature extractors unsuitable for tactile
learning. In this paper, we propose a novel spiking graph neural
network for event-based tactile object recognition. To make use
of local connectivity of taxels, we present several methods for
organizing the tactile data in a graph structure. Based on the
constructed graphs, we develop a spiking graph convolutional
network. The event-driven nature of spiking neural network
makes it arguably more suitable for processing the event-based
data. Experimental results on two tactile datasets show that
the proposed method outperforms other state-of-the-art spiking
methods, achieving high accuracies of approximately 90% when
classifying a variety of different household objects.

I. INTRODUCTION

Object recognition is a basic perceptual skill that underlies
many tasks, from driving a car to preparing a meal. Advances
in machine vision have provided robots with excellent visual
object recognition capabilities (e.g., [1], [2]). But while
vision serves as an important visual modality, it can fail to
distinguish objects with similar visual features or in less-
favorable conditions, e.g., under low-lighting or occlusion. In
such cases, tactile sensing can provide important information
(e.g., texture, roughness, friction), which has been applied in
a variety of tasks including object recognition [3], [4], [5],
slip detection [6], and texture recognition [7].

This study focuses on the challenging task of touch-
based object recognition with event-driven tactile sensors [8],
[9]. Prior works (e.g., [7], [4], [3]) have mainly used
standard synchronous tactile sensors with conventional ma-
chine learning approaches (e.g., convolutional neural net-
works [10]). However, event-driven sensors are inherently
different, both in terms of operation and data provided.
Similar to event-based cameras [11], [12], event tactile
sensors asynchronously report changes in the environment
and thus, provide event-based “spikes” where each taxel fires
independently of the rest. Compared to standard synchronous
frame-based sensors, event-driven sensing can achieve higher
power-efficiency, better scalability, and lower latency. How-
ever, learning with these sensors remains in its infancy [13].

In this paper, we present TactileSGNet, a novel spiking
graph neural network for object recognition using event-
based tactile data. In contrast to convolutional neural net-
works for grid-structured real-valued data, our model op-
erates on graph-structured spiking data. This provides two
key advantages: first, the model can better exploit lo-
cal taxel structure that can be highly irregular, e.g., with
biologically-inspired configurations or flexible sensors that
are wrapped around end-effectors. Second, spiking neural
networks (SNNs) are also event-driven and can directly
process the spike-based data provided by the sensors; this
bypasses potentially expensive transformations from discrete
events to real-valued frames. In addition, SNNs can be run
on power-efficient neuromorphic processors such as the IBM
TrueNorth [14] and Intel Loihi [15].

To our knowledge, TactileSGNet is the first event-driven
graph neural network for tactile data. A related model is
the recently proposed TactileGCN [16], which uses a graph
convolutional network (GCN) [17] for tactile object recogni-
tion. The key differences in this work is that TactileSGNet is
event-driven (with spiking neurons) and we utilize a topology
adaptive graph convolutional network (TAGCN) [18]; the
TAGCN has been previously shown to achieve superior
performance, whilst being computationally more efficient
compared to standard GCNs. Indeed, our computational
experiments on two existing event-based tactile datasets
using the NeuTouch sensor [8] show that leveraging the
TAGCN with spiking neurons achieves superior performance
to other popular architectures. We also experiment with
alternative approaches for constructing tactile graphs; results
suggest automated methods, specifically nearest-neighbor
and minimum spanning tree techniques, can achieve even
better performance.

II. BACKGROUND & RELATED WORK

Our work combines the recent advances in graph neural
networks (GNNs) and spiking neural networks (SNNs) for
event-based tactile object recognition. In the following, we
provide a brief overview of background and related work in
these areas. Note that these research areas are broad and, due
to space constraints, we cover representative work and refer
readers wanting more details to more comprehensive survey
articles.

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 9876



Fig. 1: The NeuTouch sensor mounted on a Robotiq gripper
and spatial distribution of 39 NeuTouch taxels.

Tactile Sensing. Tactile sensing provides a modality of
information (e.g., roughness, textures, temperature) that is
different from visual sensing; incorporating a sense of touch
enables robots to better perceive physical environments.
Tactile perception has been in many robot tasks such as
object recognition [3], [4], [5], slip detection [6], and texture
recognition [7].

To date, several types of tactile sensors have been de-
veloped (see [19] for a survey); popular sensors include
the BioTac1, PPS2, and Tekscan3. In this paper, we focus
on using NeuTouch, an event-based tactile sensor that have
been proposed in recent work [8]. Little prior work ex-
ists for learning with event-based tactile data. Very recent
work [8] proposed a multi-modal spiking network based on
SLAYER [20]. Our work is different in that we explore graph
spiking neural networks (rather than fully connected layers)
with LIF (leaky integrate-and-fire) [21] neurons rather than
SRM (spike response model) neurons [22].

Graph Neural Networks (GNNs) are a class of models that
combine deep learning models and methods for structured
data [23]. GNNs have gained popularity of late due to their
applicability in many fields, from social network mining to
embedding logic into deep networks [24].

Of particular interest for this work are GCNs where the
convolution operation is conducted in the spectral domain
via trainable graph filters [25], [26]. To reduce the computa-
tional cost of decomposition and projection in the frequency
domain, graph filters are usually approximated using finite
order polynomials. For example, in [25], [27], the graph
filters are approximated using high-degree Chebyshev poly-
nomials of the graph Laplacian matrix. A popular GCN [17]
approximates graph filters with the first-order Chebyshev
polynomials of graph Laplacian. More recent work [18]
has proposed limiting the polynomials of the adjacency
matrix (to maximum degree of two) to further reduce the
complexity. In this study, we use the TAGCN to perform
convolution on the tactile data due to its computational

1https://www.syntouchinc.com/technology/
2https://pressureprofile.com/
3https://www.tekscan.com/

efficiency and demonstrated performance [18].

Spiking Neural Networks (SNNs) form a core approach in
neuromorphic computing [28]. SNNs are more biologically
plausible than deep neural networks (DNNs), and can be
executed on power-efficient neuromorphic hardware (e.g., the
Intel Loihi [15]). SNNs can have the similar network topol-
ogy as DNNs, but use different neuron models. Commonly-
used neuron models for SNNs include the LIF [21] and
SRM [22]. One issue in SNNs is that the spike function
is non-differentiable, making it impossible to use backprop-
agation to train the network. To address this issue, several
solutions have been proposed, such as converting DNNs to
SNNs [29], and approximating the derivative of the spike
function [30], [20]. In this work, we use SNNs as they are
able to directly handle spiking sensor data.

III. PROPOSED METHOD: LEARNING WITH
TACTILE GRAPHS

In this section, we provide a description of our graph-
based approach for learning from event-based tactile data.
As previously mentioned, unlike visual pixels, the taxels
for touch sensing may be structured in an irregular fash-
ion. Indeed, human touch sensors are distributed unevenly
across the body (with correspondingly different neurological
demands as illustrated by the popular cortical homunculus).

As artificial e-skins continue to develop in both ca-
pabilities and affordability, we anticipate that robots will
incorporate flexible skins that provide similar (or possibly
superior) touch sensing capabilities to humans. The tactile
sensors may be “wrapped” around existing body parts or
have taxels organized in irregular configurations. Consider
the NeuTouch [8] used in our experiments; the NeuTouch is
a biologically-inspired fingertip tactile sensor with 39 taxels
that are arranged spatially in radial fashion (Fig. 1). In the
following, we will use the NeuTouch as our running example
to describe our method, but note that our approach can be
utilized with other sensors with different taxel configurations
and layouts.

A. Tactile Graph Construction

To process the data from tactile sensors, one could
adopt standard convolutional layers used in deep neural net-
works [31]. However, this would require “forcing” the data
into a grid structure, which entails specifying an arbitrary
grid size with zero-filled (or interpolated) cell values. Here,
we undertake a more natural approach by constructing a
tactile graph based on the local spatial arrangement of the
underlying taxels.

Let G = (V,E) be a tactile graph, where V is a set of N
nodes, and E is a set of undirected edges4. The nodes are
naturally mapped to taxels, but the edges have to be specified.
We propose to leverage the spatial/geometric configuration
of the points and introduce edges based upon the Euclidean

4We focus on undirected edges, but our method also accommodates
directed edges.
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(d) MST(c) MST (σd = 0)

Fig. 2: Tactile graphs constructed by different distance-based
methods. (a) Graph constructed manually by-hand. (b) Graph
obtained by kNN (k=2). (c) Graph generated using Kruskal’s
MST algorithm.

distances between nodes d(vi, vj) = ‖vi − vj‖2. Here, we
explore three different distance-based methods:

1) Manual, where edges are manually connected accord-
ing to their physical proximity;

2) k-Nearest Neighbors (kNN), where each node is
connected to its k closest neighbors;

3) Minimum Spanning Tree (MST), where edges in a
MST are added to the edge set of the graph, along
with extra edges between any two nodes with distances
smaller than a user-specified distance threshold σd.

As a concrete example, Fig. 2 illustrates the tactile graphs
constructed by using the above methods for the NeuTouch.
Our experiments will largely compare methods using the
manual approach, but we include additional experiments that
show how the graph connectivity affects performance on the
object recognition task.

B. TactileSGNet

To process the data from our tactile graph, we propose
a spiking neural network architecture we call TactileSGNet
(shown in Fig. 3). The network uses LIF neurons, and
includes a topology adaptive graph convolutional (TAGConv)
layer [18], fully-connected (FC) layers, and a final voting
layer for classification. In the following, we describe each
of these components:

LIF Activations. In conventional convolutional neural net-
works, the most common activation functions are the ReLU
[32] and its variants (e.g., LReLU [33]). However, the ReLU
activation function is unsuitable in SNNs. We use the LIF
model, which is a popular model for describing the dynamics
of spiking neurons [34], [35], [28]. The dynamics of the LIF
neuron is described by

τ
du(t)

dt
= −u(t) +

∑
i

wixi, (1)

where u(t) represents the internal membrane potential of a
neuron at time t,

∑
i wixi is the weighted summations of

the inputs from pre-neurons, and τ is a time constant. Fig.
4 visualizes the dynamics of a LIF spiking neuron.

To better understand the membrane potential update, we
can apply the Euler method to approximate the solution of
the differential equation (1) shown above [30]. Then, the
update of the membrane potential can be written as:

u(t+ 1) = (1− dt

τ
)u(t) +

dt

τ

∑
i

wixi, (2)

which can be further simplified as:

u(t+ 1) = βu(t) +
∑
i

w′ixi, (3)

where β = 1− dt
τ can be considered as a decay factor, and

w′i is the weight incorporating the scaling effect of dt
τ . Thus,

the LIF activation function fLIF is described as:

fLIF (u) = fire a spike & u(t)← uR , if u(t) ≥ uT (4)

where uR and uT are constants, representing the reset value
and firing threshold, respectively. The LIF activation function
indicates that a neuron will fire (i.e., output a spike) when its
membrane potential reaches or surpasses a given threshold
uT . After the firing, its membrane potential will be reset to
a value uR.

TAGConv Layer. Compared to the popular graph convo-
lution [17], the TAG convolution [18] used in our network
adapts to the topology of the input graph. A TAG convolution
operation is defined as:

zf =

C∑
c=1

Gc,f ∗ xc + bf , (5)

where zf is the f -th output feature map, xc is the c-th input
feature of all nodes (xc ∈ RN , where N is the number
of nodes), C is the number of input features of each node.
bf is a learnable bias vector, ∗ is the convolution operator,
and Gc,f is the f -th graph filter. To make the convolution
operation work for arbitrary graph topologies, the graph filter
needs to be carefully designed. One approach is to define
the graph filter with the normalized adjacency matrix of the
graph,

Gc,f =

K∑
k=0

gc,f,kA
k, (6)

where gc,f,k is the polynomial coefficient of the graph filter,
and A is the normalized adjacency matrix.

Fully-Connected (FC) Layer. The FC layer is similar to
those used in conventional neural networks, i.e.,

h = Wx+ b, (7)

where x is the inputs from previous layer, W is the weight
matrix, b is the bias vector, and h is the output feature.

Voting Layer. The voting layer is used to decode the network
output. We adopt the voting strategy in [36], [30]; briefly,
each output label is first associated to one of neurons in the
voting layer. The predicted class is the one associated with
the neuron with the largest number of votes (corresponding
to spikes) averaged over the time window.
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Fig. 3: TactileSGNet Architecture. TactileSGNet is a spiking neural network (SNN) that processes input spikes from taxels
with connectivity specified by an input graph. It comprises a graph convolutional layer, two fully-connected (FC) layers,
and a voting layer.

Fire

Fig. 4: The dynamics of a LIF neuron. It takes as input
binary spikes and outputs binary spikes. I(t) represents the
input signal to a neuron, u(t) is the membrane potential of
the neuron, and o(t) is the output of the neuron. An output
spike will be emitted from the neuron when its membrane
potential surpasses the firing threshold uT , after which the
membrane potential will be reset to uR.

C. Training

To train the network, we define the loss function that
captures the mean squared error between the label vector
y and the averaged voting results over a given time window,

L =

∥∥∥∥∥y − 1

T

T∑
t=1

Uot

∥∥∥∥∥
2

(8)

where U is the voting matrix, and ot is the output feature
from the last layer at time t.

In non-spiking neural networks, one can train a network by
minimizing the loss function via standard backpropagation.
However, spikes are non-differentiable. Fortunately, we can
approximate the derivative of the spike function, which has
been shown to be effected on various tasks [35], [37],
[20]. In this study, we use the rectangular function f(u) to
approximate the derivative of the spike function due to its
simplicity and reported performance [30], [21],

f(u) =
1

a
sign

(
|u− uT | <

a

2

)
(9)

where a is a width parameter.

IV. EXPERIMENTAL RESULTS

The primary objective of our experiments was to evaluate
different architectures for event-based tactile object recog-
nition. To this end, we compare alternative architectures
including multi-layer perceptron (MLP) and convolutional
neural networks (CNN) against our model. We also sought
to understand the potential benefits of using the adaptive
TAGConv layer, rather than a standard GCN. In the above
experiments, we focused on the manually-designed input
graph. We ran a second set of experiments to compare
the three different graph construction methods described in
Sec. III-A.

A. Datasets

We compared the methods using the recently developed
event-based tactile datasets [8]. In brief, the datasets were
collected using a 7-DoF Franka Emika Panda arm equipped
with a Robotiq 2F-140 gripper, equipped with a NeuTouch
event-based tactile sensor [8] and an ACES decoder [9] to
decode the sensor signals into spikes. The Panda picked up
a variety of different household objects to generate the two
datasets:
• EvTouch-Objects: This dataset comprises tactile data

from 36 object classes (Fig. 5(a)). Among these objects,
26 are objects from the YCB dataset [38], and the
remaining 10 objects are deformable objects chosen
to supplement the relatively rigid YCB objects. To
collect tactile data, the robot gripper grasped the object,
and lifted it off the table by 20 cm before placing
it back onto the table. We used the data collected
during the time from lifting an object to releasing it
(≈ 5 seconds). For each object class, 20 samples were
collected, yielding a total of 720 samples.

• EvTouch-Containers: This dataset includes tactile data
for four containers: a coffee can, a plastic soda bottle, a
soymilk carton, and a metal tuna can (Fig. 5 (b)). These
containers have a maximum volume of 250g, 400g,
300g, and 140g, respectively. Each container was filled
with {0%, 25%, 50%, 75%, 100%} of the respective
maximum amount of water (or rice for the open tuna
can), resulting in 20 object classes. During the data
collection, the robot gripper grasped each container, and
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(a) EvTouch-Objects (b) EvTouch-Containers

Fig. 5: (a) EvTouch-Objects dataset contains 36 object
classes, including 20 objects from the YCB benchmarks (the
first four rows). (b) EvTouch-Containers contains four types
of containers: coffee can, plastic soda bottle, soy milk carton,
and metal tuna can. Each container is filled with five amount
of the same liquid, resulting in 20 object classes.

then lifted it off the table by 5 cm. We used the data
collected during the time grasping an object to lifting
and holding it for a while (≈ 6.5 seconds in total).
There are a total of 300 samples (15 samples per object
class). This dataset may be particularly challenging for
tactile sensing since the weights may not be easily
distinguishable.

For both datasets, we used a bin duration of 0.02 seconds.
Interested readers can find more details about the datasets in
[8] and the corresponding website5.

B. Compared Methods

We compared the proposed TactileSGNet with three base-
line spiking architectures (described below). All methods
used LIF neurons and were implemented in PyTorch using
a LIF-based framework [30]. For fair comparison, all the
methods share a similar network structure (number of layers,
and number of units for respective layers) and similar hy-
perparameters. More precisely, the general network structure
was Input-TAGConv-FC1(128)-FC2(256)-Voting, and
we substituted the TAGConv layer with one of the following
baselines:
• MLP, which uses a standard fully connected layer

with 64 neurons to replace the TAGConv. This baseline
represents the setup where minimal prior structure is
introduced;

• Grid-based CNN where the tactile data was organized
in a grid structure according to the spatial distribution
of taxels [31]. We set the size of each grid cell to 1
mm × 1 mm, yielding a grid of 13×19 cells. The raw
readings from each taxel were assigned to a grid cell
and the remaining unfilled grid cells were zero-filled.

• GCN, where we replaced TAGConv with the GCN [17].
As such, this baseline is similar to the state-of-the-art
TactileGCN [16]), except that the network is a SNN.

Source code for our models is available at
https://github.com/clear-nus/TactileSGNet.

5https://clear-nus.github.io/visuotactile/

TABLE I: Hyperparameter setting

Parameter Value

Number of Layers 3
Membrane potential threshold uT 0.5
Potential reset parameter uR 0
Batch size 1
Decay factor of membrane potential β 0.2
Learning rate 1× 10−3

Width parameter of the approximated derivative a 0.5
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Fig. 6: Training and Test Losses as training progressed on
EvTouch-Objects.

C. Training and Evaluation Methodology

The parameters used in our models (and for training)
are given in Table I. We split the data into a training set
(80%) and a test set (20%) with equal class distribution.
We optimized each model on the training dataset for 100
epochs using the Adam optimizer. Our comparison measure
was accuracy on the test dataset. We repeated the training and
test procedure for 10 rounds (with different initialization).

We manually verified that all models were sufficiently
trained by examining their training (testing) loss profiles.
Figures 6 show the training (test) losses as the iterations
progressed in a representative run; the training loss and test
loss for all the methods decreased quickly at the beginning
epochs and then gradually converged. The TactileSGNet
converged faster than the other methods and has both a lower
training loss and test loss.

D. Object Classification Performance

Table II shows the mean accuracy with standard devi-
ation over the 10 rounds. We observe that the TactileS-
GNet outperforms the other methods, with a mean accu-
racy of 89.44% (on EvTouch-Objects dataset) and 64.17%
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TABLE II: Test Accuracy of the Compared Methods on
EvTouch-Objects and EvTouch-Containers.

Method EvTouch-Objects EvTouch-Containers

Grid-based CNN 88.40 (1.14) 60.17 (2.78)
MLP 85.97 (0.85) 58.83 (2.49)
GCN 85.14 (1.51) 58.83 (2.84)
TactileSGNet 89.44 (0.55) 64.17 (2.75)

Fig. 7: TactileSGNet Confusion Matrix (on EvTouch-
Containers dataset). Each blue rectangle denotes that the ob-
ject classes within the rectangle are from the same container.
Class 1-5 is for plastic soda bottle, class 6-10 is for tuna fish
can, class 11-15 is for soy milk carton, and class 16-20 is
for coffee can.

(on EvTouch-Containers), respectively. Among the baselines,
the Grid-based CNN outperformed MLP and GCN the on
both datasets. Compared to Grid-based CNN, our method
has an accuracy improvement of about 1% and 4% on
EvTouch-Objects dataset and EvTouch-Containers dataset,
respectively. The reason for this difference may be the
TAGConv layer was better able to process the graph-based
representation which encoded the placement of the taxels.

Fig 7 shows the confusion matrix for test set generated
from one round on EvTouch-Containers (an illustrative sam-
ple). Surprisingly, we found that TactileSGNet was able to
perfectly distinguish the different containers (blue rectan-
gles); we had initially expected the model to confuse objects
of similar rigidity such as the coffee and tuna cans. Tac-
tileSGNet was also able to recognize the container fullness
with a relatively high accuracy. The different weight classes
in soy milk carton were easier to classify — possibly due
to the softness of the container which allowed the sensor
and model to detect the pressure exerted — while the coffee
can was more difficult (possibly due to container rigidity).
We also see that many of the incorrect classifications are
reasonable and among similar weights.

TABLE III: Accuracy of TactileSGNet using different tactile
graphs on the two datasets. 〈k〉 denotes the average node
degree.

Parameter 〈k〉 EvTouch-Objects EvTouch-Containers

Manual - - 89.44 (0.55) 64.17 (2.75)

kNN

k = 1 1 88.75 (0.64) 62.67 (2.53)
k = 2 2 88.75 (0.79) 63.33 (1.18)
k = 3 3 89.24 (1.00) 66.00 (0.91)
k = 4 4 88.96 (0.69) 67.00 (1.39)
k = 5 5 89.44 (0.44) 65.67 (2.79)
k = 6 6 89.31 (0.67) 62.00 (0.75)
k = 7 7 89.65 (0.83) 64.67 (4.31)
k = 8 8 89.51 (0.83) 60.33 (1.39)

MST + σd

σd = 0.0 1.9 89.03 (0.64) 63.67 (2.17)
σd = 1.5 2.1 88.68 (0.93) 65.33 (3.80)
σd = 2.0 3.3 89.44 (0.55) 63.00 (0.75)
σd = 2.5 4.1 89.31 (0.94) 65.00 (2.36)
σd = 3.0 5.1 89.51 (0.69) 64.33 (1.49)
σd = 3.5 8.4 89.17 (0.94) 63.00 (3.80)
σd = 4.0 10.4 89.03 (0.85) 62.00 (1.39)

E. Impact of Graph Connectivity

In this section, we compare the three methods introduced
in Section III-A as input to TactileSGNet. For kNN, the value
of k we considered ranged from 1 to 8. For the MST + σd
method, the distance threshold was set in the range of (0,
1.5, 2, 2.5, 3, 3.5, 4); note that the shortest distance between
taxels on the NeuTouch is about 1.5 mm.

Table III shows the accuracy of the TactileSGNet using
different tactile graphs. For the kNN method, the best mean
accuracy is achieved when k = 7 on EvTouch-Objects,
and when k = 4 on EvTouch-Containers. For the MST
+ σd method, the best mean accuracy is when σd = 3
on EvTouch-Objects, and when σd = 1.5 on EvTouch-
Containers. Overall, the best accuracy achieved by both kNN
and MST + σd methods is slightly higher on EvTouch-
Objects and about 3% higher on EvTouch-Containers than
the manual method. Tactile graphs with more edges (a larger
k or σd) did not necessarily result in a better accuracy.
The proposed method appears robust to the number of
edge connections in tactile graphs, and the deviation in the
classification accuracy achieved with different connections
was relatively small (below 1% on EvTouch-Objects and 4%
on EvTouch-Containers).

V. CONCLUSION

In this paper, we present a novel spiking graph neural net-
work for event-based tactile learning. Compared to existing
works, our method can exploit local topological structure of
the taxels via an input graph. Experiments show that our
method achieves higher performance compared to existing
methods; using only event-based tactile data, TactileSGNet
are able to distinguish various household objects with almost
90% accuracy. More broadly, our results indicate that event-
driven tactile perception can be effective and we hope that
our findings will spur research in this promising area.
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