
Physical Human-Robot Interaction with Real Active Surfaces using
Haptic Rendering on Point Clouds

Michael Sommerhalder1,2, Yves Zimmermann1,2, Burak Cizmeci1, Robert Riener2,†, and Marco Hutter1,†

Abstract— During robot-assisted therapy of hemiplegic pa-
tients, interaction with the patient must be intrinsically safe.
Straight-forward collision avoidance solutions can provide this
safety requirement with conservative margins. These margins
heavily reduce the robot’s workspace and make interaction
with the patient’s unguided body parts impossible. However,
interaction with the own body is highly beneficial from a
therapeutic point of view. We tackle this problem by combining
haptic rendering techniques with classical computer vision
methods. Our proposed solution consists of a pipeline that
builds collision objects from point clouds in real-time and
a controller that renders haptic interaction. The raw sensor
data is processed to overcome noise and occlusion problems.
Our proposed approach is validated on the 6 DoF exoskeleton
ANYexo for direct impacts, sliding scenarios, and dynamic
collision surfaces. The results show that this method has the
potential to successfully prevent collisions and allow haptic in-
teraction for highly dynamic environments. We believe that this
work significantly adds to the usability of current exoskeletons
by enabling virtual haptic interaction with the patient’s body
parts in human-robot therapy.

I. INTRODUCTION

Rehabilitation robots were strongly researched on during
the last years, and they start getting employed commonly for
therapy. In these therapies, physical human-robot interaction
is a key challenge to guarantee reliable, safe, and success-
ful therapies. Since such trainings include an exoskeleton
robot, a patient, and a therapist, it creates a highly dynamic
environment that needs to be perceived in real-time and be
incorporated into the robot’s control framework to guarantee
a safe therapy.
Activities including interaction with the head, face, and
second arm are essential in daily life and are often trained in
conventional therapy. However, since most robotic solutions
use conservative static collision boundaries that decrease the
robot’s workspace, as well as restricting designs of their
devices, these activities cannot be trained with the robot. This
open problem reduces the usability of robots in rehabilitation
therapies and needs to be addressed.
Through live observation of the relevant surfaces and a
haptic rendering strategy, we want to enable body interaction
while maintaining safety. Our proposed solution consists of

This research was supported in part by the Swiss National Science Foun-
dation through the National Centre of Competence in Research Robotics
(NCCR Robotics) and Innosuisse, the Swiss Innovation Agency.

1 M. Sommerhalder, Y. Zimmermann, B. Cizmeci and M. Hutter are with
Robotic Systems Lab, ETH Zurich, Switzerland yvesz@ethz.ch

2 M. Sommerhalder, Y. Zimmermann and R. Riener are with Sensory-
Motor Systems Lab, ETH Zurich, Switzerland. R. Riener is additionally with
Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
riener@ethz.ch.

† R. Riener and M. Hutter contributed equally to the project’s lead.

a novel perception pipeline to find the closest and most
likely collision point to the robot’s end-effector. A trajectory
controller then predicts the dynamics of the collision surface
and up-samples the data, to meet the criterion for haptic
force rendering. A positional and velocity constraint apply
the collision surface in a hierarchical task controller to close
the loop between perception and control. A generated point
cloud of an example scene using an external camera system
is shown in Fig. 1. We deploy this pipeline on ANYexo, an
exoskeleton that is suited for proximal movements.

Fig. 1. ANYexo model (dark gray) with external RGB-D camera poses
and user as recorded point cloud.

A. Related work

Collision avoidance and haptic interaction are well-studied
fields in robotics. Many collision avoidance strategies are
based on the idea of potential fields [1] [2] [3] [4]. These
methods approximate the work space with a 3D grid and
calculate the resulting force for each cell based on targets
(attractive forces) and obstacles (repulsive forces). This in-
formation is usually processed by a trajectory controller that
optimally avoids obstacles. Such methods are therefore well-
suited for collision avoidance in general. But since they
usually maximize the distance to any obstacle, these methods
are unsuited for our stated problem. Obstacle avoidance
approaches using RGB-D point cloud data, as coming from
Kinect or Realsense depth sensors, are also well-studied.
The authors in [5] extend successful systems for such data.
Latter examines collision avoidance by calculating reaction
forces on a 7-DOF Kuka robot using a voxel map approach.
Knopp et al. [6] then use such robot as a haptic device.
They realize that the KUKA LBR iiwa robot is only vi-
able for haptic scenarios which require high forces and

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 9767

torques, since the robot’s inertia lead to high drag and, in
interaction with the user, to slight oscillations of the end-
effector. ANYexo [7], a versatile exoskeleton based on series
elastic actuation, overcomes this problem by its light-weight
hardware design. Advancements in haptic force rendering,
such as calculating reaction forces with a spring-damping
system upon penetration of the object [8], or using neural
networks [9] to determine repulsive forces, build on the work
by [10] and [11]. Salisbury et al. [10] determines the required
update frequency for smooth haptic interaction and proposes
a ground lying architecture, while [11] presents a method
on how to successfully render obstacles with adequate sense
of touch. [8] does not take occlusion problems into account,
and [9] only considers static collision objects. The authors in
[12] extend the initial methods to streaming (unfiltered) point
cloud data and improve the robustness of the slip-through
problem for the proxy object. Our method, as described in
section IV-E, extends this method to retrieve collision surface
information, and increases the robustness for disturbed point
clouds by approximating the surface with multiple concentric
circles. The authors in [13] use these techniques to haptically
render forces on RGB-D data for a surgical robot on a linked
Omni haptic device.
For the incorporation of boundary constraints in the hier-
archical task controller, Hutter et al. [14] show the ground
lying controller concept that uses null-space projection for
stacking prioritized operational space tasks. Bellicoso et al.
[15] builds upon this idea and shows how various prioritized
constraints such as contact forces can be built and added for
legged robots, while [16] show how such constraints can be
used in haptic rendering problems, and [17] uses a constraint-
based collision avoidance approach by defining appropriate
inequality constraints for obstacles.

Based on above-mentioned related work, our main contri-
bution consist of (1) a novel processing step to overcome the
occlusion problem, especially occlusions of unguided body
parts by the robot, (2) a novel method that extends [12] to
increase robustness for partially occluded and noisy surfaces
using concentric circle approximation, (3) a novel sequence
and configuration of five consecutive computer vision pro-
cesses to create robust collision surfaces from noisy RGB-D
data, and (4) positional and velocity constraints for haptic
rendering in hierarchical task control.

Fig. 2. Mounting of two RGB-D sensors to detect and avoid collisions
between ANYexo and the patient, while allowing safe interaction. The setup
has 5 degrees of freedom (I,II are prismatic, and III-V are rotational joints),
to fine-tune the camera’s optimal pose.

II. SYSTEM ARCHITECTURE

Two cameras record the patient and exoskeleton, as shown
in Fig. 2. The collision avoidance and haptic rendering
pipeline is split into the following sub-systems: (1) Percep-
tion, (2) Data Processing, (3) Haptic Force Rendering and (4)
Hierarchical Task Controller. Fig. 3 shows the pipeline with a
detailed view at the data processing step, whose components
are explained in detail in section III. The raw point cloud of
each sensor at time step k, P kraw,1 and P kraw,2, is fed into our
data processing pipeline. Resulting closest collision point and
surface normal vector ck, nk are translated into a positional
αkP , velocity αkV and force constraint αkF . These constraints
are added to a hierarchical task controller that calculates the
final joint torques τJ for the exoskeleton.

Fig. 3. System architecture and detailed data processing pipeline. The
pipeline is applied to each sensor input, before the estimations are merged
and up-sampled to be made ready for haptic interaction.

III. PERCEPTION

To define the extrinsic placement of the sensor system,
it was important to consider the body parts that could
potentially collide with the robot’s end-effector. DIN ISO/TS
15066 [18] provides a list of maximal allowed impact forces
on different body parts, for which a collision might lead
to negligible injuries at most. Based on this information
and the RoM of ANYexo, relevant body parts, for which
collisions can occur and need to be avoided, were extracted
and the cameras were mounted such that these areas, namely
forehead, torso and left arm, are centered in the field of view
of both sensors and occlusions are minimized.
Solutions involving proximity sensors that could be directly
mounted on the robot’s end-effector were thought of, but
discarded due to cost and complexity reasons. As global
information about the collision shape (head, torso) would be
lost with proximity sensors, as only the local surface could
be estimated, multiple arrays of these sensors would need to
be necessary to achieve the same results as with two external
RGB-D cameras.
Two cameras were finally mounted for the right-handed
exoskeleton. The resulting camera frames can be seen in
Fig. 1, while Fig. 2 shows the mounting hardware that
enables 5 DoF fine-tuning of the camera’s pose. We chose
a configuration where one camera is placed in front of the

9768

patient and one camera is placed at a 45° angle on the right
side of the patient. This setup has the advantage of increasing
robustness to our collision point estimation by having an
overlapping field-of-view, and reducing occluded areas with
its two different camera perspectives.

IV. POINT CLOUD DATA PROCESSING

The data processing pipeline is introduced in Fig. 3 and
the processing steps can be seen in Fig. 4. We refer to our
video 1 that shows the pipeline step by step. For each sensor,
the point cloud undergoes identical processing steps. Each
camera therefore provides a raw collision point estimate. In
a final step, all estimates are merged, and the final collision
point estimation is temporally filtered and up-sampled, to
meet the requirement of having smooth haptic interaction
that runs at 800 Hz.

Fig. 4. Data processing pipeline, top left to bottom right: initial cloud, rele-
vant point extraction, euclidean cluster segmentation, surface reconstruction,
collision object abstraction, merging and up-sampling. Red parts in II and
III denote rejected points. Red parts in IV are a selection of points for ICP
matching, and green points indicate the reconstructed surface.

A. Extraction of Relevant Points
The aim of this first process is to remove most non-relevant

data points from the initial cloud, such as background,
to reduce the computational cost in the next steps. Points
that belong to the exoskeleton and the impaired arm are
removed as well, since points from the robot should not
contribute to collision surface of an external obstacle. For
computational efficiency, primitive objects are defined that
can be attached to a robot’s frame. For collision avoidance
with the exoskeleton’s end-effector as haptic interaction point
(HIP), objects as illustrated in Fig. 4, upper-left image, are
attached to the robot. Each cycle, all points that lie inside
the primitives (or outside of the inverted semi-transparent red
sphere) are removed.

B. Voxel Grid Filter
This small step down-scales the cropped point cloud to

an average of 5000 points by approximating adjacent points
with voxels. We use this step to increase the speed of
the computationally expensive surface reconstruction and
clustering steps later on.

1https://youtu.be/c488sOlY 6Q

C. Euclidean Cluster Segmentation

To remove points that do not belong to a distinct surface,
we use PCL’s Euclidean Cluster Segmentation [19], and
neglect all clusters that have a point size lower than a certain
threshold. With this method we can successfully prepare the
data for the noise-sensitive surface reconstruction in the next
step.

D. Surface Reconstruction

So far we handled data reduction and outlier removal
problems with the first three processing steps. The next
challenge is to recover the surface that is occluded by the
robot as it approaches towards the human body. The occluded
points are the most likely ones to contain rich information
about the collision point. An example situation is shown in
Fig. 5. For non-planar, convex surfaces such as the chin, this
is especially important, since information about the surface’s
closest point to the robot is lost. Additionally, to consider
sudden movements from the patient’s unguided body parts,
the surface reconstruction has to take the obstacle’s move-
ment into account.
This is solved by integrating a frame-to-frame ICP matching
algorithm [20], as shown in Alg. 1. Fig. 6 visually explains
the procedure that can be split into four main parts:

1) At step [k-1], all points of the reconstructed point cloud
within rout and rin are stored in memory.

2) At step [k], the memorized points are ICP-matched on
the points of the new cloud that lie within rin and rout

3) Points outside rin are removed, and the remaining
points merged to the new cloud.

Fig. 5. The closest collision point is occluded by the robot end-effector.
Our surface reconstruction algorithm fills the gap with memorized points
(green) fitted to a selection of the current perception (red).

1) Limitations: Any outlier points as well as surface noise
are not removed by this technique, but rather transported to
the next frame due to the ICP step. This makes a careful
outlier removal necessary, as described in section IV-C.
Additionally, this step introduces a constraint on the relative
velocity between the HIP and the haptic collision point for
two consecutive frames:
For a time step ∆t, the velocity component that is parallel
to the normal direction of the approximated collision surface
v⊥ is bounded by

v⊥ ≤
rout − rin

∆t
(1)

because intermediate points would not be seen by any of the
two frames.

9769

Fig. 6. Surface reconstruction algorithm: (I) extract points from frame k-1
(red) and add them to the memory (black), (II) ICP-match the memorized
points to the cloud of time-step k; (III) remove points outside rin and merge
point set with current cloud.

Algorithm 1: SURFACE RECONSTRUCTION

Input: Point cloud P k and HIP position hk of time
step k. Memory P k−1extr from last time step.

Output: Extracted and icp-matched point cloud P kextr

P k1 ← {p ∈ P k | dist(p, hk) < rin}
P k2 ← {p ∈ P k | dist(p, hk) < rout}
P kextr ← P k2 \ P k1
P kicp ← ICP(P k−1extr , P kextr)
if P kicp 6= ∅ then
P̃ kicp ← {p ∈ P kicp | dist(p, hk) < rin}
P kextr ← P̃ kicp ∪ P kextr

end if
P k−1extr ← P kextr

E. Collision Object Abstraction

To extract accurate information about the closest collision
point and its surface normal, the idea is to build concentric
spheres around the haptic interaction point (HIP) with radii
0 < rin < · · · < ri−1 < ri < · · · < rout. All points within
Ri and Ri−1 are approximated by a circle Ci, whose center
point cki and normal vector nki can be estimated. For the
innermost sphere with R0, a plane nk0 is fitted to the points
and the mean position is used as center point ck0 . These
centroid and normal vector estimations are then averaged
together to form the final surface estimation. Fig. 7 shows a
sketch of the basic idea.

Fig. 7. Concentric spheres (r1 - r3) are defined around the haptic
interaction point. All points lying between two consecutive spheres are
approximated by a circle (green and yellow normal vector). The innermost
points are approximated by a plane (red normal vector). The final surface
is a weighted averaging of all estimates (blue normal vector n).

To further increase robustness, outlier estimates are filtered
out by calculating the euclidean distance matrix and remov-

ing the worst half of the estimates from the ensemble. The
algorithm to estimate ck and nk is described in Alg. 2.
Since the direction of the normal vector estimation is unde-
fined, it can be determined by comparing it to the camera’s
normal direction zk (see Eq. 2). This can only be done
because we first estimate the collision point and only then
we merge the estimates of multiple cameras.

nki ← -sign(nki ◦ zk) · nki (2)

plane3d(P k) and circle3d(P k) are functions that calculate
plane and circle estimations, respectively, of an input set
of 3d-points. They are implemented by first estimating the
normal direction using singular value decomposition, then
transforming the problem to a planar space using Rodrigues
formula, estimating the planar centroid using the QR decom-
position for the linear least squares problem and transforming
the solution back to 3D. The final estimates for ck and nk are
estimated by averaging over the weighted circle estimates.
They are weighted inverse proportional to their radius to
weaken the influence of points with a big distance to the
HIP.

Algorithm 2: OBJECT ABSTRACTION

Input: Point cloud P k and HIP hk of time step k,
camera normal zk

Output: Estimated centroid ck and normal vector nk.
for Sphere with Radius ri, ri > ri−1 do
P ki ← {p ∈ P k | ri−1 < dist(p, hk) < ri}
if P ki 6= ∅ then

if P ki is first non-empty set then
[cki , n

k
i]← plane3d(P ki)

else
[cki , n

k
i]← circle3d(P ki)

end if
nki ← -sign(nki ◦ zk)·nki

end if
end for
Ck ← 〈ck1 . . . ckn〉
Nk ← 〈nk1 . . . nkn〉
Sk ← 〈

∑
i 6=1 dist(nk1 , nki), . . . ,

∑
i6=N dist(nkN , nki)〉

Ik ←indicesFromQuickSort(Sk)
Ik ← 〈ik1 , . . . , ikN/2〉
nk ←weightedAvg(Nk)
ck ←weightedAvg(Ck)

1) Limitations: The algorithm assumes to have one dis-
tinct closest collision point for the HIP hk. If two equally
distant points are visible, the circle and plane estimation fails
and assumes a point between the two. One way to avoid this
problem is to keep only the biggest visible point cluster in
the Euclidean Cluster Segmentation step. Fortunately, when
dealing with convex surfaces, as it is the case for the human
body, there is usually exactly one distinct closest point.

9770

F. Merging and Up-sampling

This step combines the centroid and normal estimates of
each camera to make a final prediction about the collision
surface. This is achieved in two steps:

1) Predict the future target position based on an estimated
trajectory from the previous measurements

2) Update the current value of the centroid and normal
vector using PID-control

As a regression model, we use a polynomial of 2nd degree
to up-sample the data:

x(t) = a2t
2 + a1t+ a0 (3)

The parameters a2, a1 and a0 are calculated by solving the
following linear system of equations:

(WA)x = (Wb), x = {a0, a1, a2}T (4)

with

A =

 1 t1 t21
...

...
...

1 tN t2N

 , b =

 ci
...
cN

 (5)

and W being a diagonal weighting matrix that weights
the measurements inverse proportional to their arrival time
compared to the last measurement, and {c1, . . . , cN} being
the observed measurements of coordinate c for the duration
d. That means that the measurements b are coming from
multiple cameras as well as multiple time steps. This has the
advantage that temporal outliers, as well as bias coming from
inaccurate intrinsic or extrinsic calibration of the cameras,
gets filtered out.
To avoid sudden changes for the centroid and normal vector
(which has a direct negative impact on the haptic sense of
touch), a PID-based controller follows the target trajectory
x and updates the final state x̄ for each time step k:

x̄k = PID(x̄k−1, xk), x =
[
ckx, c

k
y , c

k
z , n

k
θ , n

k
φ

]T
(6)

Since the surface normal on average does not change with
the same high rate as the centroid, the PID-values can
be adapted accordingly, resulting in a smooth and realistic
surface movement.

V. HAPTIC FORCE RENDERING

In this final step, prioritized tasks for the hierarchical task
controller are crafted using the resulting ck and nk, and
the HIP hk, that is a virtual point on the robot’s body.
We designed 3 haptic constraint types, namely a positional,
velocity and force constraint.
The projected distance along the surface’s normal direction
can be calculated using the scalar product and subtracting
the radius of the HIP:

dproj = (ck − hk) ◦ (−nk)− rHIP (7)

The corresponding constraint jacobian is given by projecting
the translational spatial Jacobian for the HIP Js to the surface
normal vector nk:

Jc = (nk)T · Js,trans (8)

A. Positional Constraint

The positional inequality constraint is

αkP < dproj − kp∆t (Jc · q̇)−
1

2
k2p∆t2

(
J̇c · q̇

)
(9)

Jt,P =
1

2
k2p∆t2Jc (10)

where kp is the task space position constraint gain. The
constraint is finally added to the task controller as derived
by [14]:

Jt,P · ξ = αkP , ξ =

(
q̈
τ

)
(11)

The penetration depth is calculated by applying a 2nd order
taylor expansion on the filtered joint velocities. Jt,P is the
task Jacobian that is given to the hierarchical task controller
together with the constraint value αkP .

B. Velocity Constraint

For the velocity constraint, we defined a function that
depends on the distance of the HIP to the collision point:

vc(d) =

vmin, for dproj < doffset

vmax, for dproj > doffset + dwidth

vmin +
(dproj−doffset)

dwidth
· (vmax − vmin) , else

(12)
and the corresponding inequality value and task jacobian is
given by

αkV < vc(d)− (Jc · q̇)− kv∆t
(
J̇c · q̇

)
(13)

Jt,V = kv∆tJc (14)

This ensures a linear maximal speed towards the collision
object, to prevent collisions with high velocities.

VI. RESULTS & DISCUSSION

Our collision avoidance pipeline is evaluated on ANYexo,
a new 6-DoF torque controlled upper-limb exoskeleton, and
two Intel Realsense D435 depth sensors. The hierarchical
task controller is set to the following configuration for all
experiments:

priority task
1 Equation of Motion
2 Safety Limits for Joint Position and Velocities
3 GHB Fixed Collision Constraint
4 Online Collision Avoidance
5 Minimize Joint Accelerations

TABLE I
HIERARCHICAL TASK CONTROLLER CONFIGURATION FOR THE

PRESENTED EXPERIMENTS.

A HIP is placed at the corner of the handle that faces the
patient, and a radius of 0.04 m is chosen as an offset.

Fig. 8 shows the final surface movement compared to the
planned trajectory and the raw estimations from the data
processing pipeline (yellow scatter plot), as derived in Sec.
IV-F. Note that raw data has a frequency of 30 Hz for
each camera, while the resulting trajectory has a frequency
of 800 Hz. Small bias coming from an inaccurate extrinsic

9771

calibration of the cameras is also averaged with this method,
assuming a mean bias of zero for multiple cameras.
We first perform an open-loop experiment to validate the

Fig. 8. This plot shows the raw normal vector estimations cφ and cθ in
spherical coordinates, coming from the data processing pipeline at 30 Hz,
the corresponding planned trajectory that is up-sampled to 800 Hz, and the
final trajectory of the normal vector after applying PID control. For the
centroid, this procedure is identical.

robustness of the collision avoidance pipeline and obstacle
trajectory generation for multiple direct impacts. The colli-
sion centroid and normal vector are generated and visually
validated, as seen in Fig. 9. As soon as the HIP has moved
away far enough, the constraint gets disabled, as indicated
by the gray areas.

Fig. 9. Normal and centroid vector calculation of an example scene for
multiple direct impacts with a healthy subject.

The second experiment is an open-loop experiment, to
validate a correct input for the haptic rendering upon sliding
along the head. Fig. 10 shows the resulting surface centroid
and normal. For 6 time steps, the pictures show the current
state of the point cloud as well as the surface vector markers

(blue). The surface is rendered smoothly and no oscillations
or sudden jumps in the surface estimation can be seen.

Fig. 10. Open-loop experiment for consecutive sliding along the head.
The plot shows the surface centroid and normal. For 6 time steps, the point
cloud state and surface vector markers are shown.

The closed-loop test looks at three consecutive direct
impacts and sliding with enabled positional and velocity
constraint. A virtual horizontal plane is at fixed distance
to the floor. The robot end-effector is hit against this wall.
Position and velocity is recorded. Fig. 11 shows the resulting
relative position dproj and velocity δ

δtdproj. For direct impact,
upon hitting the virtual surface, the positional constraint acts
as a spring, resulting in higher reaction forces for bigger
penetration depths. Similar behaviour can be seen as slight
oscillations in the sliding experiment. Also, note how the
constraint influences the HIP velocity. A bouncing effect can
be observed upon penetration of the surface. This can be
explained by considering the reaction forces coming from
the positional constraint; the HIP is pushed outwards, while
the patient’s inertia still acts in the opposite direction. The
velocity boundary leads to the HIP hitting the surface a
second time, before the arm is finally retracted.

The last experiment observes the behaviour of sudden
movements of the collision surface. The surface is elevated
with a constant speed. Resulting haptic collision point (HCP)
and HIP positions are shown in Fig. 12 for different elevation

9772

Fig. 11. Closed-loop one-dimensional experiment with enabled positional
and velocity constraint. Note the small bouncing effect in the end-effector’s
relative velocity that arises from the patient’s inertia acting in the opposite
direction than the reaction forces.

speeds. It can be seen that the safety margin gets smaller for
increased speeds, and the reaction is delayed. To counteract
this behaviour, either the safety margin, that is the HIP’s
radius, can be increased, or the movement of the collision
surface can be included in the velocity constraint and thus
supporting the reaction from the positional constraint.

Fig. 12. Closed-loop one-dimensional experiment with moving horizontal
surface at different speeds. Note how the safety margin gets smaller for
increased speeds.

VII. CONCLUSION

The sequence of consecutive computer vision processes
allow the estimation of closest collision surfaces for noisy
and biased camera data. Occlusion problems with the
exoskeleton robot are solved by introducing a novel surface
reconstruction method. The positional and velocity constraint
finally prevent collisions while allowing haptic interaction
with the human body. Our method thus successfully closes
the gap of enabling virtual haptic interaction with own
unguided body parts in human-robot therapy.
Due to the framerate of the camera and the necessary
trajectory generation step, relative speeds between the
exoskeleton and the obstacle are limited to 1.0 m/s for a
haptic point radius of 0.04 m with this method, and can
thus be further improved.
The open-loop experiments show that our pipeline is
robust to occlusion by the exoskeleton robot and has the
potential to deal with high dynamic cases such as direct
impacts, sliding along the unguided body parts, and sudden
movements of the obstacle towards the haptic interaction
point.
Although the one-dimensional closed-loop tests show
promising results, additional closed-loop tests with complex
surfaces need to be done in the future to assess the real
potential of the method.

REFERENCES

[1] K. B. Kaldestad, S. Haddadin, R. Belder, G. Hovland, and D. A. Anisi,
“Collision avoidance with potential fields based on parallel processing
of 3d-point cloud data on the gpu,” in 2014 IEEE International
Conference on Robotics and Automation (ICRA), May 2014, pp. 3250–
3257.

[2] G. Du, S. Long, F. Li, and X. Huang, “Active collision avoidance
for human-robot interaction with ukf, expert system, and artificial
potential field method,” Frontiers in Robotics and AI, vol. 5, p. 125,
2018.

[3] A. M. Zanchettin, N. M. Ceriani, P. Rocco, H. Ding, and B. Matthias,
“Safety in human-robot collaborative manufacturing environments:
Metrics and control,” IEEE Transactions on Automation Science and
Engineering, vol. 13, no. 2, pp. 882–893, April 2016.

[4] J. Minguez and L. Montano, “Extending collision avoidance methods
to consider the vehicle shape, kinematics, and dynamics of a mobile
robot,” IEEE Transactions on Robotics, vol. 25, no. 2, pp. 367–381,
April 2009.

[5] Y. Fu, G. Jiang, W. Feng, Y. Zhou, and Y. Ou, “On real-time
obstacle avoidance using 3-d point clouds,” in 2014 IEEE International
Conference on Robotics and Biomimetics (ROBIO 2014), Dec 2014,
pp. 631–636.

[6] S. Knopp, M. Lorenz, L. Pelliccia, and K. Philipp, “Using Industrial
Robots as Haptic Devices for VR-Training,” in IEEE, Conference
on Virtual Reality and 3D User Interfaces (VR), 2018. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/8446614

[7] Y. Zimmermann, A. Forino, R. Riener, and M. Hutter, “Anyexo: A
versatile and dynamic upper-limb rehabilitation robot,” IEEE Robotics
and Automation Letters, vol. 4, no. 4, pp. 3649–3656, Oct 2019.

[8] H. Seraji and B. Bon, “Real-time collision avoidance for position-
controlled manipulators,” IEEE Transactions on Robotics and Automa-
tion, vol. 15, no. 4, pp. 670–677, Aug 1999.

[9] A.Sharkawy, P. Koustoumpardis, and N. Aspragathos, “Human-robot
collisoins detection for safe human-robot interaction using one multi-
input-output neural network,” Soft Computing, August 2019.

[10] K. Salisbury, F. Conti, and F. Barbagli, “Haptic Rendering: Introduc-
tory Concepts,” Computer Graphics and Applications, vol. 1, no. 04,
2004.

[11] C. B. Zilles and J. K. Salisbury, “A constraint-based god-object method
for haptic display,” in Proceedings 1995 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems. Human Robot Interaction
and Cooperative Robots, vol. 3, Aug 1995, pp. 146–151 vol.3.

[12] F. Rydén and H. J. Chizeck, “A proxy method for real-time 3-dof
haptic rendering of streaming point cloud data,” IEEE Transactions
on Haptics, vol. 6, no. 3, pp. 257–267, July 2013.

[13] X. Li and T. Kesavadas, “Surgical robot with environment recon-
struction and force feedback,” in 2018 40th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), July 2018, pp. 1861–1866.

[14] M. Hutter, H. Sommer, C. Gehring, M. Hoepflinger, M. Bloesch,
and R. Siegwart, “Quadrupedal locomotion using hierarchical opera-
tional space control,” The International Journal of Robotics Research,
vol. 33, pp. 1047–1062, 07 2014.

[15] C. Dario Bellicoso, C. Gehring, J. Hwangbo, P. Fankhauser, and
M. Hutter, “Perception-less terrain adaptation through whole body
control and hierarchical optimization,” in 2016 IEEE-RAS 16th Inter-
national Conference on Humanoid Robots, Nov 2016, pp. 558–564.

[16] A. Leeper, S. Chan, K. Hsiao, M. Ciocarlie, and K. Salisbury,
“Constraint-based haptic rendering of point data for teleoperated robot
grasping,” in 2012 IEEE Haptics Symposium (HAPTICS), March 2012,
pp. 377–383.

[17] K. Glass, R. Colbaugh, D. Lim, and H. Seraji, “Real-time colli-
sion avoidance for redundant manipulators,” IEEE Transactions on
Robotics and Automation, vol. 11, no. 3, pp. 448–457, June 1995.

[18] ISO, ISO/TS 15066:2017-04: Robots and robotic devices;
collaborative robots, Apr. 2017. [Online]. Available: https:
//www.iso.org/news/2016/03/Ref2057.html

[19] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in
IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 9-13 2011.

[20] M. Korn, M. Holzkothen, and J. Pauli, “Color supported generalized-
icp,” in 2014 International Conference on Computer Vision Theory
and Applications (VISAPP), vol. 3. Los Alamitos, CA, USA:
IEEE Computer Society, jan 2014, pp. 592–599. [Online]. Available:
https://doi.ieeecomputersociety.org/

9773

