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Abstract— We propose a system for visually monitoring and
servoing the cutting of a multi-layer insulation (MLI) blanket
that covers the envelope of satellites and spacecraft. The main
contributions of this paper are: 1) to propose a model for
relating visual features describing the engagement depth of
the blade to the force exerted on the MLI blanket by the
cutting tool, 2) a blade design and algorithm to reliably detect
the engagement depth of the blade inside the MLI, and 3)
a servoing mechanism to achieve the desired applied force
by monitoring the engagement depth. We present results that
validate these contributions by comparing forces estimated
from visual feedback to measured forces at the blade. We
also demonstrate the robustness of the blade design and vision
processing under challenging conditions.

I. INTRODUCTION

Ongoing developments in actuation and sensing make
the deployment of robot systems in extreme and remote
environments the preferred solution over human presence.
Because of time delays, which can range from several
seconds to minutes, space exploration is among the areas
with the greatest need for technologies providing reliable
tele-operation. These time delays render direct tele-operation
of simple tasks very challenging and lengthy. Although
predictive rendering based on 3D and image models can
alleviate these challenges, they still rely on a human-in-
the-loop to process delayed feedback, which exposes the
vulnerabilities to unexpected changes. These unknowns are
even more prevalent when a robot interacts with non-rigid
or deformable bodies. In this paper, we present a method for
remotely monitoring the cutting (whether tele-operated or
automated) of the multi-layer insulation (MLI) that covers
the envelope of satellite. We propose a physical model for
cutting an MLI box by estimating the force applied on its
sides by a cutting blade and the engagement depth of the
blade from visual feedback. Also, we present an image-based
method for servoing the applied force for cutting the box.

The Exploration and In-Space Services (ExIS) Division of
NASA launched the Robotic Refueling Mission 3 (RRM3)
[1] and announced OSAM-1 [2] (formerly, Restore-L) with
the objective to develop the technologies necessary for refu-
eling satellites by robots in space. In particular, OSAM-1 will
use Landsat 7 as a test (Figure 1a). On this satellite, the fuel
ports are covered by a non-rigid MLI box (or “hat”), which
must be cut on three sides to access the ports. This delicate
procedure, in close proximity of the satellite envelope, will
be performed by a robot equipped with a circular blade at the
altitude of 680km. It will involve time delays between four
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(a) Artist rendering of OSAM-
1 servicer (bottom) approach-
ing Landsat-7 (top). Image
courtesy of NASA.

(b) Replica of MLI box cov-
ering fuel ports on Landsat-7.

Fig. 1: The OSAM-1 mission aims to refuel the Landsat-7
satellite. One critical task of the mission will be to cut an
MLI box (1b) that covers the fuel ports on three of its four
sides.

and seven seconds because of multiple up-down links (earth
to satellite and reverse) and the signal buffering delays which
occur at each device interface [3]. To facilitate the monitoring
and execution, we propose to use images from the on-board
cameras to monitor locally and servo the execution of the
cut.

The main contributions of this paper are threefold. First,
we propose a physical model between the side of an MLI box
and the blade by a pulley interacting with a string attached
to coiled springs at both ends. Second, as the circular blade
cuts through a side, the force exerted by the blade deforms
the MLI and we present a method for estimating the applied
force by visually measuring the engagement depth of the
blade in the MLI. Finally, by relating the engagement depth
of the blade to the applied force, we formulate a control law
to adjust the force applied to the MLI, during teleoperation,
to ensure a uniform cut along a side.

II. PREVIOUS WORK

We previously reported the results of a study where trained
NASA robot operators operated our ground-based system to
cut two sides of the MLI box under a software-imposed
time delay of 5 seconds [4]. These experiments evaluated
the effectiveness of various visualization and control inter-
faces, based on subjective operator feedback and objective
measures such as task completion time and completeness of
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cutting (i.e., number of MLI layers cut). While MLI cutting
success rates ranged between 90% and 100%, depending
on the configuration, it was often difficult to maintain the
desired engagement of the cutting blade due to the time
delay between the actual deformation of the MLI and the
visualization of that deformation. This delay also affects vi-
sualization of, and reaction to, cutting failures. For example,
a time consuming task is to reengage the blade in the cutting
path after being accidentally pulled out or, conversely, pulling
the blade from under the MLI after being pushed in too
deep. These observations led to the measurement and control
strategies reported in this work.

A surprisingly similar problem to visually estimating
forces during MLI cutting is found during micromanipulation
of cells and, in particular, for the penetration of embryos
with micropipette. Examples of these methods can be found
in [5], [6] and visual features similar to the ones proposed
in our research are used to model deformations and estimate
the force applied on the surfaces. Other prior work in the
visual estimation of applied force includes the application of
neural networks to estimate forces during minimally-invasive
surgery [7], [8]. In the area of robotically assisted surgeries,
several haptic methods are based on measuring deformation
from camera images to estimate applied forces and render
them to a human operator [9], [10]. These aforementioned
methods, however, require advanced computer vision meth-
ods such as stereo vision, optical flow, deformable meshes
and depth maps. None of these technologies is suitable for
the limited onboard computational resources nor are they
suitable for the challenging reflections caused by the MLI.

Complementary to rendering forces, several methods are
proposed to model deformable bodies by interacting or
poking at them [11], [12]. A review of a related method is
presented in [13] and a classification of models is proposed
based on the level of elasticity and mesh of the material.

Finally, the control of interaction between a robot and a
deformable model has been investigated in several areas. In
particular, visual servoing is used to follow straight lines
for a welding application [14], to follow a contour during
electrocautery of tissues [15] and to manipulate deformable
volumes [16]. Each of these image-based visual servoing
methods proposes a different interaction matrix to control
the motion of the robot by minimizing error of an image-
based command. Our research takes the same approach by
proposing a novel image-feature that captures the engage-
ment depth of a circular blade in an MLI blanket.

III. METHOD

To understand the dynamics of cutting the MLI blanket,
we propose a model that estimates the applied force on
the MLI from visual feedback. Given the lack of reliable
force sensing near the blade for OSAM-1, it is imperative to
maintain a steady force of the tool against the deformable
surface. We propose to use visual feedback to assess this
force since cameras are available to the operators. The goal
of this section is to propose a model that measures MLI
surface deformation to determine the applied force by the

(a) The shaft leans on the hat
while the blade cuts through.

(b) The shaft pushing down on
the top of the MLI hat making
a ”V” shape.

Fig. 2: Interaction of blade assembly with the MLI hat.

Fig. 3: Model used to estimate applied forces by measured
angle.

.
tool. Although the blade applies little force to the MLI, the
shaft that holds the blade applies the bulk of the force (albeit
a small one) as it pushes on the top of the surface to make
sure that the blade cuts through all the layers of the hat. Fig.
2a shows how the shaft leans on top of the hat during the
cutting process.

This force can be observed visually as the MLI passes
under the shaft as seen in Fig. 2b and the more the shaft
pushes down, the more a “V” shape is observed on each
side. The proposed model aims to understand the relationship
between the “V” angle that can be visually observed and the
force applied by the tool. A similar dynamic between a tool
and a deformable body is observed for microinjection of a
single cell, where the surface of the cell deforms similarly
under the force applied by a pipette [17].

A. Model

Let the model illustrated in Fig. 3 represent the surface of
the MLI by a string of length L. Each corner of the MLI box
is maintained by a coil spring of length l such that the total
length of the system at rest, including springs, is T = L+2l.
A pulley on top of the string has horizontal coordinate x and
is pulled down with a vertical displacement d until a force
F is obtained. Let α1 and α2 be the angles of each side of
the pulley. In this section, we introduce a model between α1,
α2 and F to obtain a function F = f(α1, α2).

First, we note that α1 = arctan(x
d ) and α2 =

arctan( 2l+L−x
d ) and the length of each hypotenuse is h1 =

d/ cos(α1) and h2 = d/ cos(α2). At the position (x, d)
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of the pulley, the overall length of the string and springs
is h1 + h2 and length difference with the system at rest
is ∆T = h1 + h2 − L − 2l. At equilibrium, each spring
is stretched by ∆T/2 and using Hooke’s law each spring
applies a force F1 = F2 = K∆T/2, where K is the
spring constant. The vertical components of F1 and F2 are
f1y = F1 cos(α1) and f2y = F2 cos(α2) with F = f1y+f2y .

The relationship between the angles α1 and α2 and F is
non-linear and also depends on the vertical coordinate of the
pulley d. Although d is not known during a cutting operation,
its value affects the values of α1 and α2 at a given x and
can be used to achieve a desired F ∗.

B. Vision-Based Force Sensing

To estimate the force applied by the blade on the MLI
according to the model of Section III-A, the angle described
by the MLI around the blade must be measured, as illustrated
in Fig. 4b. The outer cover of an MLI blanket has a metallic
reflective film (kapton or aluminium) which makes usage of
standard computer vision algorithms extremely challenging
for detecting MLI occlusion [18]. As an example, Fig. 4a
shows a typical image obtained without MLI occlusion,
whereas Fig. 4b shows the blade during cutting with MLI
occlusion and the reflections of the blade on the outer layer.
Although occlusion adds to the challenges of using vision-
based force detection, the algorithm stays fairly consistent
for MLI hats as there is little to no variability in materials
according to the guidelines presented by NASA [19]. Beyond
the MLI blanket, the hat assembly is specific to Landsat-7.

To compute the angle robustly, we use concentric circles
with colors that offer a sharp contrast in a color space. In our
implementation, we selected the HSV color space and use
the red and cyan colors of the H (hue) channel. These colors
are 180◦ apart on the hue channel which ranges between 0
and 360◦. Canny edges are extracted from the hue channel
and the result is masked with predefined templates of two
thin rings where the transition between colors is expected.
The expected result is a long edge on each side of the red
circle from which the endpoints are found, as illustrated in
Fig. 4b. These endpoints represent the coordinates where the
MLI occludes the blade by altering the expected hue pattern.
By fitting a line through each pair of endpoints on both sides
of the shaft, the angles α1 and α2 described by the MLI are
computed. Typical results are presented in Fig. 4.

We note that if K and d are unknown, the force estimated
from α1 and α2 will be recovered up to an unknown scale
factor Kd. We consider that the estimation of K, either
online or offline, to be a separate research problem. For
this research, the value of K was approximated offline from
experimental data.

C. Visual Servoing

Section III-A introduced the relationship between the
angles described by the MLI on each side of the blade and the
applied force on the MLI. The driving parameter to achieve
a desired force F ∗ = f∗1y+f∗2y at a given point x is the depth
of the blade d. Thus, given the corresponding desired angle

(a) Blade without MLI occlu-
sion.

(b) Blade with MLI occlusion.

Fig. 4: Masked Canny edges (white) with endpoints (red
circles) and fitted lines (blue lines).

Fig. 5: Assembly model of the force sensor, camera, motor
and blade.
α∗ =

[
α∗
1 α∗

2

]T
, the objective is to minimize e = α−α∗

which is achieved by the differential equations α̇ = Lḋ

where Lḋ is the time derivative of
[
tan(x

d ) tan( 2l+L−x
d )

]T
which gives

L =

[
sec2(x

d ) x
d2

sec2( 2l+L−x
d ) 2l+L−x

d2

]
. (1)

IV. EXPERIMENTS

We tested our models by cutting MLI blankets with a UR-
10 robot (Universal Robot, Odense, Denmark) equipped with
a force/torque sensor and a DC motor (Anaheim Automa-
tion, Anaheim, CA). The shaft of the motor is terminated
with a 45mm rotary cutter blade spinning at 4,000 RPM.
A 1920 × 1080 RGB camera (FLIR, Wilsonville, OR) is
mounted above the motor looking down at the blade and
forming approximately a 400 × 350 region of interest. The
lens of the camera is also equipped with a LED ring light
for consistent light conditions. A 3D model of the fully
assembled tool is illustrated in Fig. 5. Sheets of MLI blankets
were pinned on a soft EPS foam frame. The blankets are
composed of 14 alternating layers of tulle and polyester film
(McMaster-Carr 8567K102) between two external layers of
metalized PET film (CS Hyde, Lake Villa, IL).

A. Blade Engagement Depth

The algorithm of Section III-B is used to measure angles
described by the MLI against the blade in the background.
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Fig. 6: Scatter plot of measured forces (magnitude) versus
measured angles.

Plain MLI blankets were pinned on top of a “U” bracket
made out of soft foam such that the cutting area is suspended
between two compliant uprights. The UR-10 had the blade
initially above the MLI and was manually jogged downward
to pierce the MLI and then jogged horizontally to cut the
blanket. Meanwhile, the endpoints and resulting occlusion
lines of the MLI were computed at each frame and compared
to points that are manually selected. The average pixel error
for each endpoint was 6.2 with a standard deviation of 5.1.

One of the most common large sources of error is due
to the MLI reflecting light sources on the blade. These
reflections cause the colors on the blade to saturate and
prevent the edge detector from detecting the rings on the
blade.

1) Force Detection and Estimation: The objectives of
these experiments are to determine the magnitude of the
forces applied by the tool on the MLI and to validate if the
slopes of the MLI that are visually observed can be used to
detect and estimate these forces. The setup of Section IV-A
was used for manually cutting the MLI between two points.
During the cut, forces/torques were recorded from the sensor
as well as the angle α = α1 + α2 described by the MLI
around the tool.

a) Visual Force Detection: Fig. 6 illustrates the scatter
plot of the data points collected in two groups. The first
group corresponds to when the blade was above the MLI
and the measured forces are mainly a result of noise and
the robot is moving downward (the average measured force
magnitude was 0.35N). Correspondingly, the measured angle
α corresponds to approximately 2π. A typical image of this
case is presented in Fig. 4a.

The second group corresponds to when the blade was
engaged in the MLI at various depths. The first observation
is that forces during cutting have an average magnitude
of 0.85N. The second observation is that both visual and
force measurements can tell these two groups apart (t-test
p < 0.001).

Fig. 7: Measured force from the force sensor compared to
the force estimated from the model at L/2. The depth of
the blade was obtained from the UR-10 kinematics and the
angles α1 and α2 from measurements.

b) Visual Force Estimation: In this set of experiments,
the objective is to validate the model of Section III-A. The
first experiment validates the effect that the depth d has on
the applied force and measured angles at a given x coordinate
(fixed x and varying d). The experiment starts with the blade
in the middle of the MLI blanket (x = L/2) with the blade
halfway inserted in the MLI but without applying any force.
Then, the blade is pushed deeper and data is collected to
compare the measured forces to the estimated ones provided
by the model. The true depth of the blade (as provided by
kinematics) and the measured angles α1 and α2 are used to
estimate the force. The procedure is repeated at x = L/4
and x = 3L/4. The effect of the depth on the applied force
is illustrated in Fig. 7, where the forces computed by the
model are compared to the measured ones. The root mean
squared (RMS) error between the measured forces and force
estimates is 0.3293N. Similarly, Fig. 8 shows the effect of
the depth on the measured angles and α1 +α2 and the RMS
error between the measured angles and angle estimates is
4.1597◦.

B. Visual Servoing

The last experiment demonstrates the usage of a vision-
based control law to adjust the depth of the blade to achieve
desired MLI angles α∗

1 and α∗
2 and consequently F ∗. As with

Section IV-A.1.b, we are interested in validating the control
law in two scenarios: the first one with a constant x and the
second one with a varying x.

In the first experiment, the blade is inserted at x = L/2
and d = 0 and the commanded angles are set to α∗

1 = α∗
2 =

1.25rad. The procedure is also repeated at x = L/4 and
x = 3L/4 with α∗

1 = 1 and α∗
2 = 1.5 radians. In all cases,

the experiments were repeated when the angles were initially
greater than their expected values (blade moving down and
increasing forces) and when the angles were smaller (blade
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Fig. 8: Measured α1 +α2 compared to the estimated sum at
L/2. The depth of the blade was obtained from the UR-10
kinematics.

Fig. 9: Visual servoing to achieve α1 + α2 = 2.5 at L/2.
The blade had an initial depth measured by α1 + α2 = 2.8
radians and the visual servoing lowered the blade to achieve
α1 + α2 = 2.5.

moving up and decreasing force). The resulting trajectories
for α1+α2 = 2.5 at L/2 are illustrated in Fig. 10 and Fig. 9.
Both figures demonstrate the convergence of the system at
α1 + α2 = 2.5. The velocity of the blade was limited to
1 mm/s to mitigate the effects of occasional outliers for α1

and α2 (see the large spike in Fig. 10 for an example). Note
the large spike in the measured angles caused by a glare on
the blade. Although these artifacts do happen occasionally
and do affect the force estimation, their effects on velocity
and stability are limited by the small velocity limit that the
UR-10 can move the blade.

Finally, visual servoing is used to control the depth of
the blade during an MLI cut. A trajectory of α∗

1 and α∗
2 is

generated at each horizontal coordinate x(t) to achieve the
desired force F ∗. Then, the blade is inserted at x(0) = 0
with a depth d = 0. The servoing is used to push the
blade down until α1 + α2 = 2.2 radians, which took
approximately 290 seconds. This combination of α1 and α2

was determined experimentally to provide a force of 2 N at

Fig. 10: Visual servoing to achieve α1 + α2 = 2.5 at L/2.
The blade had an initial depth measured by α1 + α2 = 2.1
radians and the visual servoing raised the blade to achieve
α1 + α2 = 2.5.

x = 0. Then, a constant velocity of 1mm/s is applied along
the cutting direction to move the blade horizontally while the
control law of Section III-C is used to control the vertical
velocity. The trajectory of α1 + α2 was computed to reach
2.5 radians at L/2 to also obtain force of 2 N. The resulting
trajectory in Fig. 11 shows the measured α1 + α2 along
with the corresponding command, while the plot in Fig. 12
shows the measured force magnitude with the corresponding
desired force magnitude. In both cases, we note that the
desired commands are achieved, although the measured force
appears to be consistently smaller than the desired one. One
possible explanation for this is the possible misalignment of
the cutting direction with the blade’s plane or the top layer of
the MLI that slightly peels off during the cut and increases
the α1 and α2 without increasing force applied to the MLI.

V. CONCLUSION AND DISCUSSION

This paper introduces a novel model for using visual
feedback for monitoring and servoing the cutting of a non-
rigid material. The model relates the visual features extracted
from images of the task to the force applied by the cutting
tool. The visual features used in this paper are the angles
described by the material being cut as it passes under the
shaft of the blade. We propose a method for measuring
these angles in a challenging environment involving specular
material by designing a circular color pattern to facilitate the
detection of the blade as it cuts through the material. Finally,
the engagement depth of the blade is controlled with a visual
servoing control law to ensure that a constant desired force
is applied throughout the cut. In future work, we plan to
address the problem of cutting MLI with a weaker structure,
such as when one or two sides of the MLI box are already
cut and only two sides of the box remain.
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Fig. 11: Servoing of a trajectory during a horizontal cut. The
blade was inserted autonomously until the desired angles α1

and α2 were measured. The blade was moved horizontally
to cut through the MLI. The trajectory of α1 and α2 was
precomputed to maintain a force of 2 N by using known
αi values at x = 0 and x = L/2 and interpolated linearly
between these two points.
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