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Abstract— Realization of industry-scale, goal-driven, au-
tonomous systems with AI planning technology faces several
challenges: flexibly specifying planning goal states in varying
situations, synthesizing plans in large state spaces, re-planning
in dynamic situations, and facilitating humans to supervise, give
feedback and intervene. In this paper, we present Intent-driven
Strategic Tactical Planning (ISTP) to address these challenges.
We demonstrate its efficacy through its application for radio
base station inspection across several locations using drones.
The inspection task involves capturing images, thermal images
or signal measurements - called knowledge-objects - of various
components of the base stations for downstream processing. In
the ISTP approach, an operator indicates her goals by flying
the drone to different components of interest. These goals are
generalized to capture the intent of the operator, which are then
instantiated in new situations to generate goals dynamically.
Towards planning and re-planning in large state spaces to
achieve these goals efficiently, we extend the Strategic-Tactical
Planning paradigm. All the components of ISTP are integrated
in an intuitive UI and demonstrated through a real life use-case
built on the UNITY simulator platform.

I . I N T R O D U C T I O N

Autonomous drone-based inspection in large-scale dy-
namic environments such as telecommunications sites can
bring significant improvement over manual inspection in
terms of safety, time and cost. Task planning in such goal-
driven autonomous systems can be performed using auto-
mated planning [1] as a core methodology. There is a demand
for end-to-end solutions for planning autonomous inspection
tasks using robotic agents with human experts in the loop.
However, while automated planning as a technology has seen
increasing application in several use cases [2], a complete
solution for large-scale applications is lacking, and poses
several challenges. First, existing planners cannot cope with
industry-scale state spaces. Second, accurately capturing and
specifying current and goal states automatically in varying
situations is complicated. Finally, human operator supervi-
sion and agency is key for autonomous AI planning-based
systems to be widely adopted and trusted, but production-
ready approaches for this do not currently exist. In this paper,
we present a solution for planning autonomous inspection
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Fig. 1: Drones operated by the ISTP system. Videos
at https://rebrand.ly/istp1 and https://github.
com/EricssonResearch/droneacharya

tasks using robotic agents such as drones. We pose the
planning problem as an intent-driven planning problem, and
then apply a highly efficient hierarchical decomposition-based
planning approach, known as Strategic Tactical Planning
(STP) to solve it. Together, the solution is termed Intent-
driven Strategic Tactical Planning (ISTP).

We apply ISTP to the context of autonomous inspection
of Radio Base Stations(RBS) using drones. RBS contain key
equipment such as antennas, radio units, microwave devices
etc., which enable mobile communication, and which need to
be routinely inspected [3]. Acquisition of knowledge-objects
such as camera visuals, signal strength, thermal measurements
are currently performed manually by field engineers. Such
inspection tasks expose engineers to safety risks, aside
from being time-consuming and expensive. Therefore, it is
envisaged that in the near future, RBS inspections be carried
out autonomously by fleets of drones working cooperatively,
on installations spread over large geographical areas [3].

In the ISTP approach, an operator indicates her goals by
flying the drone to different components of the base station
and acquiring intended knowledge-objects. This can be done
remotely from within a Network Operating Center (NOC).
From this training sequence, the system captures the specific
goals achieved. In order to realize true autonomy, the intent
behind these goals is derived through generalization. When a
different set of base stations are to be inspected by a (possibly
different) fleet of drones, the intent is instantiated to new goals,
and ISTP derives plans to achieve those and initiates their
execution. Finally, the system accounts for dynamic changes
in the environment by re-planning for updated current or goal
states. The goals, intents, plans and plan execution status are

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 6733



visible to, and editable by a human.
The primary contributions of this paper are to: (1) introduce

an intent-driven approach to task planning where goals are
generated on-demand in new situations, (2) extend the STP
paradigm to handle planning problems with heterogeneous
agents and actions (3) design efficient re-planning methods
within STP. The end-to-end solution flow of ISTP is inte-
grated in a tool with an intuitive UI, targeted towards field
operations engineers. We also carry out evaluations through
simulation of a real-life use case, which demonstrates the
efficacy of ISTP.

The rest of the paper is organized as follows. In Section II,
we briefly review related literature. Section III describes the
autonomous RBS inspection scenario. In Section IV, we
formulate the problem and describe the high-level solution
architecture and its components. We describe the implementa-
tion in V, and perform an evaluation of the solution approach
in Section VI. We touch upon scope for future work and
conclude in Section VII.

I I . R E L AT E D W O R K
Automated planning for robotics has a rich literature [4],

and it naturally extends to the domain of inspection tasks [5].
The Planning Domain Definition Language (PDDL) [6] has
standardized the modelling of AI Planning problems and
facilitated the development of planners. Though planning
systems have been in use for a while, researchers continue
employing various techniques to build more robust and
scalable planners for real-life scenarios. Prominent among
these are techniques such as Hierarchical Task Networks-
based planners [7], that exploit the hierarchical structure of
domains, and rely on a top-down approach to exploit pre-
constructed decomposition schemes as plans for lower level
tasks. In this paper, we extend a hierarchical decomposition
technique called Strategic Tactical Planning (STP) [8] for
efficient planning and re-planning.

For autonomous operation in dynamic environments, re-
planning upon failure is crucial. Various re-planning models,
such as re-planning as restart, re-planning to reduce compu-
tation and re-planning for multi-agent scenario [9] have been
suggested in literature. Our work leverages the re-planning
as restart approach for mitigating re-planning procedures.
Markov Decision Process and Reinforcement Learning based
approached are not currently attractive as they require large
data sets for training and don’t provide safety guarantees.

Literature around intent specification in human-AI systems
has been growing [10], and recent research has focused on
intents in robotic missions [11] [12], such as in robotic
motion planning in the presence of humans [13]. In addition,
a closely related area is in systems learning from human
demonstrations, which has been increasingly seen to be
important in robotics [14]. However, few production-ready
solutions include intent specification in large scale planning
systems, which is a gap we address in this paper.

I I I . AU T O N O M O U S S I T E I N S P E C T I O N
In this section, we detail the environment and challenges

addressed by ISTP. In our scenario, we have an urban

deployment of 21 base stations inspired by the habitat of
Seoul [15]. We consider 7 roof-top sites with 3 base stations
each (Fig. 7). Each base station has components such as
antennas and radio units to be inspected. A fleet of 12
drones, equipped with various types of sensors is available for
completing the inspections tasks. The state information of the
base stations, drones and the environment are considered to
be updated in a knowledge base. The challenges manifest as
(1) intent specification, and (2) efficient planning and robust
execution in large-scale dynamic systems.

We note that state-of-the-art planning techniques need the
inspection task goals to be specified as a set of predicates
in a PDDL problem specification [6]. However, the large
scale of the RBS inspection problem makes such manual
specification infeasible. The limited first-order syntax with
quantification available in PDDL may help to some extent.
However, it is often the case that the required knowledge-
objects are specified through complex relations residing in
the knowledge base and thus are not modelled in the PDDL
description. For example, the operator may want to specify
the intent “inspect only antennas for which more than two
work orders have been created in the last month“, but the
work order related knowledge is irrelevant from the view
of inspection. Therefore, we address the problem of flexible
goal specification using intents specified and evaluated on
the knowledge-base.

The second class of challenges, i.e. planning in large-
scale dynamic systems, time-critical inspection tasks and
geographical spread of the sites, demand scalable methods
to generate efficient plans. Planning methods need to be
able to exploit the spatio-temporal nature of the problem,
as well as heterogeneous capabilities of the drones to scale
to large number of base stations and drones while extracting
maximum concurrency. In addition, since the environment is
highly dynamic, any solution must provide fast re-planning
procedures to handle unforeseeable state changes caused by
events such as sudden weather changes, drone malfunctions,
or if the operator decides to modify inspection tasks during
execution. Further, while the solution is expected to be fully
autonomous, it is critical that human operators can supervise
each process in it and provide feedback, as well as modify
goals when necessary.

In order to design a solution which meets the above criteria,
we formulate the RBS inspection problem as an intent-driven
planning problem, which in turn allows a classical planning
problem to be generated on demand from a knowledge base
with the most up-to-date state information.

I V. S O L U T I O N A R C H I T E C T U R E

The ISTP system architecture for the RBS inspection
problem is shown in Fig. 2. It consists of two key blocks -
the “Intent-driven” block in blue, and the “Strategic Tactical
Planning” block in yellow. The intent-driven block deals with
capturing and generalizing the intent of an expert engineer. It
includes an intent generator which captures the intent of a new
situation as it is detected and generates a classical planning
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problem by augmenting information from a knowledge base
(KB) with the information from the captured intent.

The strategic tactical planning component takes as input
this classical planning problem, and has a planning com-
ponent to generate plans, an execution module to dispatch
actions for execution, and a monitor to check if plans have
failed, or there is a change in the goal set, which triggers a re-
planning through the re-planning component. The knowledge
needed by these blocks consist of (1) state information,
i.e., entities and relations in the system, stored in the NOC
knowledge base KBnoc, and (2) the action templates Ad with
domain information containing capabilities of the drones. We
first introduce some preliminaries and notations.

Fig. 2: Block diagram showing the system architecture of
ISTP.
A. Preliminaries and Formulation

Definition: A classical Planning Problem (CPP) is defined
as a tuple Π = 〈D,F,A, I,G〉, where D is a set of domain
elements, F is a finite set of fluents (predicates whose truth
value may change over time) over D, A is a set of durative
action templates, I ⊆ F represents the initial state, and G =
{g1, ..., gn} ⊆ F is a set of goal states. Each instantiated
action a ∈ A can be interpreted as a state transformer which
when applied on a state S results in a successor state δ(a,S)
after time dur(a). The solution to a CPP Π is a sequence of
timestamped actions 〈a0, t0〉..., 〈an, tn〉 with ai ∈ A, ti ∈ R
and ti ≤ tj when i ≤ j, such that when the actions are
triggered at the timestamps, the initial state is transformed
into a final state satisfying G.

An Intent-driven Planning Problem can be seen as a higher-
level specification from which a classical planning problem is
generated on-demand. It is defined as 〈D,KB,A,S ,R,I 〉,
where D is a set of domain elements, KB is a knowledge
base with a set of ground predicates (base) over D and rules
to derive other predicates (derived), capturing the declarative
knowledge,A is the set of durative action templates capturing
the procedural knowledge, S specifies a subset of the domain
entities, R is a subset of relations in KB, and I , called Intent,
specifying a set of goals to be derived. We term the pair
(S ,R) a situation S. An intent is of the form

∧
[q(X) →

p(X ′)], where X and X ′ are parameters of the fluents p and
q, X ′ ⊆ X . An intent selects those predicates p(V ′) for
which q(V ) holds true in the knowledge base and V and V ′
match on the parameters X ′. With the notation defined, we
now detail each of the components in the solution.

B. NOC Knowledge Base

The NOC knowledge base KBnoc has an extensible
ontology capturing all the aspects related to the operation
and management of a telecom network in the form of triples
in the Resource Description Framework (RDF) [16]. Fig. 3(a)
shows the part of the ontology with the two main concepts
in the RBS inspection problem: component and drone, their
attributes and relations. In the ontology, a base station site
has a number of components viz. antenna, microwave device
etc. A component has one or more perspectives each with
coordinate and angle attributes and a set of knowledge-objects
(one or more of {image, thermal-image, signal-measurement})
that are available for that perspective. A drone has a set of
capabilities (image capture, thermal measurement), positional
predicates is-at-component and is-at-perspective, and device
state predicates such as charge level. Fig. 3(b) is an example
representation of a Microwave component in the knowledge
model. The relations and attributes are defined, and the truth
values are kept updated in KBnoc, and are accessible by the
ISTP system (Fig. I(a) has some examples).

Fig. 3: (a) Ontology of the site-inspection domain (b) Knowl-
edge about a microwave component, expressed in RDF format
in the KBnoc

Action templates: The action templates relevant for RBS
inspection are goto, change-perspective, take-image, take-
thermal-image, take-signal-measurement, charge. The tem-
plates are encoded as durative actions in a PDDL domain file
Ad. In our system, these are encoded within KBnoc, to enable
updating the action definitions. An RDF-PDDL translator
creates Ad. We show the definition of the action template
for goto in Table I(b). The complete PDDL domain is avail-
able at https://github.com/EricssonResearch/
droneacharya/. With this knowledge about states and
actions available in KBnoc, operations key to the solution
such as intent generalization and instantiation, and CPP
generation can be performed. These are described in the
following sections.

TABLE I: (a) Fluents used to define the RBS inspection domain (b)
The action template for goto in the PDDL domain definition.
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C. Intent Capture and Specification

When it is completely clear, an intent can be specified
directly as a formula that connects the knowledge objects
to the knowledge base. However, most times, it is easier to
specify intent through example demonstrations.

This intuitive approach has the advantage of not
needing custom specification languages. This is the
approach followed in our current solution (refer to
Algorithm 1), where an engineer first executes a
sequence of actions ρ, collects the knowledge objects
Gρ via get knowledge objects(ρ,KBnoc), and then
generalizes the concrete goal to get the intent. In our
RBS inspection domain, the generalization from a
knowledge-object, say, know(thermal-image, antenna1, top)
resulting in I is: know(thermal-image, X, Y) ←
X.class == antenna1.class ∧ is-perspective(X, Y)

This approach of intent capture and generalization is
suitable for any domain where there are large number of
goal states and where it is complex to specify the goal states
for a specific situation directly through a formal intent, e.g.
a formula in some specification language.

Algorithm 1: Intent Capture(ρ)
1 Output: I
2 ρ = get example procedure() ;
3 Gρ = get knowledge items(ρ,KB);
4 I = generalize(Gρ,KB);

Algorithm 2: generateCPP(〈D,KB,A,S ,R,I 〉)
1 Output: 〈F,A, I,Gt〉
2 Ŝ = get relevant elements(S , KB) ;
3 F = get relevant predicates(Ŝ , KB) ;
4 I = get current state(Ŝ , KB) ;
5 Gt = derive goals(I , KB) ;
6 return 〈F,A, I,Gt〉.

From this (derived or specified) intent I , and a given
situation S = (S ,R), an IDP 〈D,KB,A,S ,R,I 〉 can
be formed. The solution to an IDP is a timed plan Π which
is obtained by solving a CPP 〈F,A, I,G〉, derived from
the IDP instance. The CPP derivation schema is shown in
Algorithm 2. In the generateCPP algorithm, all the relevant
domain elements Ŝ are derived as a reflexive, transitive
closure of R with S as the base elements1, the action
templates are carried over, I is the set of fluents restricted to
Ŝ and G is the set of goals derived from KB using I .

D. Plan Synthesis using STP

Having derived a classical planning problem from the IDP,
efficient planning and execution are to be performed. In our
work, we employ STP due to its promise in efficiently solving
large problems, and in re-planning when deviations arise
while maintaining planning efficiency. The main challenge in
applying STP is identifying scenario characteristics suitable
for decompositions. Domains such as the Road Traffic Acci-
dent (RTAM) and Driverlog benchmarks, the UAV domain
[8] and the domain under consideration in this paper are

1Even though S is finite, R is necessary to generate a proper subset of
the elements in the knowledge base

particularly well-suited for STP’s application due to the
following characteristics:
• Serializable sub-goals: this means that when a goal has

been reached, no action in the domain may undo it.
• Inherent geographic clustering: RTAM’s accident loca-

tion, Drivelog’s at predicate, the UAV domain missions
location and the RBS position allows STP to reason over
the domains and form clusters.

• Atomic nature of tasks allows for further clustering
The STP approach decomposes the set of top-level goals
(Gt = gt1 , gt2 , gt3 , ...) (Algorithm 3 line 1) into serializable
subsets (sgt) and abstracts the obtained subproblems into
macro-actions with the gs strategic goals (Fig. 4). The
resulting subproblems have lower complexity than the initial
problem and represent the tactical level (more on complexity
reduction in section VI-A) .

Strategic plan

Tactical plan

Macro Action Macro ActionMacro Action

Fig. 4: STP Execution

Algorithm 3: STPProcedure(I,Gt)

1 Gs = decompose(Gt);
2 for every strategic goal gs ∈ Gs do
3 Πt(gs) = 〈D,F,A, I(sgt(gs)), sgt(gs),∞〉; // offline
4 if Πt(gs) = null then
5 return false; // exit as problem unsolvable
6 end
7 gs.duration = Πt(gs).makespan;
8 end
9 I

′
= getCurrentState()

10 Πs(Gs) = 〈D,F,A, I′ (Gs), Gs〉;
11 executed(Πs(Gs)) = dispatchStrategic(Πs(Gs)); // Algorithm 4

is called
12 if !executed(Πs(Gs))) then
13 jump to line (2); // trigger strategic replan
14 end

Algorithm 4: dispatchStrategic(Πs(Gs))
1 for action in Πs(Gs).actions do
2 if action = aem(gs) then
3 I

′
= getCurrentState();

4 Πt(gs) =
〈D,F,A, I′ (sgt(gs)), sgt(gs), gs.duration〉; //
online

5 if Πt(gs) = null then
6 executed(Πt(gs) = false;
7 return to STPProcedure line (10) ; // trigger strategic

replan
8 end
9 executed(Πt(gs)) = dispatchTactical(Πt(gs)); //

Algorithm 5 is called
10 if executed(Πt(gs)) then
11 Gs = Gs - gs
12 end
13 else
14 jump to line (3) // trigger tactical replan
15 end
16 end
17 end

Definition: A Tactical Plan is a tuple Πt := 〈Π, T 〉, where
Π represents a set of timestamped actions that constitutes the
plan and T represents the duration of the plan (Algorithm 3
line 3, Algorithm 4 line 4). The strategic level is respon-
sible for the decomposition of Gt based on geographical
and inspection type criteria. sgt represents the goals of a
tactical problem, and each tactical problem is encapsulated
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Algorithm 5: dispatchTactical(Πt(gs))

1 for action in Πt(gs) actions do
2 if gt ∈ action.effect then
3 completed(action) = dispatch(action);
4 if completed(action) then
5 topLevelGoals(gs) = topLevelGoals(gs) - gt
6 end
7 else
8 executed(Πt(gs)) = false;
9 return to Algorithm 4; // trigger tactical replan

10 end
11 end
12 end

as a strategic goal gs ∈ Gs(the set of all strategic goals).
STP extends the model with expressive macro-actions that
optimize agent behaviour at the strategic goal level.

Definition: Given a strategic goal gs achieved by the
tactical plan Πt(gs), an Expressive Macro Action is the tuple
aem(gs) := 〈con, dur, eff〉, where con represents conditions
that must be valid throughout the execution of the action,
dur represents the duration estimation of the tactical plan
encapsulated by the macro action, and eff the effects after
the action is completed.

The abstracted representations are used to create a problem
with less complexity than the initial problem. STP first
computes an offline tactical plan (Algorithm 3 line 3) for
each subgoal. The obtained plans are encapsulated via macro-
actions as strategic goals gs to obtain a strategic problem
(Algorithm 3 line 9) solvable by state-of-the-art planners.
Once the mission begins, the tactical plans are regenerated
online (Algorithm 4 line 4) within the schedule of the
strategic plan. STP derives the necessary facts for each
problem it generates based on the goals (tactical or strategic)
of the problem. As we show in the Evaluation section, the
STP approach allows handling much larger state-spaces and
outputs better quality plans than the purely tactical approach.

Re-planning: STP uses the re-planning as restart [9]
methodology when performing a replan. During real-time
execution, re-planning may be necessary for several reasons:
• a deviation during execution of a tactical level plan

(Algorithm 5 lines 7-9),
• new goals G′ injected into the system (Algorithm 1 line

3) with change in Gt),
• changes in action space, e.g., if a particular drone’s

sensor fails, which prevents certain actions.
Feedback loop in STP:

Constraints are those that may arise after execution starts.
These constraints reflect the dynamic aspects of the environ-
ment - such as drone malfunctions, sudden weather changes,
or an update on the set of inspection tasks.

We distinguish two types of constraints, as shown in Fig. 5.
Pre-start constraints are those known prior to execution start-
time, such as predetermined weather events. These constraints
are defined in the model and instantiated in the initial strategic
problem. Post-start constraints, on the other hand, arise
after execution starts, and reflect the dynamic aspects of the
environment - such as drone malfunctions, sudden weather
changes, or updates on the goals. Such constraints have been

determined a priori and are included in the domain as possible
re-planning triggers, without being instantiated in the initial
problem. An instantiation is added to the model only when
such a constraint occurs during execution. Any alteration to
the initial model will automatically trigger a replan (Fig. 5,
with details in section V).

Fig. 5: Pre & Post Start-time Constraints
E. ISTP end-to-end flow

Bringing the above solution pieces together, the complete
flow of the ISTP solution is laid out in Algorithm 6. First,
the intent is captured from a training procedure ρ provided
by a human expert. The generalized intent I is captured and
stored in the KBnoc. Alternately, the general intent can also
be directly specified by a human. Then, given a situation S,
the intent-driven planning problem is converted to a classical
planning problem, after which STPProcedure is called for
planning and execution.

Algorithm 6: End-to-end flow of ISTP
1 I = intentCapture(ρ);
2 Given Situation S = (S ,R)
3 Form IDP = 〈D,KB,A,S ,R,I 〉 ;
4 〈F,A, I,Gt〉 = generateCPP (D,KB,A,S ,R,I ) ;
5 π = STPProcedure(I,Gt)

V. I M P L E M E N TAT I O N S E T U P

In this section, we detail the specific implementation of
the ISTP solution architecture as well as the user interface.

Intent-driven Block Implementation: : The intent cap-
ture and generalization components are programmed using
SWI-Prolog and using the Cliopatria toolkit [17], with the
knowledge base modelled in RDF. Converting the IDP to
a CPP is done via the goal and initial state derivation,
involving inferencing between the intent formula and the KB,
also written in SWI-Prolog. The classical planning problem
is modelled in the Planning Domain Definition Language
(PDDL) 2.2 [6].

STP block Implementation: : STP is implemented via
ROSPlan [18], a framework developed for utilizing PDDL
planning in the Robotic Operating System (ROS) [19]. Our
implementation, shown in Fig. 6, is an extension of the work
presented in [8]. The initial problem and domain are passed
to the Strategic Controller node, which decomposes the set
of top-level goals Gt into strategic goals (gs) and generates
the strategic problem. During these processes, the tactical
plans are generated (Step (a)) and solved (Step (b)) offline
in order to compute the macro actions duration estimates.
The Strategic Controller uses the estimates to output the
abstracted strategic problem to be solved and executed at
the strategic level (Step (c)). Once the macro-actions are
generated, they are executed by regenerating their equivalent
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tactical plan online (Step (d)). As shown in Fig. 6, we
extended the previous ROSPlan implementation [8] with
multiple tactical planner interfaces that are used concurrently
for the offline pre-processing. This resulted in a planning
time reduction proportional to the number of added planner
interfaces. We also modified the strategic controller node
to simulated weather disturbances and drone failures post-
start constraints. In a non-simulated environment, the user
can input any post-start constraints (Step (e)) via ROS
messages [19]. We selected OPTIC [20] as the planner for
solving both the strategic and tactical planning problems, as it
is a robust temporal and metric planner which supports timed
initial literals. A replan as restart [9] is triggered if a plan fails
to execute correctly, both at the tactical and strategic levels. In
case of a replan at the tactical level, the tactical controller node
regenerates the problem with the current state information
such as completed goals, and state updates which occurred
before the plan failure. In case of a replan at the strategic level,
the strategic controller node takes into account completed
strategic goals along with state changes that occurred before
the replan was triggered, without new subgoal decomposition.

Fig. 6: ROS/ROSPlan Implementation. The items in red
represent our extension to the past implementation

User Interface: The user interface (UI) demonstrates
the application of the ISTP end-to-end flow. The UI first
requests the field engineer to show an example procedure
for inspecting a simplified problem, such as a single RBS
with one drone. From this procedure, which is a series of
actions, the intent is captured and generalized. A new situation
is then chosen by an engineer, e.g., “inspect all 21 base
stations in a particular section of the city”. This new situation,
along with the intent generates a planning problem, which
is planned for by the STP planner. The trained actions as
well as the generated mission can be reviewed and expanded
to include extra information, e.g. post-processing tasks. A
simulation view runs the mission and collects the resulting
knowledge objects. Videos of mission execution visualization
are at https://rebrand.ly/istp1 and https://
github.com/EricssonResearch/droneacharya.
The UI was created in Unity2, which interfaced with trans-
lators from the Knowledge Base (RDF-JSON) and from

2Unity Real-Time Development Platform (https://unity.com/)

the Planner (PDDL-JSON)3. The Unity model emulates the
visual model of the environment, with the base stations, their
components and the drone motion.

V I . E VA L U AT I O N
The Seoul scenario has 21 base stations × 6 antennas × 19

inspections = 2394 possible top-level goals gt and over 3500
entries of initial state information which, consequently, create
a huge state space. In this section, we will show our evaluation
of the two main blocks of our solution architecture, i.e. intent
capture and STP. STP is evaluated against other planning
approaches such as purely tactical, hierarchical abstractions
and STP to find solutions to our scenario requirements. The
results show that STP is not only the best approach in
terms of efficient planning, but also mandatory for handling
realistically-sized dynamic scenarios. For all the experiments,
a Dell XPS 15 9560 laptop was used.

A. STP vs Purely Tactical

Unfortunately, the large state space does not allow for
a direct comparison between the STP and purely tactical
approaches for the entire model. We attempted this by using
the full information to create an input problem for OPTIC and
tried to compute a plan in 7200 seconds. However, OPTIC
was not able to process the file in order to find a solution in
the given time.

Fig. 7: The city model with 21 base stations, with those in
green representing stations with charging points.

To illustrate the superiority of STP over purely tactical,
we designed a set of problems with very few elements. The
problems have 6 drones with identical configurations, and
an incremental number of stations (1-10), with each station
having 4 inventory-mapping goals. The results in Table II
show that not only does STP drastically reduce the complexity
of the search environment in terms of plan time and number of
states explored, but also obtains better overall plan makespans.
B. STP Re-planning Stress Test

The ROSPlan implementation allows for tasks to be
modified at any time, and has been equipped with services
that simulate weather disturbances and drone engine failures.
We use the ROSPlan-based simulator to stress-test our system
under 3 post-start re-planning scenarios. At stage 1, we
simulate the addition of inspection tasks across all 21 radio

3Planner services can be found on the Ericsson Research github here:
https://github.com/EricssonResearch/scott-eu. These services assist in trans-
lating between the data structures needed by the knowledge model, Unity
and PDDL. The services do this by creating and leveraging a shared ontology
of PDDL, which include the semantics of actions, objects, and predicates.

6738



TABLE II: Purely tactical vs STP on a set of simplified problems
that have from 1 to 10 radio stations, 4 inventory-mapping goals per
station and 6 drones of identical configurations. All time in seconds.

stations. At stage 2, we simulate a weather induced flight
ban to one of the inspection sites on top of the changes from
stage 1. At stage 3, we add malfunctioning drones on top of
the modifications present at stage 2. We evaluate each stage
for missions with various number of starting tasks.

OPTIC was given 300 seconds for re-planning, during
which drones are assumed to stay at an agreed known
safe state and wait for the new plan. As illustrated in
Table III, our system was able to re-plan and find a solution
for the maximum number of inspection tasks possible in
the Seoul scenario, regardless of the simulated unforeseen
complications.

Initial
Tasks

Added
Tasks

Total
Tasks

Sudden
Wind

Drones
Malfunction Replan

252 147 399 " " "

504 294 798 " " "

756 441 1197 " " "

1008 588 1596 " " "

1260 735 1995 " " "

1512 882 2394 " " "

TABLE III: Online re-planning stress test in varying size missions

C. STP vs Precomputed Hierarchical Abstractions

Hierarchical abstractions can be used to deal with large
state spaces. To compare the results with STP, we used
the same sub-goal decomposition, but in a pre-computed
approach. In this approach, the sub-goals equivalent macro-
action durations are not generated as in the STP bottom-
up methodology. Instead, the duration is estimated using
information obtained from previous plans. We used the a
priori information to create four different types of duration
estimates. The mean estimate is equivalent to the average
duration across all previous tactical plans. The conservative
estimate assigns the 80th percentile of the previous durations
to all macro actions. For the bucket-mean estimates, the
strategic goals were grouped based on the mission type
(image,thermal-image etc.). Then, the average across each
type was used for its respective macro-action. The bucket-
conservative estimates made use of the same grouping present
in bucket-mean, but instead used the 80th percentile of each
group as an estimate. Strategic problems with varying sub-
goals were created with the obtained pre-computed estimates
and were evaluated against the actual plan durations. OPTIC
was given 1500 seconds to find the best possible solution. As
seen in Table IV, several strategic goals are likely to run out
of time during execution because of the top-down methods
underestimated duration.

TABLE IV: The number of strategic goals likely to not run out
of time during execution for different top-down representations on
problems with various size and duration.

D. Purely Tactical Approach with Naive Decompositions

Due to the serializable nature of the planning tasks [21],
it may be argued that other naive decompositions, manually
performed, can be used to find efficient plans for the scenario
in question. Even then, the dynamic aspect of the scenario can-
not be mitigated without online re-planning. This makes such
decompositions unsuitable. To illustrate this, we attempted to
execute the same scenarios as in the Stress Test evaluation.
We first decomposed the problem into 4 smaller problems and
allocated 3 drones per each individual problem. We gradually
added state information and inspection goals so as to have a
state space small enough for a planner to compute a plan. We
then attempted the exact re-planning scenario stages used in
the Stress Test. Stage 1 was successful as we added new goals
gradually after the previous ones were completed. However,
at stage 2, the simulated sudden wind restricted the time
window of an inspection site present in one of the 4 problems,
and a plan was not found within the new time bound, thus
disqualifying this approach4.

E. Impact of intent capture

We now turn to the impact of intent capture on the
RBS inspection task by illustrating how it avoids the time-
consuming and error-prone process of manually enumerating
goals for the PDDL problem definition. 2394 goals gt are
possible in the situation we consider. For a new inspection
requirement, a naive method would be to display all the goals
know(knowledge-object, component, perspective) and let the
operator select the necessary knowledge-objects based on
the criteria at hand - this can get cumbersome each time a
new situation occurs. In ISTP, the system generalizes the
requirement from example demonstrations ρ by an engineer,
e.g., as shown in Table V (left column). This is essentially a
learning problem from examples for which techniques such as
inductive logic programming, inverse reinforcement learning,
active learning and temporal logic mining etc. can be used.
The main difference is that the methods can use a rich set of
features including, for example, manufacturer, make, height
etc. derived from the KBnoc, of the objects mentioned in the
examples. Note that remaining within the PDDL description
of the actions and goals, these features would be inaccessible
to help in good generalization.

In the example in Table V, the system can collect the
features manufacturer and height of the antenna in KBnoc,

4At stage 2, the STP implementation called for a re-plan and allocated
additional drones to complete the inspection in the new time window, as
more drones complete the inspection tasks faster.

6739



and learn that the inspection is meant for knowledge-objects
of those antennas that are owned by Ericsson, and located
above a height of 100ft. This is stored in the KBnoc as the
intent behind the demonstration. With this intent, suppose that
80 antennas across 18 base stations met the height criterion.
Then, 80 antennas×(3 image + 2 signal-measurement +
2 thermal-image) perspectives = 560 goal states can be
enumerated automatically.

Without the automatic intent capture, generalization and
instantiation, these goals need to be manually looked up
from the knowledge base for antenna height, perspectives
and the signal measurements needed at each perspective, and
hand-coded. For each new situation that arises, this manual,
error-prone process would be far more pronounced in larger
scale problems. By introducing intent-driven planning, we
free up valuable human time that could instead be utilized
for supervision and approval tasks.

Training procedure ρ Generalized Intent I
take-image RBS-15-antenna-2 front

take-image RBS-15-antenna-2 top-left
take-image RBS-15-antenna-2 bottom-right
signal-measurement RBS-15-antenna-2 top
signal-measurement RBS-15-antenna-2 bottom

know(K,C, P )←

class(C, “antenna”) ∧

owner(C, “ericsson”)∧

height(C) ≥ 100

TABLE V: An example procedure ρ and the captured intent

V I I . C O N C L U S I O N S A N D F U T U R E W O R K

In this paper, we present an intent-driven strategic tactical
planning approach for autonomous radio base station inspec-
tion using cooperative drones. We describe our end-to-end
architecture and solution flow, spanning intent capture and
generalization, goal derivation and efficient planning using
STP. Efficacy of the approach is demonstrated in a real-life
scenario which is marked by very large state space with
multiple agents, mission types and dynamic environments
while also demanding human supervision and agency. From
the literature on automatic survey and inspection of infras-
tructures, and from customer feedback at the Mobile World
Congress 2019, we are positive about the applicability of our
approach in other fields like oil industry, shipyard inspection,
urban mapping etc.

We highlight a number of future directions for research
and implementation. In the current approach, intent capture
is implemented only via generalization of goals. Other
approaches such as plan/goal recognition could be used to
expedite the process of intent capture. We also noticed that
STP decomposition sometimes has a negative effect on plan
efficiency, which needs to be investigated and characterized
further. The current implementation allows only for sequential
dispatch of actions. Concurrent dispatch and re-planning seem
like a good avenue of future research. We emphasize that a
true end-to-end solution will demand deeper research. Firstly,
integration with physical robotic agents outside of simulation
environments will bring in significant challenges, calling
for the execution monitor and re-planning modules to be
far more dynamic (e.g. via hybrid approaches like strategic
planning and tactical reactive planning). Additionally, intent
capture for physical robots will need integration of robust

plan recognition modules. Further, plan explanations will be
a significant challenge to be addressed in such human-AI
collaboration use cases to ensure safety and build trust.
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