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Abstract— In the last decade, soft robots have been at the
forefront of a robotic revolution. Due to the flexibility of
the soft materials employed, soft robots are equipped with
a capability to execute new tasks in new application areas -
beyond what can be achieved using classical rigid-link robots.
Despite these promising properties, many soft robots nowadays
lack the capability to exert sufficient force to perform various
real-life tasks. This has led to the development of stiffness-
controllable inflatable robots instilled with the ability to modify
their stiffness during motion. This new capability, however,
poses an even greater challenge for robot control. In this paper,
we propose a model-based kinematic control strategy to guide
the tip of an inflatable robot arm in its environment. The
bending of the robot is modelled using an Euler-Bernoulli beam
theory which takes into account the variation of the robot’s
structural stiffness. The parameters of the model are estimated
online using an observer based on the Extended Kalman Filter
(EKF). The parameters’ estimates are used to approximate
the Jacobian matrix online and used to control the robot’s tip
considering also variations in the robot’s stiffness. Simulation
results and experiments using a fabric-based planar 3-degree-
of-freedom (DOF) inflatable manipulators demonstrate the
promising performance of the proposed control algorithm.

I. INTRODUCTION

Using soft materials as a robot structure has introduced a
radical change in the robotics field in the last decade. The
inherent flexibility of soft materials employed allows these
robots to execute various tasks which were not possible to be
achieved by rigid-link robots. These new tasks include ma-
neuvering in a tight space [1] and performing robust grasping
of unknown objects [2]. However, this inherent compliance
comes at the price of the soft robot’s limited capability in
exerting high forces to the surrounding environment.

The drawback of purely-soft robotic systems (e.g., those
made from rubber silicone) has led to the emergence of
variable-stiffness robots in recent years. This type of soft
robot has the ability to actively modify its structural stiffness,
and hence, is able to vary the contact forces applied to
the environment over a wide range as a function of the
robot’s stiffness [3]-[4]. As presented in a comparative study
in [5], this property can be achieved via an antagonistic
approach, i.e. stiffening by means of force equilibrium
between multiple force components (such as [6]), or by
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Fig. 1. The snapshots of the robot when the robot’s stiffness is (a) low, (b)
medium, and (c) high. The order of the movement is from a shape labelled
1, 2, and 3. The target is a red dot labelled G.

exploiting an intrinsic property of the materials employed
(such as [7]). An example of a variable-stiffness robot is
an ”inflatable robot” which exploits antagonistic pneumatic
and tendon actuation to achieve simultaneous position and
stiffness control [6], [8]. Another type of an inflatable robot
is the ”eversion” robot which is typified by a growing-tip
movement [9], [10]. This class of inflatable robots has been
used for various applications including laparoscopic surgery
[6], reconfiguration of antenna [11], and exploring cluttered
environments [12].

One of the challenges in controlling a soft robot in general
is the difficulty in modelling the highly nonlinear robot struc-
ture. The fact that the inflatable robot is able to modify its
structural stiffness online further complicates the modelling
process. The quest to develop an accurate yet computation-
ally fast robot model has led to the emergence of a model-
less control approach which exploits sensor data to build
online the robot model for control purposes. Examples of
this approach include kinematic control based on a Jacobian
estimation using an optimization technique [13], an adaptive
Kalman filter [14], and visual servoing methods [15]. None
of these works, however, take into account the variation
of the robot’s stiffness. Another challenge in controlling
soft robots is caused by its theoretically infinite number
degrees of freedom. An observer-based controller has been
reported to help estimating unknown states of the robot and,
in turn, facilitate the control algorithm [16]-[19]. Despite
these advances, to the best knowledge of the authors, no
observer-based controller has been implemented for stiffness-
controllable soft robots.

Efforts to control an inflatable robot described in the
literature were limited to apical extension [11] and basic

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 8646



steering control [9] for the growing robot. Simple position
control of an inflatable growing robot has also been reported
in [12] while another research work aimed at exploiting the
contact with the environment to navigate towards the target
[20]. Recently, a combination of visual servoing and growth
control is used to perform position control, as reported in
[21]. These works, however, focus only on the growing and
bending ability without considering the stiffness variation ca-
pability. A simultaneous position and stiffness controller [22]
and an obstacle avoidance [23] for a stiffness-controllable
robot have also been reported. However, none of these works
takes into account the control of the tip’s orientation which
is vital in real-life applications such as object grasping and
pick-and-place tasks.

In this paper, a model-based kinematic controller for the
tip’s pose of an inflatable robot is presented. The variation
of robot’s structural stiffness caused by the change of in-
flation pressure is taken into account when modelling the
bending angle. In contrast to our previous work [24], an
observer based on the Extended Kalman Filter (EKF) is
designed to estimate the unknown parameters of the bending
model online, making use of two sets of sensory data, i.e.
chamber pressure and bending angle. By estimating the
model’s parameters, we then compute an estimation of the
Jacobian matrix used for position and orientation control of
the manipulator’s tip under various robot stiffness conditions.
To evaluate the performance of the proposed algorithm, we
implemented the control strategy in a fabric-based planar 3-
DOF inflatable manipulators as shown in Fig. 1. Hence, our
contributions are as follows:
• designing an observer to develop a kinematic model

of an inflatable manipulator online which considers
variations of the robot’s structural stiffness, and

• exploiting the model parameter estimate from the ob-
server to perform a position and orientation control
algorithm under various robot stiffness conditions.

II. INFLATABLE ROBOT

An inflatable robot is a type of soft robot that has the
ability to actively modify its shape and structural stiffness.
In this paper, our inflatable robot prototype is composed of
unstretchable fabric which is formed into a long cylindrical
shape. The robot’s size is very compact in its deflated, folded
state. However, upon inflation, the robot structure is able
to elongate significantly and, at the same time, increase its
structural stiffness considerably.

A bending mechanism for this type of robot has been
designed in a recent work of ours, exploiting the use of
pneumatically-actuated cylindrical pouches which are inte-
grated into the main body of the robot [24]. These pouches
initially form a flat surface in their deflated state. Upon
inflation, the air exert a force in every direction, forcing
the pouch to morph from its flat state into a cylindrical
shape. Since the used fabric material cannot be stretched, the
deformation of the pouches causes a contraction as illustrated
in Fig 2a. Integrating two sets of parallel pouches on either
side of the robot and inflating these sets pouches one at a

(a) (b)

Fig. 2. (a) A set of pouches in a deflated state and inflated state. (b) An
inflatable manipulator with 3 bending segments and 2 links.

time causes a length difference between one and the other
side of the robot. This will create a right or left bending.
Moreover, integrating multiple pairs of pouches along the
robot body enables the robot to have multiple independent
bending segments as illustrated in Fig. 2b.

III. INFLATABLE ROBOT MODEL

In this paper, every bending segments of the inflatable
robot consists of two sets of pouches which are activated one
at a time to produce left or right bending. We assume that
each individual pouch produces a tension force f which is
proportional to the given pressure p, i.e. f ∝ p. The bending
moment produced by this pouch with respect to the robot’s
central axis can be approximated by M = r f ≈ rap, where
r stands for a distance between the robot’s central axis and
the point where the pouch’s tension is applied while a is a
constant which relates pressure p to tension f . Considering
a 1-DOF bending segment, we define p > 0 to indicate left
bending and p < 0 to indicate right bending.

Each bending segments is modelled as a circular arc with a
single curvature κ defined as κ = θ

s , where θ is the bending
angle and s is the length of the bending segment. Assuming
that each segment behaves like an Euler-Bernoulli beam,
its curvature is given by κ = M

EI , where E stands for the
Young Modulus of the material and I stands for the cross-
sectional moment of inertia. The bending angle θ can then
be expressed as

θ =
Ms
EI
≈ rasp

EI
. (1)

Inflation pressure p0 affects the stiffness of an inflatable
beam, which in turn affects the bending capability. The
equivalent flexural rigidity of the inflatable beam with an
axial force P caused by the internal inflation pressure p0 is
expressed as (EI)eq = (E +P/S0)I where S0 stands for the
cross-sectional area [25]. The bending angle in (1) can then
be rewritten as

θ =
rasp

(E +P/S0)I
. (2)

Compared to the original bending equation in (1), we can
see that the flexural stiffness of the beam is a function of the
axial force P which is proportional to the main chamber’s
pressure p0. Considering the fact that parameters r, a, s, E,
I, S0 are all constant and P ∝ p0, eq. (2) is simplified into

θ =
c1 p

1+ c2 p0
, (3)
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where c1 and c2 are positive constants.
Suppose that the robot consists of N bending sections. We

define an actuator space variable pact as pact =
[
p0 p

]T .
Here, p0 denotes the main chamber pressure while p
denotes pouch pressure in all segments defined as p =[
p1 ... pN

]T where pi denotes the pouch pressure in
segment-i. The bending angle variables for all segments are
described by Θ =

[
θ1 θ2 ... θN

]T . Using the bending
model in (3), we can map pact to the bending angle variable
Θ as follows

Θ = f(pact) =
[

c11 p1
1+c21 p0

... c1N pN
1+c2N p0

]T
, (4)

where c1i and c2i represent the bending model parameters
for segment-i.

Assuming constant curvature behavior, the tip’s pose of
any segment-i with respect to the segment’s base can be
expressed as a transformation matrix Tb

i ∈ SE(2) as follows

Tb
i =

cosθi −sinθi
(1−cosθi)

θi
s

sinθi cosθi
sinθi

θi
s

0 0 1


T

. (5)

A soft link without pouches with length l is used to connect
two adjacent bending segments as depicted in Fig. 2b for
N = 3. Suppose that Tl ∈ SE(2) denotes the tip’s pose of
each links with respect to its base. The tip’s pose of the
most distal segment with respect to the robot’s base is given
by

Tt =

[
R x
0 1

]
= (

N−1

∏
i=1

Tb
i Tl)Tb

N . (6)

For simplicity, the task-space position x∈R3 and orientation
θ t (derived from the rotational matrix R ∈ SO(2)) can be
written as a function of bending angle variable Θ as follows:
X =

[
x θ t]T = g(Θ).

The Jacobian of the system J consists of the actuator-space
Jacobian Jf and the task-space Jacobian Jg as follows:

J = JgJf =
∂g(Θ)

∂Θ

∂ f(pact)

∂p
. (7)

For simplicity, the forward kinematics in (5)-(6) can be
used to derive the task-space Jacobian Jg numerically. The
actuator-space Jacobian Jf can be derived analytically from
(4) and expressed as a diagonal matrix:

Jf = diag(
c11

1+ c21 p0
, . . . ,

c1N

1+ c2N p0
). (8)

Note that only pouch pressure p is used to derive the Jacobian
in (7). The main chamber pressure p0 is excluded in the
calculation because it is a user-chosen value as will be further
explained in the next section.

IV. OBSERVER-BASED JACOBIAN ESTIMATION

Before developing a control policy for the robot, Jacobian
J needs to be identified. Task-space Jacobian Jg can be
retrieved by using the geometrical properties of the robot, i.e.
the segment length s and the link length l. Actuator-space

Jacobian Jf, however, depends on the unknown parameters
c1i and c2i for all bending segments i = {i ∈ Z|1 ≥ i ≥ N}.
An observer is designed to perform an online estimation of
these parameters to get the Jacobian Jf in (8).

The kinematic model presented in Section III can be
reformulated as a non-linear discrete state space equation.
For the purpose of parameter estimation, the state of the robot
χ is chosen to be the unknown parameters from the bending
model described in (4). For N bending sections, the full state
space is given by χ ∈ R2N =

[
c11 c21 .... c1N c2N

]T .
Output measurement y is the bending angle Θ∈RN retrieved
from bending sensors while input u is actuator space variable
pact ∈RN+1 which consists of main chamber pressure p0 and
pouch pressure p ∈ RN . Therefore, the kinematic model of
the robot can be reformulated as follows

χk+1 = f (χk,uk) = χk, (9)

yk = g(χk,uk) =
[
[θ1]k ... [θN ]k

]T
, (10)

where χk, uk, and yk stand for the state of the robot, input
signal, and output measurement at iteration-k. The bending
angle of segment-i at iteration k is given by

[θi]k =
[χ2i−1]k[ui+1]k
1+[χ2i]k[u1]k

, (11)

where [χi]k and [ui]k are components of χk and uk in row-i.
An observer, based on the extended Kalman filter (EKF),

is used to estimate the states as follows

χ̂k+1|k = f (χ̂k,uk),

Pk+1|k = AkPkAT
k +Qk,

Sk = Ck(χ̂k+1|k)Pk+1|kCk(χ̂k+1|k)
T +Rk

Kk = Pk+1|kCk(χ̂k+1|k)
T S−1

k ,

χ̂k+1 = χ̂k+1|k +Kk(yk−g(χ̂k+1|k,uk)),

Pk+1 = (I−KkCk(χ̂k+1|k))Pk+1|k.

(12)

χ̂k stands for the state estimate while Pk ∈ R2N×2N , Qk ∈
R2N×2N , Rk ∈ RN×N stand for the estimation covariance,
process noise variance and measurement noise variance
matrix, respectively. Matrix Ak ∈ R2N×2N and Ck(χ̂k+1|k) ∈
RN×2N are a local linearisation of (9) and (10) given by
Ak =

∂ f (χk,uk)
∂ χk

= I ∈R2N×2N while Ck(χ̂k+1|k) =
∂g(χ̂k+1|k,uk)

∂ χk
and is given by

Ck(χ̂) =


d1(χ̂) h1(χ̂) 0 0 . . . 0 0

0 0 d2(χ̂) h2(χ̂) . . . 0 0
...

...
...

...
...

...
0 0 0 0 . . . dN(χ̂) hN(χ̂)

 , (13)

di(χ̂k) =
[ui+1]k

1+[χ̂2i]k[u1]k
,

hi(χ̂k) =−
[χ̂2i−1]k[u1]k[ui+1]k
(1+[χ̂2i]k[u1]k)2 .

(14)

Due to the non-linearity of the bending angle model in
(10)-(11), ”persistently-exciting” input is required to allow
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the state estimate in (12) to converge [26]. However, for a
specific value of main chamber pressure p0, bending angle
θi at segment-i in (4) is linear to pouch pressure pi, i.e.

θi =
c1i

1+ c2i p0
pi = bi(p0)pi. (15)

The linearity of this equation for a specific value of [u1]k = p0
ensures that the estimate of variable bi at step k, given
by [b̂i]k =

[χ2i−1]k
1+[χ2i]k[u1]k

will converge without requiring a
persistently-exciting input signal. The estimate of the Jaco-
bian in (8) can then be expressed as

[Ĵf]k = diag([b̂1]k, . . . , [b̂N ]k). (16)

V. OBSERVER-BASED CONTROL

The estimated Jacobian is used to control the tip’s pose
towards a target while taking into account variations in the
structural stiffness of the robot due to the inflation pressure
p0. We assume that tip position x and bending angle Θ (from
which the tip orientation θ tcan be derived) are retrieved from
sensor measurements. To ensure the tip to follow a desired
trajectory xd(t), the following control law is employed

v =−KP(x−xd)− ẋd , (17)

where KP > 0 is a constant.
For the position and orientation control task, an additional

angular velocity θ̇ is added to task-space velocity v. A
geometric-based control function using [24] is employed:

ω̂ =−Kω log(Re). (18)

Here, Re = RT
d R where R ∈ SO(2) and Rd ∈ SO(2) denote

the rotation matrices which correspond to tip orientation θ t

and desired orientation θd , respectively. Parameter Kω > 0
is a proportional constant. Operator log(R) for any R ∈
SO(2) is defined as log(R) = β

2sinβ
(R−RT ) in which β =

arccos( tr(R)
2 ). From a skew-symmetric matrix ω̂ , we can get

the angular speed ω ∈ R3 from which the angular velocity
θ̇ can be retrieved as the z-component of ω .

Finally, for any of the tasks mentioned, the Jacobian is
used to calculate the actuator-space velocity ṗ as follows:

ṗ =

{
(J)+v, if J is a non-square matrix
J−1v if J is a square matrix

, (19)

where A+ =AT (AAT )−1. The generated control signal is the
pressure of pouch pi. The pressure of main chamber p0 is
designed to be independently adjustable to change the robot’s
stiffness during the performance of a task.

VI. RESULTS AND ANALYSIS

A. Simulation Results

The proposed observer-based control is first implemented
using a kinematic simulation model of inflatable robot.
We used the Robot Operating System (ROS) framework to
implement the robot model and algorithm. The algorithm is
running at 50 Hz frequency. The parameters of the robot and
the controller are s = 0.42 m, l = 0.1 m, KP = Kω = 5. We

used the model parameters retrieved from an offline system
identification presented in an earlier paper of ours [24] as the
true value of model parameters for each segments. Gaussian
noise is added to the bending angle data to simulate the
real sensory information. Initial estimation covariance matrix
P0 is chosen to be 0.5 I, the initial states χ0 components
are all chosen to be 50.0, process noise variance Qk is I,
and measurement noise variance Rk is 50I. To evaluate the
performance of the estimation process, we use a Jacobian

matrix error, eJ, defined as eJ =

√
∑

K
k=1 ∑

M
m=1(Ĵkm−Jkm)

2

KM where
Ĵkm and Jkm refer to the component of Jacobian estimate
and the true Jacobian in row-k and column-m, respectively.
We tested two scenarios with different initial input signals
given to the robot before trajectory tracking: the first one uses
constant input while the second one uses sinusoidal input.

The results of the first scenario is shown in Fig. 3. At the
black vertical line, an arbitrary non-zero constant input pres-
sure is given to the robot. This includes the main chamber
pressure (red line) and the pouch pressures (green, blue, and
yellow lines respectively) as shown in Fig. 3a. The observer
estimates the model parameters in three bending sections
as shown in Fig. 3b-Fig. 3d. From the estimated bending
parameters, the diagonal components of the actuator-space
Jacobian Ĵf can be estimated as shown in Fig. 3e (dashed
lines) in comparison to the diagonal of real Jacobian Jf (solid
lines). We can observe that the state estimates (dashed lines)
are not converging towards the real model parameters (solid
lines) in Fig. 3b-Fig. 3d. This is due to the nonlinearity in the
bending model which requires ”persistently-exciting” input
to make sure the states converge towards the correct values
[26]. This requirement is not fulfilled in this scenario which
only uses constant input as an initial signal. However, the
parameters of the Jacobian estimate, b̂i, in Fig. 3e (dashed
lines) are able to converge towards the parameters of real
Jacobian bi (solid lines). As a result, the Jacobian matrix
error shown in Fig. 3f also rapidly converges to zero. This
means that the correct states estimate are not necessarily
needed to achieve a correct inverse-Jacobian-based control
command as long as the sensor data is always available to
continuously update the Jacobian matrix estimate. At the
red vertical line (t=11.5 s), the trajectory tracking starts.
From this time, the pressure commands sent to the pouches
(green, blue, and yellow lines in Fig. 3a) are generated by
the controller. The desired trajectory is a straight horizontal
line which consists of a sinusoidal function in x-axis and
a straight line in y-axis while the desired orientation is set
to 0. We can observe how the robot’s tip position (dashed
lines) converges towards the desired trajectory (solid lines) as
shown in Fig. 3g. The robot’s tip orientation also converges
to zero, Fig. 3h. At the green vertical line (t=40.5 s), the
robot’s stiffness is increased by increasing the pressure in
the robot’s main chamber (red line in Fig. 3a). However, we
can observe in Fig. 3e - Fig. 3f that the Jacobian estimate is
not affected. Hence, the tracking performance is not affected
as reflected by the stable tracking in Fig. 3g - Fig. 3h. Next, at
the blue vertical line (t=69 s), the stiffness is increased again,
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Fig. 3. The trajectory tracking results in the simulation with constant initial input. The plots show (a) the input pressure values given to the main chamber
(red line) and each bending pouches (green, blue, and yellow respectively), the model parameter estimate (dashed lines) and the real parameter values
(solid lines) for (b) the first, (c) second, and (d) third segment, (e) the estimated (dashed lines) and the real (solid lines) diagonal of Jacobian, (f) the
Jacobian error (g) the tip’s (dashed lines) and goal (solid lines) position, and (h) the tip’s (dashed lines) and goal (solid lines) orientation angle.
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(d)

0 20 40 60 80

Time (s)

0

20

40

60

80

P
ar

am
et

er

b1

b̂1

b2

b̂2

b3

b̂3

(e)

0 20 40 60 80

Time (s)

−0.5

0.0

0.5

E
rr

or
Ja

co
b

ia
n

(f)

0 20 40 60 80

Time (s)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

P
os

it
io

n
(m

)

x goal

y goal

x tip

y tip

(g)

0 20 40 60 80

Time (s)

−100

−50

0

50

100

T
ip

O
ri

en
ta

ti
on

(◦
)

θ goal θ tip

(h)

Fig. 4. The trajectory tracking results in the simulation with sinusoidal initial input. The plots show (a) the input pressure values given to the main
chamber (red line) and each bending pouches (green, blue, and yellow respectively), the model parameter estimate (dashed lines) and the real parameter
values (solid lines) for (b) the first, (c) second, and (d) third segment, (e) the estimated (dashed lines) and the real (solid lines) diagonal of Jacobian, (f)
the Jacobian error (g) the tip’s (dashed lines) and goal (solid lines) position, and (h) the tip’s (dashed lines) and goal (solid lines) orientation angle.

but the control algorithm is still able to ensure trajectory tracking, confirming the ability of the proposed method to
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Fig. 5. (a) The experimental setup showing the inflatable robot and the RGB-D Camera used to detect bending angles. The plots show the trajectory
tracking experimental results: (b) the input pressure values given to the main chamber (red line) and each bending pouches (green, blue, and yellow
respectively), (c) the estimated (dashed lines) and measured (solid lines) bending angle, and (d) the tip’s (dashed lines) and goal (solid lines) position.

perform pose control regardless of the robot’s stiffness.
This scenario confirms that a simple input signal (such as

a constant input given here) is sufficient to correctly estimate
the Jacobian in a very short time to perform trajectory
tracking as long as the sensory data is always available.
Hence, no prior system identification (like the one presented
in [24]) is needed. The drawback of this approach is that the
algorithm will not be able to estimate the Jacobian correctly
if sensor data is no longer available since the state estimates
(3b-Fig. 3d) have not yet converged to the correct values.

The results of the second scenario is shown in Fig. 4. At
the first black vertical line, sinusoidal pressure signals with
different frequencies were sent to the robot’s main chamber
(red line) and the pouches (green, blue, and yellow lines
respectively) as shown in Fig. 4a. This input is continuously
sent to the robot until a sufficient time has passed (at the
second vertical black line) so that the observer successfully
estimates all the states as shown in Fig. 4b-Fig. 4d. At
the red vertical line (t=40 s), we switch to the trajectory
tracking stage. At the green vertical line (t=58 s), the robot’s
stiffness is decreased, while at the blue vertical line (t=72 s),
the stiffness is increased. The rest of the results (Jacobian’s
parameter estimation in Fig. 4e, Jacobian matrix error in
Fig. 4f, robot’s position tracking in Fig. 4g, and the robot’s
orientation tracking in Fig. 4h) shows similar performance
compared to the first scenario in Fig. 3. This confirms that,
in the presence of exciting input signals, the observer is able
to correctly estimate all the states. This condition enables
the robot to continue the trajectory tracking task even when
sensory data is no longer available. However, it requires
more time (about 20 seconds) and more complex input signal
compared to the first scenario to achieve this condition.

B. Experimental Results

The proposed controller is implemented in a 3-sections
inflatable manipulator. An RGB-D Camera, mounted on the
top of the robot, is used to detect markers on the robot body.
These markers are located in every connecting links, as well
as the base and the tip of the manipulator. From the location
of these markers, we get the bending angle of every sections
and the tip position x. As a preliminary investigation, only

position control is employed in this experiment. To control
the air pressure, SMC ITV2050-212L pressure regulators are
employed. The experimental setup is shown in Fig. 5a.

The results of the experimental scenario are shown in Fig.
5b - Fig. 5d. At the black vertical line, an arbitrary non-zero
constant input pressure is given to the robot as shown in Fig.
5b. Since we do not have knowledge regarding the robot’s
real Jacobian, we compare the measured and the estimated
bending angle in Fig. 5c. We can observe that the output
estimates (dashed lines) quickly converge towards the real
bending angle (solid lines). This implies the correctness of
the Jacobian estimation since bending angle θi is related
directly to the diagonal of Jacobian bi in (15). At the first
green vertical line (t=11 s), the position control starts for
the low stiffness state (reflected by low p0 in Fig. 5b).
The goal in this case is a fixed point in the camera space.
We can observe how the robot’s tip position (dashed lines)
converge towards the desired position (solid lines) as shown
in Fig. 5d (in between the first green and red vertical lines).
There is an observed steady-state error in the x-axis of the
tip’s final position. This happens in the low stiffness state
because the robot is not stiff enough to work against the
frictional effect when the tip is already close to the goal.
At the first vertical red line (t=22 s), the control is stopped,
the goal position (solid lines in Fig. 5d) is moved, and the
robot’s main chamber pressure (red in Fig. 5b) is increased.
At the second vertical green line (t=40.5 s), the control is
reactivated, causing the robot’s tip to go towards the new
target with a stiffer robot body. We can see that the steady-
state error of position in x-direction in this case is less than
the previous case since the robot is stiffer. Similarly, the
control is stopped again at the second vertical red line (t=51
s) to allow modification of goal and stiffness and reactivated
at the second vertical green line (t=63 s). In this case, the
robot gets even stiffer and the steady-state error becomes
minimal, mimicking the accuracy of a rigid-link robot. The
movement of the robot for 3 different stiffness states can be
observed in Fig. 1.

From this experiment, we can observe how the position
control works properly in guiding the manipulator tip towards
the target position. Moreover, position control has been suc-

8651



cessfully achieved despite different robot inflation pressure
values, i.e., different stiffness values. In the low pressure
condition, the robot is safer and more flexible, however more
steady-state error is observed. This is useful for applications
where safety, rather than control accuracy, is prioritised, such
as in a human-robot collaboration. In the high pressure condi-
tion, the steady state error becomes minimal, which is useful
for other applications, such as pick-and-place tasks. Hence,
the proposed algorithm is able to exploit the capability of the
inflatable robot to perform position control towards the target
for various stiffness conditions depending on the nature of
the tasks which need to be carried out.

VII. CONCLUSIONS

In this paper, we propose a model-based kinematic control
for a soft, inflatable manipulator. The bending model is
based on the Euler-Bernoulli beam theory which considers
the effect of the inflation pressure in the robot’s main
chamber onto the change of its structural stiffness. The
unknown bending model parameters are estimated online
using the Extended Kalman Filter, exploiting the bending
angle measurement from an external sensor. The estimate of
these parameters are used to construct the Jacobian matrix
for pose control to achieve a desired spatial location for
the manipulator tip. Simulation and preliminary experimental
validation using a 3-DOF inflatable manipulator demonstrate
that the proposed method is able to achieve position control
in a planar environment. The simulation results showed that
both position and orientation control is achievable. This
tracking performance is attained regardless of the the robot’s
main chamber stiffness, which can be varied by changing the
pressure in the main chamber. Future research will explore
the consideration of the dynamics of the inflatable robot,
friction, and controlled interaction with the environment.
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