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Abstract— The ability of detecting materials plays an impor-
tant role in robotic applications. The robot can incorporate
the information from contactless material detection and adapt
its behavior in how it grasps an object or how it walks on
specific surfaces. In this, paper we apply machine learning
on impedance spectra from capacitive proximity sensors for
material detection. The unique spectra of certain materials only
differ slightly and are subject to noise and scaling effects during
each measurement. A best-fit classification approach to pre-
recorded data is therefore inaccurate. We perform classification
on ten different materials and evaluate different classification
algorithms ranging from simple k-NN approaches to artificial
neural networks, which are able to extract the material specific
information from the impedance spectra.

I. INTRODUCTION

The interaction of a robot with the environment relies
heavily on the robot’s perception. Nowadays, 3D perception
technologies provide reliable spatial information for the robot
to move within, interact with the surroundings, or manipu-
late its surroundings. Further sensing modalities widen the
perception of the robot and allow reactions optimized to
the additional information. One of these extensions is the
ability of detecting materials. Despite of having good 3D
perception, further material information is beneficial when
objects are similar in shape and indistinguishable when using
vision alone. This can improve the behavior in how the robot
handles and manipulates objects or how it moves in the
environment. For example as in Fig. 1, robots with proximity
and material sensing on their feet can adapt their motion
to the detected surface material. When attached to grippers,
the sensors can detect the fill level of a grasped cup or the
material of a grasped object. On mobile platforms, such as
robotic vacuum cleaners, the information can be used for
path optimization or to turn on wiping or suction functions.
Material detection with capacitive proximity sensors is in the
focus of research, because either the distance to the target
or the target’s material influences the sensor readings. The
knowledge of one of both variables increases the accuracy
of the other variable. The use of capacitive sensing modality
incorporates several advantages: The measurement requires
no probes and is therefore contactless and non-destructive.
The measurement is independent to electric isolating surface
finishes and can penetrate these layers, such as paint or
oxide layers. The electrode design can be adapted to the
penetration depth of the measurement. We also gain dual

All authors are with the Lab of Robotics and Human-Machine
Interaction at Chemnitz University of Technology, Chemnitz,
Germany. Emails: {yitao.ding, hannes.kisner,
ulrike.thomas}@etit.tu-chemnitz.de

(a) (b)

Fig. 1: Usage scenarios for capacitive material detection: a)
A robot with material sensing in its feet. b) A robot sensing
materials of grasped objects.

use functionality by having material detection and proximity
sensing.

In our previous approach [1], we classify materials based
on impedance spectra from capacitive proximity sensors.
Originally, the sensors were designed for wide area short
range proximity sensing by measuring the capacitive cou-
pling of the electric field at different frequencies to target
objects. An additional time-of-flight sensor provides a narrow
and far range sensing lobe for absolute distance readings.
Therefore, the sensors provide an impedance spectrum which
is subject to the material of the target, the distance, and
noise from the environment and the sensor itself. The clas-
sification method uses 1-Nearest-Neighbor to minimize the
error to pre-recorded data. In this paper, we focus on the
classification part and extend it with further machine learning
algorithms. These range from simple k-nearest-neighbor (k-
NN) approaches to artificial neural networks, such as feed
forward neural networks (FFNN) and convolutional neural
networks (CNN). This paper has two main contributions:
First, we apply and evaluate several different machine learn-
ing algorithms for material detection with impedance spectra
data. Second, we introduce a new classification method by
modifying general signal plots of impedance spectra for the
use with 2D CNNs for classification.

II. RELATED WORK

As already mentioned, there is an uncertainty in permittiv-
ity and distance in capacitive proximity sensing. Therefore,
to obtain precise distance measurements, material detection
with capacitive proximity sensors was investigated in the
past. Kirchner et al. [2] show a model based approach. Based

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 10424



on the work of Novak et al. [3] and with a further assumption
of a frequency dependence permittivity, they first generated
training data for three different exciting frequencies at dif-
ferent ranges. The new measurements are then compared to
trained data with an error minimization approach for classifi-
cation. Alagi et al. [4] reduce the uncertainty in distance and
permittivity by exploiting the spatial resolution of multiple
sensing elements. Similar to triangulation they gain position
information of spheric targets of equal dimensions. They first
use an artificial neural network to classify different materials
with capacitive sensor information.

Besides of material detection with capacitive sensors,
numerous approaches have been shown using tactile infor-
mation [5], [6] where machine learning algorithm play an
important role. Xie et al. [7] use high resolution tactile
images in combination with sliding motions over different
materials and KNNs and SVMs for identification. In [8],
[9] the authors generate 3D images based on depth maps
from tactile sensor patches. With 3D CNNs they were able
to recognize pre-trained objects from which the material
information can be reasoned. Chin et al. [10] demonstrate
material sorting for recycling with an robotic gripper. They
combine strain and capacitive sensors on the finger and use
stiffness and electric-field measurements as classifier.

In the field of electrical impedance spectroscopy with
contacting probes, Guermazi et. al [11] demonstrated suc-
cessfully approaches for meat quality inspection. Helwan et.
al [12] showed promising results for breast cancer detection
through impedance spectroscopy with neural networks.

III. SENSING

In order to obtain the impedance spectrum, we measure
the electrode current and electrode voltage of the capacitive
sensor at different exciting frequencies.

A. Sensor Design

The sensor (Fig. 2) is a refined design of our previous
sensor [1]. As shown in Fig. 3 the capacitive coupling of
the sensor’s electrode to the target is measured with an AC
exciting signal generated from a direct digital synthesizer
(DDS). ADC1 measures the exciting signal u1 while ADC2
measures the signal u2 after the measurement resistor Rm
which is also the electrode signal.

The sensor has a differential design [13] in which the
second grounding electrode is driven with a differential
signal instead. This method allows measurements which are
unaffected by the grounding state of the target object. Besides
at further distances electrical interferences to other devices
are reduced.

In this work, the amplitude û1 of the exciting signal u1 is
around ±2.5 V and Rm is set to 47 kΩ. The sampling rate of
each ADC is 9 MHz with a sampling window of up to 4096
samples for each impedance measurement.

B. Electrode Design

The design of the electrodes greatly influences the results
of material recognition. Given that the overall electrode area

Fig. 2: Capacitive proximity sensor with time-of-flight sens-
ing module (green). The capacitive electrodes are marked in
red.
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Fig. 3: Simplified sensor diagram.

is limited, an optimal ratio of electrode size and spacing
must be found. It is desirable to have strong capacitive
coupling to the target object and no parasitic capacitance.
Parasitic capacitances add offsets to the signal, which mini-
mizes the dynamic range during data acquisition. In Fig. 4,
finite element method (FEM) simulations of the electric
flux density with different electrode spacing and fixed target
distance are shown. The cross section view in Fig. 4a shows
that close electrodes create strong coupling to the target
since the electrode area is larger. On the other hand, the
parasitic coupling between both electrodes increases. With
wide spacing (Fig. 4c) the electric field lines go through
the target object. However, because of the weaker capacitive
coupling the measured signal is prone to noise. We select
the spacing to be the same size as the electrodes (Fig. 4b)
which provides a good trade-off between noise immunity
and dynamic range. Close electrode distances in combination
with a comb structure (more gaps) generate their main
electric fields close to the electrodes and cancel out each
other at further distances. The effect can be exploited to
measure specifically close to the surface of a target since
the electric fields do not penetrate the object in the deeper
areas. Furthermore, the sensitivity can be tuned for different
measurement distances.

C. Impedance Spectrum

In order to obtain the impedance spectrum the DDS
generates a frequency sweep from 20 kHz to 1000 kHz with
a resolution of 1 kHz. With each frequency step increase,
the electrode impedance Z is calculated which requires the
knowledge of the amplitude of the exciting signal û1, the
signal amplitude at the electrode û2, and the phase between
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(a) 1. (b) 2. (c) 3.

Fig. 4: Cross section view of electrodes and target. FEM
simulation of electric flux density between electrodes with
different spacings.

both signals ϕ. Let u be an ac signal with known frequency
f and unknown amplitude û and phase ϕ:

u =û cos (2πft+ ϕ) . (1)

We can exploit the knowledge of f and calculate the ampli-
tude with the inner product of the time series vector u.

û =
√

2 〈u, u〉 (2)

Compared to performing discrete Fourier transform (DFT)
this method reduces the computational effort by avoiding the
calculations of the reference in-phase and quadrature values.
Noise caused by missmatch and jitter in the frequency can
also be compensated. The phase ϕ between u1 and u2 can
be calculated as follows:

ϕ =± arccos
(

2
û1û2
〈u1, u2〉

)
. (3)

Note: ϕ is negative since capacitances are measured. The
impedance at the electrodes Z is:

Z =Rm

(
û2e

−jϕ

û1 − û2ejϕ

)
(4)

In order to compensate the large influence of the frequency
to the impedance, the capacitance C at the electrode is
calculated.

C =
1

j2πfZ
(5)

IV. MATERIAL CLASSIFICATION

In this work we perform classification on ten materials as
listed in Table I. Each material has 200 capacitance spectra
recorded at different positions of different samples. Further-
more, noise from sliding motion is intentionally introduced
into the measurements to reproduce motions of the final
application (e.g. robotic feet, robot vacuum, or motion during
grasping with a gripper). The frequency sweeps from 20 kHz
to 1000 kHz generates 2 × 980 data points which are split
into real and imaginary values for each spectrum acquisition.
Depending on the final algorithm, the data is used either as
a single feature vector or kept seperated as two individual
vectors.

Label Material
0 Air
1 Aluminium
2 Cement
3 Glass
4 PVC
5 Steel
6 Rock
7 Ceramic
8 Water
9 Wood

TABLE I: Table of materials for classification.
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Fig. 5: mAP vs. k nearest neighbors. Low k value provides
best results.

A. k-Nearest Neighbor Classification

With k-NN one can search for each impedance value in
the measured spectrum k nearest neighbors from the training
dataset. The class with most correspondences is the final
classification result.

For the first variant KNN1, we set k = 1 and perform clas-
sification on the capacitance spectrum. We also implemented
a frequency-wise nearest neighbor classification with k = 1
with KNN2. The k value was chosen according to Fig. 5,
where we tested different k values for the mean average
precision (mAP). KNN2 picks its nearest neighbors for each
frequency instead within the complete spectrum. The final
result is the classifier with most similarities. The idea behind
this setting is that the material information between different
frequencies are only weakly linked. Therefore a complete
search within the spectra as in KNN1 may lead to false
matches. Due to its simplicity and low computational effort,
k-NN only requires memory for storing the training dataset
and can be implemented in microcontrollers to provide in-
sensor classification functionalities.

B. Feed Forward Neural Network

Neural networks provide mapping functions that predict
output values for certain input values. The mapping functions
has to be learned with training data. The structure of the
network influences the network performance and relates
also to the complexity of the trainable mapping function.
Often complex structures can learn complex classification
functions. Our classification task is comparatively easy. A
very simple k-NN-approach is capable to perform the clas-
sification task with high accuracies. Thus, our networks use
few hidden layers to achieve small complexity as well as
being able to perform similarly to k-NN approaches while
being more robust to noisy input data.
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The feed forward neural networks for material classifica-
tion are illustrated in Fig. 6. We use three different versions
with differences in neuron count and activation function.
The input layer accepts a single feature vector with 2N
length for the real and imaginary parts of the impedance
spectrum which corresponds to 2 × 980 inputs. The input
data is normalized to the maximum and minimum value of
the dataset.

The training optimizer updates the weight parameter of
the layer during training to minimize a loss function. We
use the state-of-the-art Adam optimizer [14] with no learn-
ing rate changes to maintain the simplicity of the overall
classification task. Furthermore, we use the categorical cross-
entropy as the loss-function for our multiclass classification.
Therefore, our last layer uses the softmax function which
performs well with the log in the loss function. The hidden
layers use the common sigmoid activation functions.

ANN1 is a standard network with 1536, 1024, and 512
neurons in the hidden layers one to three respectively. We
chose the number of input layer in terms of the number
of features available and the output classes. We have 1,536
input features, which is almost equal to our input vector.
The next neurons per layer are given by gradually reducing
their number to the number of output classes. The sigmoid
function is used as activation function. Compared to ANN1,
ANN2 applies the rectified linear unit function (ReLU) as
activation function and ANN3 has fewer neurons (384, 256,
128).

We also reduced the input vector size (number of frequen-
cies) to 2× 300 to investigate a second set of networks and
labeled them as ANNxR. The reduction is performed through
meaning and summarizing multiple frequencies which re-
duces noise, but may also reduce material specific properties
in the spectra.

r1
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rN

i1
...

iN

...
...

...

m1
...

mM

Input FC1 FC2 FC3 Output

Fig. 6: FFNN with 2N inputs for real and imaginary values
of the spectrum and M = 10 outputs.

C. Convolutional Neural Network

Classification of 1D signals can be realized with 1D-
CNNs or by converting the signal into a 2D image for 2D-
CNNs. Often these signals are in time series or frequency
series, where a specific pattern has to be recognized. 1D-
CNNs reduce the computational complexity of CNNs into
one dimension. Thus, real-time applications can be imple-
mented with cheaper and simpler hardware configurations
[15]. Hatami et al. [16] convert 1D time series signals to 2D

r1
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iN

m1
...

mM

Input 1DC1 1DC2 MP 1DC3 1DC4 1DC5 1DC6 GP Output

Fig. 7: 1DCNN with 1D convolutional layers (1DC), max
pooling layer (MP), and global average pooling (GP) layer.

images and use a custom 2D-CNN for classification. In our
approach, we first evaluate 1D-CNNs, which is configured
as in Fig. 7. The input layer accepts two individual feature
vectors for real and imaginary parts of the spectrum. The
1D convolution layers are divided in three groups, where the
first and last group have 100 neurons each and the second
group 256 neurons for each layer.

In the last approach, we investigate the performance of
2D-CNNs for material detection which are mainly used for
image recognition. During our early work we noticed, that
humans are actually able to classify some materials based
on the impedance spectra plots. Therefore, we convert the
plots to images and use available CNNs (InceptionV3 [17]
and ResNet18 [18]) for image recognition. In our case,
the impedance spectra are composed of two 1D signals
of real and imaginary signals. The 2D conversion has to
incorporate both signals into a single image while keeping
scaling information. The absolute values of the spectra is lost
due to the scaling of the plot to fit exactly within the image
size of 299 × 299 pixels. The image size is the maximum
size for the InceptionV3 network. Recent CNN applications
resize large image sizes to fit the resolution of the used
backbone network. However, due to image preprocessing
and image encoding the pixel may not represent the correct
data. Thus, we perform a filter step before generating the
images. We encode the scaling information in the color
spectrum as shown in Fig. 9. The real part of the spectra
is plotted in the red channel and the imaginary part in the
blue channel. To encode the scaling value, the brightness of
each color channel is used. Here the maximum brightness
of the channel represents the maximum value in the dataset,
while the minimum brightness stands for the minimum value
in the dataset. The green channel represents the shape of the
curve and is always on full brightness. A further dataset is
generated with a horizontal line (labeled with an additional
L) with its vertical position representing the mean value of
the spectra normalized to the maximum and minimum dataset
values.

V. EXPERIMENTAL RESULTS

For the performance evaluation of the classification algo-
rithms, 70 % of the dataset (Fig. 10) are randomly selected
as training data for each label, while the rest is equally
split to evaluation and test data. The precision-recall curve
provides a general quality value of the algorithms. Note that
the precision-recall curve for KNN1 does not exist, since
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Fig. 8: Confusion matrix of all well performing algorithms and 1DCNN as underperforming reference. The labels are listed
in Tab. I.

(a) (b) (c)

Fig. 9: Conversion of impedance spectrum (capacitance
vs. frequency) plots (Fig. 9a) to images (Fig. 9b, 9c) for
classification with image based CNNs.

the algorithm only outputs the most similar class without
precision values. On the other hand, since KNN2 classifies
frequency-wise, a precision value can be calculated from
the ratio of classification outputs from each frequency. The
first curve Fig. 11a shows the mean precision-recall curve
of all well performing algorithms (mAP > 0.95), while all
underperforming algorithms are listed in the second plot
Fig. 11b. Here, the algorithms with reduced input data
ANNxR show poor performance, as well as ANN3. The result
indicates insufficient numbers of neurons in the networks,
since these networks have reduced numbers of neurons either
in the input layer ANNxR or hidden layers ANN3. This is
especially supported by the significant under performance
in the precision-recall curve of ANN3R, where the neural
network has reduced neuron counts in both the input layer
and the hidden layers. The results of ANN1 and ANN2 are
similar. Thus showing that small changes in the network

structure, e.g. the sigmoid and the ReLU activation function,
lead to small differences in the performance. Moreover, this
shows the robustness of the network structure.

(a) (b)

Fig. 10: Capacitance measurements of all materials with large
variance among the samples.

In the well performing group, the image recognition net-
works show exceptionally good performance compared to
the standard neural networks ANN1 and ANN2. A look at
the confusion matrices of these algorithms Fig. 8 reveals
that certain materials, such as aluminium (label 1), steel
(label 5), and water (label 8) are difficult to differentiate
because of their similar conductivity properties. Here, the
image recognition based methods outperform the 1D algo-
rithms. Especially, the InceptionV3L and ResNet18L with
their additional added horizontal lines in the images provide
good results. KNN1 delivers unexpected good results for its
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Fig. 11: Mean precision-recall curve of good performing a)
(mAP > 0.95) and underperforming b) networks.

simple algorithm and is comparable to ANN1 and ANN2. The
robustness of these InceptionV3L and ResNet18L should be
highlighted, as a high percentage of measurements are noisy
due to sliding motions during data acquisition as shown in
Fig. 12. Overall, the results in this work are outperforming

(a) (b) (c)

Fig. 12: Images for CNNs: Noisy measurements due to
motion during data acquisition.

existing works based on tactile data [7], [19] which indicate
a higher material information content in capacitive measure-
ments.

VI. CONCLUSION

In this paper, we evaluate different machine learning
algorithms for material identification for sensor signals from
capacitive proximity sensors. The conclusion of this paper is
that simple machine learning algorithms provide good results
for this task. Especially when converting the 1D spectra
data to images, image based CNNs are able to identify
materials that are very similar in their electrical properties.
In applications, where fine granular identification is unneces-
sary, standard FFNNs or k-NN algorithms provide reasonable
results. Therefore, these algorithms can be implemented
within the sensing hardware, since k-NN only requires low
computational effort and storage for the training dataset.
The detection is also very robust against noise generated
by sliding motions during data acquisition. Therefore, this
sensing method can be used for the presented applications
(robotic feet, grasping, and robotic vacuum cleaner) where
motion is always present. A major drawback of machine
learning algorithms compared to model based approaches
exists when system conditions vary. A change in electrode

design or circuit parameters requires new training datasets,
which is time-consuming to create.
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