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Abstract—To act effectively in its environment, a cognitive
robot needs to understand the causal dependencies of all
intermediate actions leading up to its goal. For example, the
system has to infer that it is instrumental to open a cupboard
door before trying to grasp an object inside the cupboard. In
this paper, we introduce a novel learning method for extracting
instrumental dependencies by following the scientific approach
of observations, generation of causal hypotheses, and testing
through experiments. Our method uses a virtual reality dataset
containing observations from human activities to generate hy-
potheses about causal dependencies between actions. It detects
pairs of actions with a high temporal co-occurrence and verifies
if one action is instrumental in executing the other action
through mental simulation in a virtual reality environment
which represents the system’s mental model. Our system is able
to extract all present instrumental action dependencies while
significantly reducing the search space for mental simulation,
resulting in a 6-fold reduction in computational time.

I. INTRODUCTION
Research in cognitive science suggests that children learn

causal hypotheses through the combination of observation
and testing [1], resembling the scientific approach and thus
giving evidence to “The Child as Scientist” theory. This
constructivist epistemology, which can be traced back to
Jean Piaget’s theory of cognitive development, requires the
existence of mental models of how one’s environment works,
which can be dynamically constructed and tested through
mental simulation. Similarly, we propose “The Robot as
Scientist” approach according to which a cognitive sys-
tem observes human activities, generates causal hypotheses
about instrumental actions from these observations, and then
tests these hypotheses either in the physical environment or
through an appropriate mental simulation of it. This is based
on the approach of purposive learning for robots as discussed
in [2].

In contrast to natural language processing, where sentences
can be interpreted in the presence of word sequence errors,
in the robotics domain a wrong sequence of actions in action
planning propagates and can render subsequent actions futile.
In everyday human activities, some actions are instrumental
for the execution of subsequent actions, e.g. opening a
cupboard door is an instrumental action for subsequently
grasping a plate inside the cupboard (see Fig. 1) and turning
on the water tap is instrumental for cleaning a plate in
the sink. Therefore, machine learning sequence-to-sequence
models for purposive action sequence generation need to be
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Fig. 1: Instead of testing all action pairs which are possible in the environ-
ment for their instrumental dependency on each other, it is more efficient
to first observe human activities and only consider those action pairs which
co-occur in the right temporal sequence as candidates for causal dependency
to be tested through physical or mental experiments.

augmented with semantic knowledge about strictly required
action dependencies. Relying on classical good-old-fashioned
AI (GOFAI) [3], where these action sequence rules would
be predefined by humans as so-called production rules, can
lead to the well-known problems of not being able to adapt
to dynamic and unforeseen changes in environments and not
adapting to the cognitive system’s individual embodiment
and functionality. Instead, a hybrid combination of data-
driven learning and mechanistic rule testing and construction
is required which is proposed in this paper. As illustrated in
Fig. 2, this is achieved by recording an observational dataset
of human activities and extracting pairs of actions from it
where one action (prior action) frequently occurs before the
second action (posterior action) occurs. These action pairs
are considered causal hypotheses for instrumental depen-
dencies and are tested through executability checks in the
virtual environment (mental simulation). While supervised
machine learning is a behaviorist approach for finding as-
sociations between input and output variables (e.g. stimuli
and responses) and symbolic AI is based on cognitivism,
our hybrid approach can be considered a step towards con-
structivist AI in which data-driven and mechanistic methods
are synergistically combined.

II. RELATED WORK

Using human activity observation for mental simulation
has been a topic related to imitation learning for some time.
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When discussing learning from human activities, roboticists
usually refer to curated datasets based on expert demonstra-
tions [4]. As a result, most related work is based on the
assumption that the dataset only contains information that
is meaningful towards the completion of the task. There
have been several publications covering learning from such
demonstrations at the trajectory level [5][6] or action level
[7][8]. One very important element to consider when learning
new tasks are the mental simulation and physical rehearsal
capabilities [9]. This mental simulation allows the learning
system to explore different possibilities which leads to better-
learned policies even when different dynamics are explored.
For example, [10] proposed a learning method that mapped
the observed action with the learned primitive. The authors
proposed to use physical rehearsal and mental simulation to
learn as many possibilities to improve the learned policies
in very dynamic situations. To develop a mental simulation
framework, Virtual Reality (VR) systems are the best-suited
option since they allow to collect realistic information of
the demonstrations in a structured manner [11], [7]. Recent
approaches are using VR to bootstrap the learning of human
or robot actions using semantic-based approaches [12], [7].
Semantic-based approaches map the continuous real-world
signals into meaningful symbolic descriptions. Such ap-
proaches are often considered as hierarchical methods, where
different levels of abstractions are obtained and analyzed. For
example, [13] presented a hierarchical method that extracted
a set of grammars from human activities. Aksoy et al. [8]
introduced the approach named Semantic Event Chain which
is based on the affordance principle. In contrast to the robot
scientist theory developed by King et al. [14], our system
is not built to answer scientific questions in fields such as
genetics. However, similar to children, it utilizes the scientific
approach of observations, causal hypotheses, and experimen-
tation to understand how to effectively act in its current
environment. It has been shown that causal structures can
be inferred through interventions and controlled experiments
[15][16].

III. METHODS
A. Observing Human Activities & Action Recognition

The data being used in this work has been recorded in a
virtual reality (VR) setup. Consumer VR hardware combined
with well-supported 3D engines like Unity3D provides a
good basis to quickly create and distribute new scenarios
for recording human activities. Additionally, being able to
fully access the environment state makes recognizing actions
easier compared to real-world datasets like the TUM Kitchen
Data Set [17] where one has to employ computer vision
methods on video recordings to interpret the environment and
extract the observed actions. Our dataset named Household
Activities from Virtual Environments (HAVE) [18] consists
of three scenarios, each depicting a different household task:
Setting a Table, Washing Dishes and Cleaning a Living
Room. The environments were set up to allow for variation
in the sequence of actions within the given task, to gather
data that resembles real-world variance. The dataset has been

TABLE I: Dataset distribution of recordings

Goal Recordings
Setting a Table 83
Washing Dishes 96

Cleaning a Living Room 61
Total 240

recorded at the Automatica1 Trade Fair 2018 in Munich with
the recording setup shown in Fig. 3. It consists of 240 human
activities performed by trade fair visitors across the three
scenarios. Visitors were allowed one recording per scenario.
Each recording is limited to a maximum of 5 minutes and
all participants were new to the scenarios. The participants
had a brief adaptation phase of several seconds before they
were given the scenario-specific activity goal. The recordings
were done over four days, with three HTC Vive systems set
up simultaneously. Each scenario is designed inside a 2 by
2-meter square to fit the three recording systems in the same
booth and to avoid the need for virtual locomotion which
would introduce trajectory discontinuities. For this work, Set-
ting a Table was chosen since the importance of identifying
instrumental actions such as opening the cupboard doors and
drawers is evident.

The dataset is provided online2 and consists of a third-
person video, a first-person video, and CSV table of object
trajectories.

In the scope of this work, we focus on the analysis of
two action types which are relevant for Setting a Table:
“Put <object> on table” and “Open/close door/drawer”. The
automatic action detection is being grounded using grasp
events such as grasping and releasing. These binary grasp
events are directly recorded when the main VR controller
button is pressed and released, together with object and
hand trajectories. Based on this information, segments of
grasp-translate-release are being grouped together. When the
translated object has the predefined affordance "open-close"
such as the cupboard doors and drawers, the travel direction
along the single degree of freedom determines whether the
action is recognized as “opening” or “closing”. For objects
with the affordance “put on table”, the spatial relation to
the table is measured when it is released. If the release
happens directly above the table, a "Put on Table" action
is recognized. These detected labels and their corresponding
objects are stored for every recording run in a temporal order.

B. Generating Causal Hypotheses of Instrumental Actions
The resulting library of recorded action sequences is

analyzed for temporal action co-occurrences. Algorithm 1
describes the process. First, all actions which are possible
in the environment, are stored in A. From this, for each
possible action pair 〈08 , 0 9〉 the recordings are searched for
cases where 08 comes before 0 9 . These incidents are counted
for all action pairs, stored in a temporal co-occurrence matrix
C and normalized by the total number of occurrences of the
posterior action 0 9 . Effectively, this gives a look-up value
for each pair, where � (8, 9) describes how commonly 08

1https://automatica-munich.com
2https://github.com/TUM-ICS/HAVE-Dataset
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Fig. 2: The steps for extracting the action dependencies from human activities. Each step can be attributed to one of the three parts of the scientific approach.
Observations in Fig. 3, causal hypotheses (Algorithm 1), experiments in Fig. 4 and the resulting dependency graph in Fig. 6. A video demonstration of
the procedure can be seen under the following link: https://youtu.be/eVThEsepfbw

(a) The Setting a Table scenario mid
activity

(b) Recording an activity at
Automatica

Fig. 3: The recording setup in the Automatica Trade Fair 2018 booth used
for collecting human activity data.

occurs before 0 9 . Due to the causal nature of instrumental
dependencies, where the temporal sequence is important
and one action has to come before the other, the resulting
matrix is asymmetric, in contrast to a correlation matrix.
An example for such a co-occurrence matrix C can be seen
in Fig. 5. Our action recognition system may misclassify
sequences in the recording, therefore it is possible that
pairs of dependent actions are not registered as co-occurring
consistently. If action 08 (e.g. opening the right cupboard
door) is misclassified as action 0: (e.g. opening the right
drawer) then there will be cases in which plate 1 is put on
the table without the system having detected opening the
cupboard door beforehand, resulting in � (8, 9) being less than
1.0. Due to this immanent uncertainty, we use thresholding
to find candidates for dependent action pairs. We mark every
entry � (8, 9) which is below the chosen threshold g with a
0, meaning that action 8 is not instrumental for action 9 . The
candidates of action pairs in which one action frequently
occurred before the other action and thus � (8, 9) ≥ g are
causal hypotheses of instrumental dependencies which the
system needs to test through experiments.

C. Experiments in Mental Simulation

To identify which prior-posterior action pairs in our can-
didates list contain a dependency, we use mental simulation.
We use the same virtual environment in which the dataset
was recorded as a mental model for the system in which it can
simulate counterfactual scenarios. For example, the system
can check for different environment states whether certain
actions such as open right cupboard door can be executed
successfully. In our kitchen scenario, actions are considered
to be executed successfully if their target state can be reached
without collision. For opening and closing actions, this is
checked by moving the object in the simulation along its
single degree of freedom towards the target state while
checking for collisions with other objects. For placing actions
we test through a planning algorithm whether there is at least

Fig. 4: The mental simulation model running in the Setting a Table scenario.
Red lines represent valid paths while blue lines represent blocked paths.
After opening the right cupboard door (instrumental action), the objects
behind it can be successfully put on the table. The exception is plates which
are below other plates.

one possible path between the object’s initial position and
its goal (Fig. 4). For the latter, an A* planner is used [19].
Since instrumental actions are required for the execution of
their dependent action, we evaluate two cases for each prior-
posterior candidate pair � (8, 9) ≥ C. We check if the posterior
action 0 9 is possible without action 08 being executed prior
to it and in the second case if 0 9 is possible after performing
08 . If 0 9 is only possible in the latter case, we conclude that
action 08 is an instrumental action for action 0 9 .

0 9 is not possible without 08 executed before
0 9 is possible with 08 executed before

∴ 08 is instrumental for 0 9

This information is stored in a dependency matrix D(8, 9).
If 0 9 is possible in both cases, there exists no dependency
and if both cases fail, the dependency of 0 9 can not be
resolved yet. After the first pass over all pairs, multi-level
dependencies are still possible and not resolved in D, e.g.
the dependency of the posterior action “Put Plate 2 on Table”
on the prior action ”Open Right Door”. However, the system
has recognized that putting plate 1 on the table is dependent
on opening the right door and that putting plate 1 on the table
is itself a candidate for being instrumental for putting plate 2
on the table. Therefore, our system chains both dependency
pairs together and executes both “Open Right Door” and “Put
Plate 1 on Table” (two prior actions) and then tests “Put Plate
2 on Table”. Since this results in successful execution, the
system reasons that “Put Plate 2 on Table” is a 2nd-level
dependency of “Open Right Door” (see Fig. 6). Other 2nd-
level and 3rd-level dependencies are detected analogously.

IV. RESULTS

After feeding the 83 recordings of human activities from
the Setting a Table scenario to our temporal co-occurrence
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Algorithm 1 Temporal Co-Occurrence
Input: O(C): observation trials of action sequences

A: list of performed actions
=: number of actions

C ← initialize = × = co-occurrence matrix with zeros
5 ← initialize action frequency vector of length n with zeros
for all observation trials O(C: ) do

for all ordered pairs 〈08 , 0 9 〉 of actions in A do
if action 0 9 occurs in observation trial O(C: ) then
5 ( 9) ← 5 ( 9) + 1

end if
? 9 ← index of first occurrence of 0 9 in O(C: )
?8 ← index of first occurrence of 08 in O(C: )
if ?8 ≤ ? 9 then
C(8, 9) ← C(8, 9) + 1

end if
end for

end for
for all entries � (8, 9) in C do
C(8, 9) ← C(8, 9)/ 5 ( 9)

end for
return C

Algorithm 1 we obtain a matrix C of 39 × 39 elements
with rows representing pre-actions and columns representing
post-actions. Each element C of the matrix describes how
often the pre-action occurred before the post-action. Fig.
5a) depicts a small section of C based on a subset of 9
actions. As can be seen in the first row of the matrix, the
action Open Right Door was frequently performed before
the objects inside the right cupboard were placed on the
table, e.g. in 80% of the activity recordings in which plate
1 was put on the table, the right cupboard door was opened
sometime before. As mentioned before, the reason why the
values or not 100% for instrumentally dependent action pairs
lies in the imperfection of action recognition. The recorded
activities had an exploratory nature and were not perfect
demonstrations, e.g. multiple subjects opened the window
even though it does not contribute to the task of setting the
table. Most of them tested the opening and closing of the
window only towards the end of the session. This explains
why multiple values in the column under the post-action
Open Window are 100% temporal co-occurrence, meaning
that the respective actions have always been performed before
the window was opened. Thus, high values of temporal co-
occurrence are indicative of but not sufficient for a causal
dependency between two actions. After thresholding, only a
fraction of the action pairs remains (see elements highlighted
in Fig. 5(a) with blue for a threshold of 0.7) and are
considered as candidates for causal relationships to be tested
through mental simulations. The results of testing the gener-
ated causal hypotheses of instrumental action dependencies
in simulation via Algorithm 2 are shown in Fig. 5(b). The
algorithm successfully finds all instrumental dependencies,
e.g. that opening the right door is instrumental for putting
plate 1 on the table. Besides direct, 1st-level dependencies,
it can discover multi-level dependencies such as between
opening the right cupboard door and putting plate 3 on
the table. Since plate 3 is on the bottom of the stack of
plates, it is required to first open the cupboard door, then put

Algorithm 2 Instrumental Testing in Mental Simulation
Input: C: temporal co-occurence matrix

A: list of performed actions
� : Simulation Environment
g: Threshold
3<0G : Maximum Dependency Level
n: number of actions

D ← initialize = × = dependency matrix with −1
for elements C(8, 9) < g do
D(8, 9) ← 0

end for
3 ← 1 # dependency level
while D contains −1 ∧ 3 < 3<0G do

for elements D(8, 9) = −1 do
B8 ←FETCH-SEQ(08 ,D): fetch seq. of known instrumental
pre-actions for 08 from D
< ← IsExecutable(0 9 )
Execute B8
=← IsExecutable(0 9 )
if ¬m ∧ n then

for : ← 0 ; : < 3 ; : + + do
; ← �#��- (B8 [:],A): get pre-action indices
D(;, 9) ← 3 − :

end for
end if
if m ∧ n then
D(8, 9) ← 0

end if
if m ∧ ¬n then
D(8, 9) ←X

end if
reset �

end for
3 + +

end while
for elements D(8, 9) = −1 do
D(8, 9) ← 0: ignore unresolved entries above 3<0G

end for

plate 1 and then plate 2 on the table before the action Put
Plate 3 is executable. Interestingly, our algorithm can even
find 1st-level dependencies between pre- and post-actions
with co-occurrence values below the chosen threshold of
g = 0.7. Namely the value � (8, 9) = 0.63 between the pre-
action 08 of opening the right cupboard door and the post-
action 0 9 of taking the third small plate. This is because the
system detects that Put Small Plate 3 is dependent on both
putting plate 1 and plate 2 on the table, which are themselves
dependent on opening the right cupboard door. Thus, strong
short-term dependencies are used to reason about long-
term dependency chains. Furthermore, the mental simulation
detects that the pre-action of opening the right cupboard door
makes it impossible to also open the right window, while
without the pre-action, opening the window is possible. Thus,
opening the right door is marked as a blocking action for
opening the window in the action dependency matrix (X with
orange highlighting). The elements of D which represent
direct (1st-level) dependencies constitute an adjacency matrix
from which an action dependency graph can be generated.
The graph generated from the section of D shown in Fig.
5 b) is illustrated in Fig. 6 on the top. The numbers on the
arrows represent the level of instrumental dependency from
the first activity in the graph.
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0 0.80 0.79 0.82 0.84 0.80 0.63 0.73 1.0
0.20 0 0.97 0.91 0.78 0.84 0.75 0.87 1.0
0.16 0.01 0 1.0 0.57 0.82 0.63 0.87 0.5
0.02 0 0 0 0.34 0.08 0.38 0.27 0
0.11 0.14 0.22 0.73 0 0.94 0.75 0.53 1.0
0.12 0.08 0.13 0.54 0 0 1.0 0.47 0.5
0.04 0.03 0.05 0.3 0 0 0 0.7 0
0.05 0.03 0.03 0.27 0.09 0.12 0.5 0 0.5
0 0 0 0 0 0 0 0 0

(a) Temporal co-occurrence matrix C.

0 1 2 3 1 2 3 1 X
0 0 1 2 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 2 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

(b) Instrumental dependency matrix D.
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Fig. 5: (a) Section of the temporal co-occurrence matrix with prior actions
as rows and posterior actions as columns. The matrix elements represent the
ratio of human activities in which our action recognition system inferred that
the prior action was executed before the posterior action. The highlighted
elements have co-occurrence values higher than the threshold of 70% and
are thus the causal candidates that are tested for instrumental dependency
in mental simulation.
(b) Section of the instrumental dependency matrix where 1 represents a
1st-level instrumental dependency between pre- and post-action, 2 and 3
represent 2nd-level and 3rd-level dependencies, 0 represents no dependency
and X marks that the prior action renders the posterior action non-
executable.

For evaluation, we compare the performance of our system
using human activity data to find candidates for mental
simulation against the brute-force approach where no prior
information is used and therefore all possible pairs of ac-
tions in the environment need to be tested. The brute-
force approach equates to the case where the temporal co-
occurrence threshold is set to 0. Fig. 7 depicts that in this
case all instrumental dependencies are found with a runtime
of 1023B 3. Using a higher threshold strongly decreases
the runtime, since fewer candidates need to be tested in
simulation, while no drop in the number of discovered
dependencies is observed until g = 0.8, where the percentage
of discovered dependencies drops to 77% and 47% for both
g = 0.9 and g = 1.0. The latter represents the case in
which the system only tests pre-post action pairs which co-
occurred in the right temporal sequence in 100% of trials.
Because there are misclassifications in the action recognition
system, several ground-truth dependencies have temporal co-
occurrence values of less than 1.0, are thus not considered
as potential candidates for simulation, and therefore not

3The analysis has been done on a system using an Intel Core i78565U
CPU, 16 GB RAM, and an Nvidia GTX1080 GPU.
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Fig. 6: An overview of all 30 action dependencies present in the Setting a
Table scenario. Most actions depend only on one other instrumental action,
while some actions require the prior execution of two (plate 1, small plate
1) or three (plate 2, small plate 2) other actions. The method also detects
that opening the right door prevents opening the window, here depicted with
an orange X arrow.

discovered. For our scenario and perception system, we
consider the threshold of g = 0.7 as optimal due to allowing
the system to discover all instrumental action dependencies
while reducing the runtime to 168B - a 6-fold reduction
compared to the brute-force approach.

V. DISCUSSION

Our results support the hypothesis that following the
scientific approach of observation, generation of causal hy-
potheses, and deliberate testing enables a cognitive system
to efficiently construct knowledge about acting effectively
in its environment. Even with a limited set of 39 possible
actions in the Setting a Table environment, our method was
six times faster in finding all action dependencies than the
brute-force approach of testing all possible pairs. Since the
brute-force approach scales proportional to the number of
permutations of action sequences in the environment, we
expect an even higher comparative gain in computational
speed for more complex environments. Higher accuracy in
action recognition would allow to set a higher threshold g
and therefore sorting out a higher percentage of action pairs
before mental simulation, thus further increasing the run-time
reduction of our method.
We have tested our approach in a single environment and

task. To generalize this causal inference to other environ-
ments and tasks, abstract representations will be necessary.
One possible approach is using ontologies and considering
environmental states as prerequisites for certain actions to
learn planning models [20]. Environment-specific action de-
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Fig. 7: The temporal co-occurrence threshold decides which pre-post action
pairs are considered as candidates for action dependencies and are tested
in mental simulation. The boundary case g = 0 represents the brute force
approach in which all action pairs are considered as candidates and is shown
to find all dependencies at the cost of a running time of 1023B. The boundary
case g = 1 represents the case in which only action pairs where the pre-
action occurred before the post-action in 100% of trials are considered as
candidates. Because of the uncertainty of action recognition, in this case,
not all action dependencies are discovered, but the run-time decreases to
62B. In our scenario, the optimal run-time/performance ratio can be found
at a threshold of g = 0.7. All action dependencies are discovered with a
run-time of 168B, corresponding to a 6-fold increase in speed compared to
the brute force approach.

pendency graphs such as those constructed by our method
could be used to check automatically generated action se-
quences for executability and correct them by adding missing
instrumental actions.

VI. CONCLUSION
In this work, we have shown that a dataset of multiple

human goal-oriented activities can be used for bootstrapping
exploratory testing of activity dependencies in an environ-
ment. We show that our method can significantly decrease
the required computation time without loss in performance.
This approach of creating cognitive systems that combine
observations of human activities with the experimental test-
ing of causal hypotheses resembles the scientific approach
in which scientists and arguably also children make sense
of the world. This is achieved by observing and subsequent
testing in which actions are instrumental for the execution of
other actions. Future research will focus on two main themes
- generalization and embodiment. We plan to apply our
method to other environments and investigate how knowledge
generated in one environment can be used to bootstrap the
learning of action dependencies in another environment.
In humans, the verification of whether a certain action is
executable depends on the individual’s embodiment and the
related perception of affordances. Therefore, these constraints
should be taken into consideration when testing hypotheses
in mental simulation or in a physical environment.
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