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Abstract— Focal-plane Sensor-processor (FPSP) is a next-
generation camera technology which enables every pixel on
the sensor chip to perform computation in parallel, on the
focal plane where the light intensity is captured. SCAMP-5 is
a general-purpose FPSP used in this work and it carries out
computations in the analog domain before analog to digital
conversion. By extracting features from the image on the focal
plane, data which is digitised and transferred is reduced.
As a consequence, SCAMP-5 offers a high frame rate while
maintaining low energy consumption. Here, we present BIT-
VO, which is the first 6-Degrees of Freedom visual odometry
algorithm which utilises the FPSP. Our entire system operates
at 300 FPS in a natural environment, using binary edges and
corner features detected by the SCAMP-5.

I. INTRODUCTION

Vision-based pose estimation algorithms, such as Visual
Odometry (VO) and Visual Simultaneous Localisation and
Mapping (VSLAM), benefit from higher frame rates; the two
main benefits are a reduction in motion blur, and – with
smaller frame-to-frame motion – a faster optimisation con-
vergence [1]. However, state of the art algorithms operates at
30-80 frames per second (FPS), as increasing the frame rate
increases the volume of data to be processed. Even for fast
VOs such as SVO [2], [3], the author recommends a camera
which operates at 40-80 FPS. Thus, to reduce the effect of
motion blur caused by rapid camera movements, complex
algorithms are required. DTAM [4], which creates a dense
3D map, is one such example.

This paper looks at the problem from a different perspec-
tive; if we can reduce the volume of data coming from the
image sensor, we then have more time for pose estimation.
Feature-based VO/VSLAM, such as PTAM [5] and ORB-
SLAM [6] compute a sparse set of features from an image
and operate using them. Unfortunately, feature extraction is
often computationally expensive (ORB-SLAM requires 11ms
for 1000 corners), and prevents increased frame rate. The
problem is that images are first transferred, and then the
features are extracted. Instead, is there a way to stream just
the relevant features from the image sensor?

Focal-plane Sensor-processor (FPSP) [7] is a general-
purpose vision chip technology which allows user-defined
computation in a highly parallel manner on the focal plane
of the sensor at high frame rates. For instance, SCAMP-
5 can perform: High Dynamic Range Tone Mapping [8],
Depth from Focus [9], and FAST Keypoint Detection [10]
on the focal plane. The low energy, high frame rate nature
of the FPSP, consuming only 1.23W even when operating
at its maximum effective frame rate of 100,000 FPS [11],
makes the device appealing for high-speed operations. The
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key to the efficiency of FPSPs – in terms of both power
consumption and frame rate – is the ability to reduce the
amount of data transferred. As opposed to traditional camera
sensors, FPSPs can perform image processing early in the
pipeline to deliver a reduced volume of data to later stages –
in this paper, just binarised corners and edges. This reduces
both bandwidth and energy consumption.

Similar to FPSPs, event-based cameras are another low
power, low latency camera technology, which output an
asynchronous stream of intensity changes [12]. Many
VO/VSLAM algorithms have been implemented using event
cameras [13]; however, the bandwidth of data transferred is
proportional to the manoeuvre speed – fast motion requires
more processing. On the other hand, an FPSP can be pro-
grammed to output data at a consistent data rate, thus there
is no significant fluctuation in the amount of data transferred
under any sort of motion.

The objective of this work is to investigate this approach
in estimating the pose of the FPSP in 3D space, predicting
motions with all 6-Degrees of Freedom (DoF). The contri-
butions of our work are:

• An efficient BInary feaTure Visual Odometry, BIT-VO,
the first 6-DoF visual odometry which utilises the FPSP.
Using no intensity information, our proposed method is
able to accurately track the pose at 300 FPS, even under
difficult situations where the state of the art monocular
SLAM fails.

• A robust feature matching scheme, which uses our
novel binary-edge based descriptor. Using a small, 44-
bit descriptor, our system is able to track the noisy
features computed on the focal plane in the SCAMP-5
image sensor itself.

• Extensive evaluation of our system against measure-
ments from a motion capture system, including difficult
scenarios such as violently shaking the device 4-5 times
a second.

The remainder of the paper is organised as follows.
Section II describes the SCAMP-5 and reviews related work.
Section III provides an overview of our system, together with
the notations used. Section IV and Section V explain the
proposed visual odometry algorithm. Section VI details our
experimental results. Finally, Section VII concludes our work
and discuss directions for the future.

II. BACKGROUND

This section provides a background and literature review
on two topics: the SCAMP-5 and VO using unconventional
vision sensors.
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Fig. 1: Comparison of the data used by our proposed VO vs conventional VOs. Our system does not use intensity images (top row) but uses the binary edges and corners (bottom
row) extracted by SCAMP-5 at 300 FPS. Notice that the edges, when extracted at a high frame rate, are tolerant against motion blur, and are sharp even when the device is
subject to violent motions. For the conventional camera (operat7ing at 20 FPS) , such motion severely blurs the images.

A. SCAMP-5 FPSP

An FPSP is a general-purpose vision chip, where sensors
and processor are integrated together on the same silicon [7].
Our work uses the SCAMP-5 vision system [14], which is
an FPSP with a resolution of 256× 256 pixels. On the focal
plane, each one of the 65,536 pixels combines a photodiode
with a Processing Element (PE). The device is programmable
in a Single Instruction, Multiple Data (SIMD) fashion, where
all of the PEs execute the same instruction. Each one of
the PEs is capable of storing local data using 7 analog
and 13 1-bit registers. Each PE can also perform simple
computations such as logical and arithmetic operations. The
arithmetic operations occur in the analog domain and directly
on the analog registers without the need for digitisation [11].
The nature of analog computation results both in arithmetic
operation incurring noise, and values stored on analog regis-
ters degrading over time [15]. A PE can communicate with
neighbours to its north, east, west or south by copying its
register value. Once the computation is complete, data can
be read-out from the device in the form of coordinates,
binary frames, analog frames, or global data (e.g. regional
summation) [14]. In particular, coordinates can be read-out
using event-readout, where the cost, in time and energy, is
proportional to the number of events rather than the image
dimension. This flexibility allows data reduction to occur
on the focal plane [11], and, together with highly parallel
instruction execution, FPSPs can perceive and process visual
information at a very high frame rate.

When developing algorithms for the SCAMP-5 vision
system, not only there are inaccuracy and noise in the
analog computation, but there are resource constraints which
make the porting of a computer vision algorithm rather
complicated. The instruction set is limited; a wide range of
logical operators are available for the 1-bit registers but only
simple arithmetic operators (e.g. addition and subtraction)
are available for the analog registers. However, there are few
available registers. Furthermore, there is no global memory.
A PE’s only means of communication is to share data

with its adjacent neighbours. Although these factors provide
challenges, there have been successful implementations of
complex algorithms, for example, a convolutional neural
network capable of classifying handwritten digits at 2260
FPS [16], ternary weight CNNs [17], and a tracker for a
ground target from a UAV at over 1000 FPS [18].

B. Visual Odometry Using Unconventional Vision Sensors

The term visual odometry (VO) was first coined by Nister
et al. [19]. VO is the process of determining the egomotion
of a sensor using visual information. Many algorithms have
been proposed for VO using conventional vision cameras,
for a review, see [20]. With the introduction of unconven-
tional visual sensing technologies such as FPSPs and event
cameras, the potential use of such sensors in VO is an active
field of research.

Few works exist performing VO using FPSPs; however,
none of them are 6-DoF. A 4-DoF VO algorithm using a di-
rect method was proposed in [21]. This approach divides the
image into N tiles and estimates an optic flow of each of the
tiles efficiently on the focal plane. These vectors are decom-
posed using ordinary least squares to predict the yaw, pitch,
roll and z-axis motion of the device. The computation all
occurs on the SCAMP-5, allowing the algorithm to operate
at 400-500 FPS. Another 4-DoF VO algorithm which instead
uses a feature-based approach was proposed in [22]. The
edge features are extracted from the captured image and are
aligned against a keyframe using image shifting, scaling, and
rotation. All of the image manipulations occur on the focal
plane. By measuring the amount of shift, scaling and rotation
required to align two images, an estimate of the yaw, pitch,
roll and motion in the z-axis is obtained. Given sufficient
lighting, the algorithm is capable of operating at over 1000
FPS. The method is extended in [23] to estimate the pose
of an agile UAV by performing perspective correction using
IMU data. Both VO methods achieve high frame rate by
performing all of the computation on the SCAMP-5 device;
however, they are limited to 4-DoF tracking, restricting their
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Fig. 2: Tracking and Mapping pipeline. The pipeline runs on an FPSP and a host
device, minimising data flow from the sensor to host device,

use cases to platforms which are mechanically constrained
to motion in one direction.

Many algorithms along with benchmarking datasets have
been proposed for VO using event cameras. For further in-
formation about algorithms, challenges and future directions,
see the recent review [13] by Gallego et al. Event cameras
have also been combined with frame-based cameras [24] to
improve VO and other algorithms by detecting features such
as edges and corners [13]. While the combined approach
shares similarities with the FPSPs architecture, a major
difference is that FPSPs is capable of processing data in-
situ.

III. SYSTEM OVERVIEW

Our main contribution is a 6-DoF monocular visual odom-
etry which operates in real-time at 300 FPS. An overview of
our system flow is summarised in Fig. 2. The initialisation
is omitted for simplicity. Feature extractions are performed
on the SCAMP-5, while feature tracking and VO operates
on the host device which is, for example, a consumer-grade
laptop. The system operates only on the binary edge image
and corner coordinates, thus no pixel intensity information is
ever transferred (Fig. 1). Only using the limited information,
we demonstrate that it is possible to create a VO system
which is robust against rapid motion.

A. Notations

The world frame is represented with w and the camera
frame is represented with c. The position p in world frame
is denoted as wp. The rigid-body transformation Tc,w ∈
SE(3) expresses the transformation from the world to the
camera frame. This allows a point in the world frame wp to
be mapped to the camera frame by cp = Tc,w wp.

Fig. 3: Illustration of the effect of noisy analog computation. Between two consecutive
frames, many corners appear and disappear. The device was mounted on a tripod to
ensure stability of the device across multiple frames.

IV. FEATURE DETECTION AND MATCHING

This section outlines how features are detected on the
FPSP device, and how these features are matched against
previous ones on the host device.

A. Feature Detection

Corner and edge features are computed on an FPSP, and
it operates at a high frame rate of up to 330 FPS. FAST
Keypoint Detector [25] is used for the corner detection.
For edge detection, the magnitude of the image gradient is
thresholded to find edges [22]. An existing implementation
of FAST Keypoint Detector for the SCAMP-5 [10] is used
in our work, although suppression of features is disabled
as it is not repeatable. Unfortunately, performing repeatable
suppression techniques such as non-maximal suppression is
difficult due to the noisy analog computation on SCAMP-5.
The noisy computation leads to not only incorrect inequality
comparisons but also incorrect computation of the compared
values. For every incoming frame, SCAMP-5 detects at most
1000 corner features which are read-out using an event-
readout. For the binary edge image, the whole 256 × 256
bit image is transferred, rather than the pixel coordinates. In
SCAMP-5, coordinates are expressed as an 8-bit pair, hence,
event-readouts are only efficient if the number of events
Nevents < 4096. This is only 6.25% of all the available
pixels, and, we find that in a typical indoor scene, around
10-15% of the pixels are classified as an edge feature.

B. Feature Matching

The task of matching the corner features is challenging
for two reasons: a) feature extraction suffers from noise in
analog computation, and b) multiple features are extracted
per visual corner. Since SCAMP-5 performs computations
using an analog circuit, corners are not reliably extracted
in every frame (Fig. 3), causing incorrect association if one
uses a naive method such as nearest neighbour matching. For
each incoming frame of features, one may search a small
local neighbourhood to avoid establishing correspondence
if a corner is not extracted because of noise; however, due
to (b), it will misidentify correspondence with an incorrect
corner feature. This will build up error and result in many
incorrect associations, and thus poor visual odometry.
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Fig. 4: Descriptor sampling pattern. Different colours denote a different ring, and
indices correspond to the bit index.

1) Local Binary Descriptors from Edges: To establish
robust correspondences across multiple feature frames, we
propose a feature descriptor which only uses the local binary
edge information. Our descriptor is tiny – only 44-bit in
length thus is space-efficient and is fast to compute. Unlike
other binary descriptors [26], [27], [28], we do not have
access to the image intensity information. As shown in Fig. 4,
three independent rings {r1, r2, r3} are formed around a
corner of interest. Each element of the ring stores a bit from
the corresponding pixel of the binary edge image. A 7 × 7
patch is used as it fits in a single 64-bit unsigned integer. This
allows the patch data to be converted to the rings efficiently
using bitwise manipulation. To add a rotation invariance to
our descriptor, the orientation of each of the features are
computed. Assuming a coordinate frame with the origin
set to the corner feature of interest, the intensity gradient
magnitude G(x, y) [29] is used to compute the orientation.

θ = tan−1

∑
x,y yG(x, y)∑
x,y xG(x, y)

, (1)

where x, y are the coordinates of the 7× 7 patch. Since the
gradient image is binarised, Eq. 1 is approximated by

θ = tan−1

∑
x,y yB(x, y)∑
x,y xB(x, y)

, (2)

where B(x, y) is 1 if image point (x, y) is classified as an
edge, and 0 otherwise. The rotation invariance is achieved
by bit-rotations of the rings independently [26], based on
the orientation θ. At each ring, the number of bits to rotate
is determined by rotate by(θ, r) = bθ ·#r/360c where
r ∈ {r1, r2, r3} and #r is length of the ring. Finally,
the descriptor is computed by taking the disjunction of
{r1, r2, r3} after shifting r1 by #r2+#r3 and r2 by #r3.
The descriptors are compared against each other using the
Hamming distance, which is performed efficiently using SSE
instructions. Although our descriptors are not scale-invariant,
they are sufficient for small indoor environments.

2) Frame-to-Frame Matching: The high frame rate of our
system enables efficient frame-to-frame feature matching.
Given frames, {F1, . . . , Fn}, a local neighbourhood around a
feature in Fi is matched against features in Fi+1. Similarly,
features in Fi+1 are matched against features in Fi+2. By
following these matches, features in Fi can be matched

against any arbitrary frames, assuming that they stayed in
sight. This enables feature tracking to take advantage of the
small inter-frame motion. By searching a small radius of
3−5 pixels, a feature which minimises the Hamming distance
is selected as a candidate. If the descriptor distance to the
candidate exceeds a threshold, the candidate does not form
a match. In our implementation, the threshold is set to 10.

3) Map-to-Frame Matching: All of the visible map points
are back-projected onto the image plane to find corre-
spondences. Again, only a small radius is searched. Map
points are observed by multiple keyframes, thus, they store
multiple descriptors each. Similar to ORB-SLAM [6], the
most descriptive descriptor is selected by finding a descriptor
which minimises the median distance to all others.

V. VISUAL ODOMETRY

Our VO system uses information obtained through feature
tracking to predict the 3D point-cloud structure of the scene
and the pose of the SCAMP-5. Like PTAM [5], localisa-
tion and mapping are interleaved. The 3D map points are
generated through triangulation of features, and the pose of
the SCAMP-5 is estimated through minimisation of the re-
projection error. The non-linear optimisation is solved using
the Levenberg-Marquardt algorithm, implemented using the
Ceres Solver [30]. Since the inter-frame motion is small, the
non-linear optimisation is fast to converge, requiring at most
10 iterations.

A. Pose Estimation

Given a set of 3D map points and its correspondences on
an image plane, poses can be estimated by minimising the
reprojection error, which can be formulated as [31]:

Tc,w = argmin
Tc,w

1

2

∑
i

ρ
(
‖ui − π(Tc,w wpi)‖2

)
, (3)

where the error between the projected 3D points
π(Tc,w wpi) and the corresponding feature coordinates
ui are minimised. ρ(·) is the Huber loss function which
reduces the effect of outlying data [32]. Unlike PTAM [5]
or ORB-SLAM [6], the velocity model is not used in pose
estimation. At such high frame rate, inter-frame motion is
small, thus the previous pose is a sufficiently good estimate
of the current position. Furthermore, the addition of velocity
model leads to worse initialisation if the camera motion
violates this assumption, which occurs often during violent
motion.

B. Map Refinement

Every map point keeps a reference of the keyframes that
it was observed by. These relationships form a graph, which
is used in the structures-only bundle adjustment, where the
pose estimates for each of the keyframes remain fixed, and
only the positions of the map points are optimised. This
is solved robustly using the Huber loss and at the end of
the optimisation, map points are removed if their residual
exceeds the Huber functions tuning constant.
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TABLE I: Absolute Trajectory Error of different sequences, computed using evo [35].
The total length of the trajectory, Root Mean Square Error and Median Error is reported.

Sequence Length[m] RMSE [m] Median [m]

Long 68.5 0.108 0.078
Rapid Shake 5.6 0.015 0.011
Jumping 32.9 0.056 0.040
Circle 38.3 0.128 0.084

TABLE II: Absolute Trajectory Error comparison of using our proposed descriptor and
using rotated BRIEF, computed using evo [35]. The total length of the trajectory, Root
Mean Square Error and Median Error is reported.

Descriptor Length[m] RMSE [m] Median [m]

Ours 38.3 0.128 0.084
Rotated BRIEF 38.3 0.123 0.107

C. Initialisation

The 5-point algorithm [33] with RANSAC [34] is used to
perform bootstrapping. This gives a relative pose estimate,
which is used to triangulate the initial 3D map. Features
in the reference frame are tracked using frame-to-frame
tracking until there are sufficient disparities. Disparities
are computed by taking the median of the features pixel
displacements. If it is greater than 20 pixels, relative pose
estimation and triangulation is attempted. Upon triangulation,
if any 3D map point has a parallax of fewer than 5 degrees,
or is behind of either of the two cameras, they are removed
from the map. Once over 100 map points are successfully
triangulated, the system is initialised.

D. Keyframe Selection

To select which frames are suitable as a keyframe, similar
to PTAM [5] and SVO [2], [3], the selection process is based
on the displacement of the camera relative to the depth of
the scene. A keyframe is inserted when all of the following
conditions are satisfied: a) At least 200 frames have passed
since the previous keyframe insertion, b) at least 50 features
are tracked, and c) Euclidean distances between the current
frame and all the other keyframes are greater than 12% of the
median scene depth. When a frame is selected as a keyframe,
first, 2D-3D correspondences are established through the
back-projection of the map points into the image plane.
This links the map point to the keyframes that observed it.
For the features which are not yet triangulated, Frame-to-
Frame tracker is inspected to see if there are any successful
matches which satisfy the epipolar constraint. If not many
matches are found (< 30 matches), brute-force matching of
all the features is performed between the current and the last
keyframe. This process ensures that a sufficient number of
map points are created at every keyframe insertion.

VI. EXPERIMENTS

We have evaluated our proposed system against ground-
truth data from the Vicon motion capture system. As our
method is a monocular VO, the estimated trajectory is scaled
and aligned to the ground truth data. Experiments have been
conducted with the SCAMP-5 [14]. Raw intensity images are
not recorded by SCAMP-5, because in this case, SCAMP-5
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Fig. 5: Estimated x, y, z translations for “Long” sequence. Solid lines show our estimate
and dotted lines are the ground truth.

0 20 40 60 80 100 120
Time [s]

−40

−20

0

20

40

60

80

R
ot

at
io

ns
 [d

eg
]

x
y
z

Fig. 6: Estimated x, y, z rotations for “Long” sequence. Solid lines show our estimate
and dotted line are the ground truth.

0 2 4 6 8 10 12 14
Time [s]

−20

−10

0

10

20

R
ot

at
io

ns
 [d

eg
]

x
y
z

Fig. 7: Estimated x, y, z rotations for “Rapid Shake” sequence. Solid lines show our
estimate and dotted line are the ground truth.
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Fig. 8: Close-up view of rotation estimates for “Rapid Shake” sequence. Our proposed
method is capable of tracking rapid rotation accurately.

would act as a conventional camera, with a reduced frame
rate. Thus, a direct comparison against other VO/VSLAM
using a monocular camera or SCAMP-5 is not possible.
Instead, a webcam was attached to SCAMP-5 to demonstrate
that systems using a typical camera such as ORB-SLAM [6]
lose track when subject to dynamic motions. Field of view
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Fig. 9: Estimated x, y, z rotations for “Jumping” sequence. Solid lines show our
estimate and dotted line are the ground truth. The pink region indicates that the ORB-
SLAM lost track due to rapid motion.
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Fig. 10: Estimated x, y, z rotations for “Jumping” sequence. Solid lines show our
estimate and dotted line are the ground truth. The pink region indicates that the ORB-
SLAM lost track due to rapid motion.

between the two devices are different, hence, for fairness,
best efforts were made to ensure both devices observe the
same scene. All host computations were made on a laptop,
with 4-core Intel i7-6700HQ CPU at 2.60GHz. Mapping
and tracking used a single core, with visualisation, and
communication with SCAMP-5 using an extra core each.

Due to the nature of SCAMP-5, we cannot use existing
frame-by-frame video datasets for comparison. Thus, we
evaluate our system against 4 different recordings: Long,
Rapid Shake, Jumping, and Circle sequences. The test
scene consisted of typical tabletop objects such as desktop
monitor and books. Videos of the live running system
is available on https://rmurai0610.github.io/
projects/BIT-VO.

A. Accuracy and Robustness

The “Long” sequence repeatedly travels the test arena for
68.5m, where many features continuously enter and leaves
the sight of the SCAMP-5. Fig. 5 and Fig. 6 illustrates the
translation and rotation of our system over time. We notice
a small rotational drift along the z-axis; however, there is
no other significant drift, with small RMSE of 0.108m for
the Absolute Trajectory Error [36] as summarised in Table I.
Similar to a 4-DoF VO for SCAMP-5 [22], our system is able
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Fig. 11: Estimated x, y, z translation for “Circle” sequence. Solid lines show results
from using our proposed descriptor, while dotted lines used rotated BRIEF. The
estimated data x, y, z is plotted using red, green, blue and the ground truth data x,
y, z is plotted using purple, orange, cyan respectively. Initialisation of rotated BRIEF
version occured after our method.
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Fig. 12: Estimated x, y, z rotations for “Circle” sequence. Solid lines show results from
using our proposed descriptor, while dotted lines used rotated BRIEF. The estimated
data x, y, z is plotted using red, green, blue and the ground truth data x, y, z is plotted
using purple, orange, cyan respectively. Note rotations along z-axis wraps as full 360
degrees loops are made.

to track violent rotations, as shown in Fig. 7. The system was
subject to 4-5 shakes per second but was able to accurately
track rotations along all three axes. A magnified view is
provided in Fig. 8.

B. Comparison Against Visual SLAM

In the “Jumping” sequence, the device is subject to violent
translational motions of up to 80cm caused by jumping as
seen in seconds 42-48 of Fig. 9.

Fig. 9 and Fig. 10 highlights the advantage of operating
at 300 FPS. Our VO pipeline is compared against ORB-
SLAM [6] which uses data from a webcam operating at
20 FPS. The images are cropped to match the resolution
of SCAMP-5 which is 256 × 256. Due to the nature of the
FPSP, frames are not recorded on the device, but rather with
a webcam which we have attached to the device. The pink
highlighted regions in Fig. 9 is where ORB-SLAM has lost
track. As shown, the images captured on the webcam suffers
from motion blur, while the features from SCAMP-5 does
not.

C. Comparison Against Other Descriptors

An alternative option would have been to use other binary
descriptors such as BRIEF [27] or BRISK [28]; however,
these methods use pixel intensity comparisons to build the
descriptor. To use BRIEF descriptor in our setup, the pixel
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Fig. 13: Estimated 3D trajectory of “Circle” sequence using our proposed method: our
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Fig. 14: Comparison of the processing time of our descriptor against rotated BRIEF.
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Fig. 15: Breakdown of the processing time required by our motion-estimation.
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Fig. 16: Processing time per frame while running the system online on different
sequences. Note that the bottleneck is the SCAMP-5, which outputs features at 300
FPS.

intensity comparison is replaced with an XOR operation.
For the rotation invariance, we follow the same approach
as ORB [37], with the orientation of the feature computed
using Eq. 2.

To compare our descriptor against BRIEF, we have
recorded the output features from the SCAMP-5. The Vicon
room was explored in a circular motion while pointing the
camera towards the centre of the room. A modified version
of rotated BRIEF from OpenCV [38] was used for the
experiments, which is a 256-bit long descriptor. Fig. 11 and
Fig. 12 shows that there are no major differences in the two
approaches, apart from 60 seconds onward where VO using
rotated BRIEF fails. Fig. 13 depict the 3D trajectories of our
approaches together with the ground truth. We notice that

there are high-frequency noises present in our trajectories.
For each frame, the noise from analog computation causes
a different set of corners to be extracted. The difference
causes incorrect correspondences, thus different formulation
of the optimisation problem. This results in a shaky trajec-
tory. When the correct features are again extracted, through
descriptor matching, incorrect matches are removed, thus
as demonstrated our system does not build up the noise
over time. Table II compares the absolute trajectory error
of using two different descriptors. For a fair comparison,
we have excluded all measurements after 58 seconds for
rotated BRIEF, such that the failed trajectory is excluded
from the metric computation. We observe no significant
difference in the accuracy of tracking in using either of the
descriptors. The main advantage of our descriptor is visible
in Fig. 14. The “Circle” sequence was executed offline using
our descriptor and rotated BRIEF for 10 iterations each, and
the time required to compute descriptor per frame is reported.
Looking at the median, our approach is more than 5 times
faster than rotated BRIEF.

D. Runtime Evaluation

Breakdown of the runtime of the motion-estimation is
provided in Fig. 15. The timing is measured offline over 10
iterations of the “Circle” sequence. Our motion estimation is
highly efficient, and the median time required to estimate the
pose is 1.10ms, which translates to a frame rate of over 900
FPS. Currently, our system does not separate map-refinement
onto different thread during keyframe insertion. The me-
dian of processing time for keyframe insertion is 3.17ms,
with 2.22ms, 3.98ms at 0.25, 0.75 quantile respectively.
When operating at 300 FPS, time budget is only 3.33ms,
thus keyframe insertion combined with motion-estimation
exceeds our allowance. However, within one or two frames,
the excess is resolved. For a latency-critical application, it
is possible to offload the keyframe insertion to a different
thread. The runtime of the different sequences when op-
erating the system live is reported in Fig. 16. We execute
SCAMP-5 at 300 FPS, not at full capacity of 330 FPS for
stable frame rates. As shown, our system is limited by the
frame rate of the SCAMP-5, not by our VO algorithms.
“Circle” sequence has the largest inter-quantile-range, as it
required more keyframe insertions when compared to other
sequences.

VII. CONCLUSION

We have presented BIT-VO, which is capable of per-
forming VO at 300 FPS by using binary edges and corners
computed on the focal plane. Our system is simplistic and
minimal, yet it is sufficient to work in challenging conditions,
highlighting the advantage of operating at high effective
frame rates. In the proposed pipeline, a robust feature match-
ing scheme using small 44-bit descriptors was implemented.
FPSP’s analog computation introduces noise to the values,
but the proposed method is able to distinguish the noisy
features. In future, we plan to incorporate a noise model
for the computation of the FPSP, to improve the accuracy of
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the algorithms. One of the key challenges in working with
FPSPs is benchmarking of VO/VSLAM against conventional
methods. If full intensity images are recorded from an FPSP
for benchmarking purposes, the FPSP would not be able to
operate at its high frame rate. A possible solution is to create
an automated system to repeat the exact same trajectory mul-
tiple times. This work will inform the design of future FPSP
devices with higher computational capability, light sensitivity
and pixel count. The programmable nature of the FPSP
device, in contrast to, for example, event cameras, offers
the prospect of higher accuracy, and enhanced robustness
through greater adaptivity.
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