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Abstract— Control barrier functions are mathematical con-
structs used to guarantee safety for robotic systems. When
integrated as constraints in a quadratic programming optimiza-
tion problem, instantaneous control synthesis with real-time
performance demands can be achieved for robotics applications.
Prevailing use has assumed full knowledge of the safety barrier
functions, however there are cases where the safe regions must
be estimated online from sensor measurements. In these cases,
the corresponding barrier function must be synthesized online.
This paper describes a learning framework for estimating
control barrier functions from sensor data. Doing so affords
system operation in unknown state space regions without
compromising safety. Here, a support vector machine classifier
provides the barrier function specification as determined by sets
of safe and unsafe states obtained from sensor measurements.
Theoretical safety guarantees are provided. Experimental ROS-
based simulation results for an omnidirectional robot equipped
with LiDAR demonstrate safe operation.

I. INTRODUCTION
Autonomous vehicles , industrial robots, and multi-robot

systems deployed in uncertain domains are often tasked to
respect safety-critical constraints while advancing a given
task [1]. When operating in unknown and dynamic envi-
ronments with insufficient advanced information regarding
the workspace, controllers which translate sensory informa-
tion from the environment into safe control actions are of
paramount importance. Control barrier functions (CBFs) are
level-set functions used to provide formal safety guarantees
for controlled dynamical systems. Barrier function based
real-time controllers in robotics support collision avoidance
for multi-robot motion [2], task allocation for robotic swarms
[3], and motion planning [4].

A key assumption commonly imposed is that the robotic
system has complete knowledge of the unsafe state space
regions. Leveraging the knowledge translates to formal safety
guarantees arising from its translation to CBFs. In practice,
this assumption need not hold and limits more widespread
application of barrier functions. As a motivating example,
consider an autonomous robot operating in an environment
for which it has no knowledge of the obstacle boundaries. If
these boundaries are to be as level-sets of smooth functions,
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the process of finding closed-form barrier functions for these
obstacles is not straightforward. Without the functions, one
cannot leverage the safety guarantees that CBFs provide.
Thus, this paper describes a support vector machine (SVM)
approach to CBF synthesis from sensor measurements. In
particular, sensory information obtained from the environ-
ment defines the set of safe and unsafe samples and is used
for training the SVM classifier.

Learning algorithms, or data-driven synthesis methods,
for ensuring safety have been explored in several contexts.
The most prevalent has been to establish stable state space
regions meeting safety specifications by identifying a control
Lyapunov function (CLFs) compatible with given CBFs.
Techniques for doing so include sum-of-squares (SOS) meth-
ods [5] and neural network designs [6], with the aim of
identifying the largest possible stable region within the
safe region. Investigations more closely aligned with barrier
function synthesis using tools from machine learning include
the use of kernel machines [7] to synthesize occupancy
map functions for navigation and planning purposes [8], [9].
Our aim is to explore how machine learning constructs can
be used to synthesize CBFs in a manner that the learned
function provides the necessary safety guarantees.

The contributions of this work are as follows: First, we
present a SVM approach for the synthesis of a barrier
function from a training dataset consisting of safe and unsafe
samples obtained from sensor measurements. We describe
offline and online training methods. Second, a formal guar-
antee on correct classification of unsafe regions is provided
for both the methods. We show that in the offline method,
the system is rendered safe for an under-approximated (con-
servative) safe set. A similar guarantee holds locally in the
online approach. The proposed framework is implemented in
a ROS-based simulator with a LiDAR equipped omnidirec-
tional robot. Evaluation metrics for the trajectories generated
by the proposed CBF synthesis framework quantify how well
they match the ideal case where the CBF is known. To the
best of our knowledge, this is the first paper addressing the
problem of CBF synthesis from sensed environmental data.

This paper is organized as follows: Section II reviews
control barrier functions, their safety properties, and their
use in QP-based control. Section III describes the problem
addressed. Section IV covers the main results of the CBF
synthesis framework, for both the offline and online ver-
sions. Section V covers implementation scenarios from a
motion planning perspective along with evaluation metrics
for comparing the generated trajectories with ground truth
data. Section VI provides concluding remarks.
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II. MATHEMATICAL BACKGROUND

This section summarizes the concept of control barrier
functions and the formal safety guarantees they provide. To
begin, consider an affine control robotic system:

ẋ = f(x) + g(x)u , x ∈ D ⊂ Rn, u ∈ Rm, (1)

where x is the state of the robot, u is the control input, and
x(0) = x0. Both f : D → Rn and g : D → Rn×m are
locally Lipschitz continuous vector fields.

Consider further that the system has a set of safe states
C = {x ∈ D | h(x) ≥ 0 and h ∈ C1(D;R)} given by the
super zero level-set of the function h. The boundary of the
safe set is the zero level-set, ∂C = {x ∈ D | h(x) = 0}.
During controlled evolution, the system (1) is considered to
be safe if for all t ≥ 0, x(t) ∈ C when x(0) ∈ C. As detailed
in [10], zeroing control barrier functions (ZCBFs) can be
used to guarantee safety of the system. To define ZCBFs,
we first define an extended class K function α : R → R as
a function that is strictly increasing and α(0) = 0.

Definition 1. The function h ∈ C1(D;R) is a Zeroing
Control Barrier Function (ZCBF) if there exists a locally
Lipschitz extended class K function α such that for all x ∈ D

sup
u∈Rm

{
Lfh(x) + Lgh(x)u(x) + α(h(x))

}
≥ 0 ,

for the Lie derivatives Lfh(x) =
∂h(x)
∂x f(x) and Lgh(x) =

∂h(x)
∂x g(x) of h in the direction of the vector fields f and g.

Define the state-dependent set of control inputs U(x),

U(x) ≡
{
u ∈ Rm | Lfh(x)+Lgh(x)u(x)+α(h(x)) ≥ 0

}
.

(2)
Safety of the system can then be guaranteed under the action
of a suitable control input u(x) ∈ U(x) for all x ∈ D,
formalized by the following theorem:

Theorem 1. [10] Let there be a safe set C = {x ∈
D | h(x) ≥ 0 and h ∈ C1(D;R)} specified for the affine
control system (1). If h is a ZCBF, then any control input
u ∈ C(D;Rm) where u(x) ∈ U(x) for all x ∈ D renders
the set C forward invariant. That is, x(t) ∈ C for all t ≥ 0.

The constraint (2) arising from a ZCBF h is affine in the
control input u. and hence can be encoded as a quadratic
program (QP) constraint in u. For fixed x ∈ D, the require-
ment u ∈ U(x) becomes a linear constraint for the following
point-wise in time, minimum norm QP:

minimize
u∈Rm

||u− k(x)||22
s.t u ∈ U(x) ,

(3)

where k : D → R is a user-defined nominal control policy.
This QP (a) results in a control input for following the
nominal policy while simultaneously guaranteeing safety,
and (b) is amenable to efficient online computation.

III. PROBLEM STATEMENT
Consider an affine control robotic system as in (1) evolving

in D ⊂ R2 and equipped with LiDAR sensors that provide
depth information. By virtue of the depth measurement
vector zt ∈ RN>0 at time t, where N is the total number
of samples, the robot can detect unsafe state space regions.
Regarding the LiDAR sensor, denote by θres the angular
resolution (increment angle) of the measurements. We make
the following assumption in order to account for spatial
variations in the nature of the workspace: assume that the
resolution of the LiDAR sensor is high enough to capture
the spatial profile of the environment from a given offset
distance, i.e., the LiDAR has a sufficiently small increment
angle θres. Sensors such as the ones from Velodyne [11] with
increment angles as small as 0.08◦ are capable of satisfying
the above assumption. Hence, it is reasonable to assume such
sensor resolution capabilities.

Let k ∈ C(D;Rm) be a user-defined nominal feedback
control policy to be followed by the robot. Examples of such
policies include proportional (go-to-goal) control or MPC
based policies [12]. The state space is assumed to contain
unknown unsafe regions. That is, there exist p unsafe sets in
the state space defined as Ci = {x ∈ D | hi(x) ≤ 0hi ∈
C(D;R)} for all i ∈ {1, 2, . . . , p}, such that hi are unknown
ZCBFs. The safe region is D\ ∪pi=1Ci.

Since there is no a priori knowledge of the unsafe sets,
data obtained from the LiDAR sensor must be used to
synthesize the unknown barrier functions hi : D → R,
i ∈ {1, 2, . . . , p}, to render the system safe while minimally
deviating from the nominal feedback policy k. In conjunction
with the robot’s state, the measurements obtained from the
on-board depth sensors provide the location of points on the
boundary of the unsafe sets, and hence are points x ∈ D
for which h(x) = 0. To learn the unsafe regions and follow
the nominal policy safely, a framework for the synthesis of
barrier functions is required with guarantees on safety of the
system, as formalized by the problem statement:

Problem Statement 1. Consider the affine control robotic
system in (1) and the unsafe sets Ci ⊂ D, i ∈ {1, 2, . . . , p}.
Given the nominal feedback control policy k : D → R
and LiDAR measurements zt obtained at any time instant
t ≥ 0, formulate a barrier function synthesis framework
which either (a) Learns the unsafe region

⋃p
i=1Ci offline

given a dataset of safe and unsafe samples from the domain,
or (b) Learns the unsafe region online using instantaneous
measurements zt, as the system traverses the domain.

IV. CONTROL BARRIER FUNCTION SYNTHESIS
FRAMEWORK

This section describes the methodology for obtaining
the training dataset, the control barrier function synthesis
framework, and two QP based approaches which utilize the
synthesized barrier function to guarantee safety.

A. Support Vector Machines
The learning approach to be used for barrier function

specification via-a-vis the unsafe regions will be support
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vector machine (SVMs), namely kernel SVMs [7]. Suppose
a dataset T = {(x1, y1), (x2, y2), . . . , (xN , yN )} is provided
where xi ∈ Rn is an n dimensional vector and y ∈ Y =
{−1, 1} is a label associated with the vector xi for all i ∈
{1, 2, . . . , N}. Using the dataset, the linear SVM algorithm
determines an affine decision boundary function f̂(wTx+b),
where x ∈ Rn is a training sample, w ∈ Rn are coefficients
and b ∈ R is a bias term, which translates the sample x
into a corresponding label y ∈ Y that belongs to one of the
two classes i.e. +1 or −1. When the data is not separable
by a hyperplane in the native space, a non-linear mapping
transforming the data into a higher dimensional space with
better separability properties may be used. This paper makes
use of such a mapping, via a kernel function, to facilitate
separation of unsafe obstacle regions from safe regions.

Since the domain D consists of states which are either
safe or unsafe, their separation can be cast as a binary SVM
classification problem. However, it is imperative that unsafe
states be classified as unsafe, whereas all the safe states need
not strictly be classified as safe. To that end, we consider the
non-linear, biased-penalty SVM optimization problem [13]:

minimize
w

1

2
||w||22 + C+

N∑
i|yi=+1

ξi + C−
N∑

j|yj=−1

ξj

s.t yi · (wφ(xi) + b) ≥ 1− ξi
ξi ≥ 0, for all i ∈ {1, 2, . . . , N} , (4)

where C+, C− > 0 are constants penalizing misclassification
of the positive and negative samples, and φ : Rn → Rd is
a non-linear mapping into a higher dimensional space. In
practice, the dual of the above optimization problem is solved
by using a kernel function kφ to bypass the need to explicitly
define φ [7]. We use the Gaussian kernel,

kφ(xi, xj) = exp

(
− ‖xi − xj‖

2

σ2

)
, (5)

where σ > 0 is the bandwidth of the kernel (and is a hyper
parameter).

Observe that in (4) there are two separate costs for the
positive and negative classes. Unequal costs permit a greater
bias towards correctly classifying one class over the other.
In particular, having C− = ∞ and ∞ > C+ > 1 induces
a hard margin classification for the unsafe states and allows
for some misclassification for the safe states. This outcome
is captured by the so called cost matrix (M ) of the form

True
Estimated Safe Unsafe

Safe 0 C+

Unsafe C− 0

Each entry [M ]ij of the matrix represents the cost of classi-
fying a sample as label j when it truly belongs to label i. The
penalty for classifying a truly safe (or unsafe) state as safe
(or unsafe) is zero. It is undesirable to classify a truly unsafe
state as safe, motivating a high penalty for C−. Since safe
states being classified as unsafe do not compromise safety,
the penalty C+ may be smaller. The optimization problem

(4) provides compliance (in favor of safety) to measurement
errors and noise in the sensor data which can affect the
generated decision boundary. The mixed hard/soft margin
classification is what supports the theoretical safety guaran-
tees of the system as discussed in the following subsections.
When designed properly, the margin classifier function for
an SVM locally varies in the vicinity of the safe boundary
similarly to a signed distance function (i.e., it provides the
distance to the margin, or boundary, in the feature space). In
contrast, an occupancy map function behaves more like a step
function and does not have the correct variational behavior
in the vicinity of boundaries.

B. Training Dataset Generation

This section details the training data generation process
suited to binary SVM classification per (4). Below we
provide a detailed explanation for generating the dataset.

Generating meaningful data for the kernel SVM from
the LiDAR sensor requires converting the scalar variables
into world Cartesian coordinates by means of a laser scan
transform g : R × D → R2, whose main input is the
laser scan measurements in polar coordinates and the current
robot state (for mapping from the robot frame to the world
frame). Assume that if the sensor detects an unsafe region,
then the output from the sensor is a finite depth reading,
else it is infinite. In particular, given a measurement vector
zt =

[
z1t z2t . . . zNt

]T ∈ RN at time t with N samples,
define F ⊂ I = {1, . . . , N} to be the index set of the
finite scan measurements. Define O− =

⋃
i∈F{g(zit;xt)}

as the set of unsafe samples. O− represents points on the
boundary of the unsafe set detected by the sensor which is
used to populate a dataset of negative labeled samples T − =⋃
i∈F{(g(zit;xt),−1)}. To obtain the positive samples from

the environment, each g(zit;xt) ∈ O− is projected radially
backwards along the line segment joining the state of the
robot x(t) and the point g(zit;xt), by a finite distance d ∈
R>0. Define

ẑit = g(zit − d;xt) ∈ R2 (6)

for all i ∈ {1, 2, . . . , N} where d > 0 is the finite offset dis-
tance. Define the set of positive samples as O+ =

⋃
i∈F{ẑit},

with the dataset for positive labeled samples constructed
as T + =

⋃
i∈F{(ẑit,+1)}. Collecting the set of positive

and negative labeled samples generates the training dataset
T = T + ∪ T −. The training dataset T contains all unsafe
samples and corresponding safe samples for training the
SVM classifier.

C. Barrier Function Synthesis with Kernel-SVMs

To improve the ability to capture unsafe region boundaries,
the point data is transformed by a fixed set of Gaussian
kernels of the form (5) using a sparse set of grid points over
the domain D. This provides a first kernel machine layer that
behaves like an approximate Hilbert space occupancy map
[8] and roughly captures the different safe and unsafe regions
of the state space. Passing the vector output of this Hilbert
space to the kernel SVM generates a second layer that can
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Algorithm 1: Training Dataset Generator
Input: Laser Scan Measurement zt and Robot State

xt
Output: Training Dataset T

1 function TrainingDataGenerator(zt)
2 Identify F ⊂ {1, . . . , N}
3 T − =

⋃
i∈F
{(g(zit;xt),−1)}

4 ẑit = g(zit − d;xt), ∀i ∈ F
5 T + =

⋃
i∈F
{(ẑit,+1)}

6 T ← T − ∪ T +

7 return T

refine the boundary to better separate the safe and unsafe
regions. The solution to the hard/soft margin kernel SVM in
(4) defines the parameters for a non-linear decision boundary
separating the training data (the output layer of the full
classification network). Evaluating the two-layer classifier
model for x ∈ D outputs a posterior probability describing
the likelihood that the sample x ∈ D belongs to a particular
class i.e., safe or unsafe. The posterior probabilities obtained
from the model are then converted into margin scores which
define a signed level-set function and provide the barrier
function we seek. The barrier function approximator is thus
a two hidden layer Gaussian kernel neural network. This
entire procedure is summarized in Algorithm 2. By virtue
of the methodology used to generate the training data , and
the biased-penalty hard margin SVM optimization problem
(4), the synthesized barrier function correctly classifies the
unsafe samples. This is formalized in Proposition 1.

Proposition 1. Given a training dataset T generated as per
Algorithm 1, if Algorithm 2 is used to synthesize the barrier
function ĥ, then the unsafe samples O− are such that ĥ(x) <
0 for all x ∈ O−.

Proof. By the method presented in Algorithm 1 to generate
the training dataset T , we have that the set O− consists
of points on the boundary of the unsafe set. From the
kernel-SVM approach used in Algorithm 2, a function ĥ
is generated which classifies the safe and unsafe samples.
Since the optimization problem (4) is a hard margin SVM
for the unsafe samples and RBF kernels have universal
function approximation capabilities (Theorem 2, [14]), we
can guarantee that ĥ(x) < 0 for all x ∈ O− and thus the
proposition follows. �

D. Offline Barrier Function Synthesis & Control

Here, we discuss the offline approach to CBF synthesis
using Algorithm 2. Per the problem setup in Section III,
we consider the workspace consisting of p unsafe regions
characterized by ZCBFs hi, i ∈ {1, 2, . . . , p}. We assume
that there exists an oracle which provides a set of unsafe
samples corresponding to the boundary of each unsafe set i ∈

Algorithm 2: Kernel-SVM based Barrier Function
Synthesis

Input: Training Dataset T
Output: Estimated Barrier Function ĥ

1 function BarrierEstimator(T )
2 THS ← Map samples in T to Hilbert space
3 Cl← Train kernel SVM classifier (4) using THS
4 ĥ← Recover signed distance function from Cl

and first Gaussian kernel layer mapping
5 return ĥ

Algorithm 3: Offline SVM-based QP controller
Input: Nominal controller k

1 T ← ∅
2 forall t ∈ [0, T ] do
3 zt ← LaserScanMeasurement
4 Tt ← TrainingDataGenerator(zt, xt)
5 T ← T ∪ Tt
6 ĥ← BarrierEstimator (T )
7 while Goal is not reached do
8 Solve the QP:

u∗(x) = argmin
u∈Rm

||u− k(x)||22

s.t Lf ĥ(x) + Lgĥ(x)u(x) ≥ −α(ĥ(x))

u← u∗(x)
9 Solve (1), update state x(t)

{1, 2, . . . , p} in the state space by means of a LiDAR sensor
and dense enough to cover the true obstacle boundaries.

Once the requisite training data is generated using the
oracle, executing Algorithm 2 leads to a ZBF estimate. Note
that a single ZCBF ĥ ∈ C1(D;R), whose zero level-set
captures the boundaries between safe and unsafe regions,
is obtained as opposed to p different ZCBFs characterizing
the unsafe sets. With the synthesized barrier function ĥ, we
then implement a QP controller with (2) as the constraint.
Capturing all the unsafe sets with a single function means
that the QP involves only one constraint which reduces the
computational complexity involved in computing the control
input. The QP is solved, and the control is applied, until the
system completes the specified task associated to the nominal
controller. The entire offline barrier function synthesis and
control methodology is formalized in Algorithm 3. In the
algorithm, the initial loop from t = 0 to t = T where
T < ∞, indicates the time period when the training data
is gathered for generating the barrier function.

Recall that the increment angle of the LiDAR sensor is
given by θres. Intuitively, as θres → 0, the LiDAR sensor
captures the true nature of the boundary of the unsafe
region. Hence, using Proposition 1, we can guarantee that
Algorithm 2 synthesizes a barrier function whose level-sets
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Algorithm 4: Online SVM-based QP controller
Input: Aggregate Flag δ, Nominal controller k

1 T ← ∅
2 while Goal is not reached do
3 zt ← LaserScanMeasurement
4 Tt ← TrainingDataGenerator(zt)
5 if δ = 1 then
6 T ← T ∪ Tt
7 else
8 T ← Tt
9 ĥ← BarrierEstimator (T )

10 Solve the QP:

u∗(x) = argmin
u∈Rm

||u− k(x)||22

s.t Lf ĥ(x) + Lgĥ(x)u(x) ≥ −α(ĥ(x))

u← u∗(x)
11 Solve (1), update state x(t)

are over-approximations of the true unsafe regions. That is,
denote Ŝ = {x ∈ D | ĥ(x) ≤ 0} where Ŝ : D → R as
the unsafe region estimated by Algorithm 2. Then, we have

that S ⊂ Ŝ, where S =
p⋃
i=1

{x ∈ D | hi(x) ≤ 0} is the true

unsafe region characterized by the unknown barrier functions
hi for all i ∈ {1, 2, . . . , p}. In practice, this statement holds
true for high resolution LiDAR sensors. Next, we provide a
formal guarantee that Algorithm 3 ensure safety.

Theorem 2. Suppose S ⊂ Ŝ and the controller from
Algorithm 3 is used. Then given any x(0) ∈ Ŝc where
Ŝc = {x ∈ D | ĥ(x) ≥ 0}, the robot trajectory is such
that x(t) ∈ Ŝc for all t ≥ 0.

Proof. From Algorithm 3, the QP enforces the barrier func-
tion constraint (2) with ĥ as the ZCBF. Since the cost
function of the QP is quasi-convex in u, the constraints are
quasi-convex in u and the nominal policy k is continuous,
from Proposition 8 in [15] we have that the generated control
u is continuous. Hence from Theorem 1 and by assumption
S ⊂ Ŝ, we have that the set Ŝc = {x ∈ D | ĥ(x) ≥ 0} is
rendered forward invariant. That is, we have that x(t) ∈ Ŝc
for all t ≥ 0. �

E. Online Barrier Function Synthesis & Control

When access to the full set of unsafe samples from the
environment is not available, a real-time barrier function
synthesis method is preferable. Here, we describe an online
approach to synthesizing barrier functions, based on Algo-
rithm 4. For online ZCBF synthesis, the set of unsafe samples
covering the boundary of all the unsafe regions is not known
a priori. Hence, at time t = 0, the system is initialized
with no information regarding the state space, except the
nominal feedback control policy. At each time instant t, the
system obtains the depth measurement zt and generates the

training dataset T . Then, Algorithm 2 synthesizes a local
barrier function. Implementing the QP controller generates
the control input at time instant t. In the next time instant,
the same procedure repeats and a new barrier function is
synthesized based on the updated sensor measurements.

Two variations of the online barrier function synthesis
method can be implemented. In the first method, the depth
sensor data for all previous time instances is deleted, and
the QP is solved with only the immediately sensed measure-
ments. The barrier function approximates the true safe region
only locally i.e., in a neighborhood around the state xt of
the robot. In the second method, samples from the previous
time instant are aggregated with the samples from the cur-
rent time instant, with Algorithm 2 implemented with the
incremented set. The two cases synthesize different barrier
function at each time instant. For the data-aggregation case,
the estimate of the barrier improves as the number of samples
characterizing the unsafe regions increases. Advantages and
drawbacks exist for both approaches. In the data aggregation
case, one needs to continuously update the dataset with new
measurements and this exhaustive data collection process
can become computationally expensive unless one resorts to
efficient ways to store data [16]. For the non data aggregation
case, computation is faster but the estimate of the barrier
function does not improve iteratively as the robot traverses
the domain. Both procedures are described in Algorithm 4.

Define the sensing range of the sensor as Br(x) = {x ∈
D | ‖x− x‖ ≤ r}, where r ∈ R>0 is the sensing range
of the robot. Similar to the discussion in the previous
subsection, it can be guaranteed that if θres → 0, then locally,
Algorithm 2 synthesizes a barrier function whose level-set
over approximates the true unsafe region. That is, denote
Ŝr(x) = {x ∈ Br(x) | ĥ(x) ≤ 0} where ĥ : D → R is the
estimated ZCBF from Algorithm 2. Then, as θres → 0, we
have that Sr(x) ⊂ Ŝr(x) for all x ∈ D locally within the

ball Br(x), where Sr(x) =
p⋃
i=1

{x ∈ Br(x) | hi(x) ≤ 0} is

the true unsafe region. In the online case, a statement similar
to Theorem 2 cannot be made since the robot does not have
access to the full set of samples that characterize the entire
boundary of the unsafe set and hence, there is no guarantee
that globally in the domain the generated level-sets are over-
approximations of the true unsafe regions. However, since
the robot dynamics are locally Lipschitz continuous, safety
holds locally as seen in Fig 1.

V. EXPERIMENTAL RESULTS
This section describes and discusses simulation results

from a path planning perspective conducted on the “Simple
Two Dimensional Robot (STDR) simulator”1. Two environ-
ments were created for use in STDR. The first environment
contains five ellipsoidal obstacles scattered throughout a 3.2
x 2 workspace domain. The second environment of the same
size contains more general obstacles whose shape cannot be
characterized easily by level-sets of closed-form polynomi-
als. In both cases, the robot has no a priori knowledge of

1http://wiki.ros.org/stdr_simulator
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(a) (b)

Fig. 1: Trajectories generated for the robot in a five obstacle scenario. The robot must reach a goal region (red circle) which
is known a priori. Three different trajectories are shown- the ground truth trajectory (dashed green), the offline kernel-SVM
based controller trajectory (dotted blue), and the online kernel-SVM based controller trajectory (dash-dotted purple). Observe
that estimated unsafe set is an over-approximation of the true unsafe sets, and hence Algorithm 3 guarantees collision free
trajectories in the offline case, as per Theorem 2.

the environment and follows a nominal controller that drives
it towards a goal point. More formally, we consider a robot
with dynamics ẋ = u, where x ∈ D ⊂ R2 is the position
of the robot and u ∈ R2 is the control input. The nominal
feedback control policy for all x ∈ D is given by k(x) =

δ · (x−xgoal)
|‖x−xgoal|‖ , where δ ∈ R>0, and xgoal ∈ D is a desired

final goal position for the robot. Informally, the robot must
follow k(x) as close as possible while avoiding the unknown
obstacles in the workspace. The robot must reach a goal
region which is defined as G = {x ∈ D | ‖x−xgoal‖ ≤ 0.1}.
For the first scenario, depicted in Fig. 1, we obtain ground
truth data using a grid-based solution, which is a common
approach to compute the true signed distance to the obstacles.
The signed distance function corresponds to the true barrier
function characterizing the obstacles.

A. Evaluation Metrics

Comparison of the trajectory outcomes for the different
implementations involves two evaluation metrics. The com-
bination of both these metrics provides a means to evaluate
the outcomes of the proposed algorithms.

1) Correlation Coefficient: Informally, the correlation co-
efficient between two trajectories captures the change in
one trajectory with respect to the other. That is, one can
obtain information regarding the flow of one trajectory with
respect to the other. Typically, two trajectories are said to
be highly correlated if they have a correlation coefficient
greater than 0.7 [17]. We make use of the correlation
coefficient to develop an intuition regarding the nature of the
trajectories generated by the offline and online kernel-SVM
based approaches compared with the ground truth data.

2) Fréchet Distance: Informally, the Fréchet distance
provides a measure of the Euclidean distance mismatch
between two trajectories. While the correlation coefficient
provides information regarding the flow of two trajectories,
the Fréchet distance provides an explicit degree of mismatch

Fig. 2: An implementation in the STDR simulator where the
robot has to navigate the unknown environment to reach a
goal region (red circle). Offline kernel-SVM based controller
and online kernel-SVM based controller trajectories for two
different initial conditions (green crosses) are shown. The
obstacles O1, O2 and O3 are such that they cannot be easily
characterized by closed form polynomials, and hence, using
the traditional CBF formulation is difficult. However, using
Algorithm 3 and Algorithm 4, we can generate trajectories
such that the robot remains safe.

between the two. A lower Fréchet distance indicates less
mismatch between the two trajectories. In particular, F = 0
implies that the two trajectories are identical.

B. Implementation Results

We first consider the five obstacle scenario shown in Fig. 1.
Two different initial conditions for the robot are considered.
The green dashed trajectory indicates the ground truth tra-
jectory obtained when the barrier function for each obstacle
is known a priori. A QP of the form (3) is solved to generate
this trajectory. The blue, dotted trajectory is generated from
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TABLE I: Correlation Coefficients and Fréchet Distances for
Five Obstacle Scenario

Case Offline SVM Online SVM Offline SVM
vs Ground Truth vs Ground Truth vs Online SVM

1 0.99/0.04 0.97/0.08 0.97/0.08
2 0.96/0.06 0.80/0.08 0.89/0.13
3 0.99/0.02 0.97/0.04 0.96/0.04
4 0.98/0.05 0.94/0.14 0.91/0.12
5 0.99/0.06 0.94/0.15 0.94/0.13
6 0.99/0.03 0.98/0.03 0.98/0.02
7 0.98/0.11 0.98/0.12 0.98/0.04
8 0.96/0.04 0.76/0.07 0.58/0.06
9 0.98/0.05 0.87/0.13 0.86/0.11

10 0.99/0.03 0.98/0.03 0.98/0.03
Average 0.98/0.05 0.92/0.09 0.91/0.08

the offline kernel-SVM based barrier estimation approach as
discussed in Algorithm 3. The purple, dash-dotted trajectory
is generated using Algorithm 4 which is the online kernel-
SVM based barrier function estimation method. Observe that
in both the cases, the robots avoid the obstacle and follow
the nominal control policy as close as possible. In the second
scenario, we consider a situation where the obstacle shapes
are such that finding the closed form expressions for the
barrier functions is not straightforward. This setting is as
shown in Fig. 2. The pink, dashed trajectories are generated
using the offline kernel-SVM based barrier function approach
as discussed in Algorithm 3, whereas the green, dash-dotted
trajectories are generated using the online kernel-SVM based
barrier function method described in Algorithm 4. A video
of the simulations results is also provided2.

C. Discussion

Table I compares the correlation coefficient and Freéchet
distance for both the online and offline approaches with
each other, and against the ground truth trajectory in the
first scenario. On average, we obtain correlation coefficient
values > 0.90, which shows a high similarity between the
ground truth trajectory and the barrier estimated trajectory.
In particular, note that the average correlation between the
offline kernel-SVM approach and the ground truth trajectory
is greater then 0.98. We then provide Fréchet distances
which measures the degree of mismatch in terms of the
Euclidean distance between two 2D trajectories. The smaller
the Fréchet distance, the smaller the mismatch between the
two trajectories. Observe that on average, we obtain distances
< 0.10 for each case, which shows that the Euclidean
distance mismatch between the trajectories is small. A key
inference from the above data is that Roffline is very high and
Foffline is very small, which shows that the offline kernel-
SVM estimated barrier function closely replicates the true
barrier function.

VI. CONCLUDING REMARKS

This paper presented a supervised machine learning based
approach to automated synthesis of control barrier functions.
A kernel-SVM based method classifies the set of safe and

2https://youtu.be/-XiaR7QchtQ

unsafe samples, and generates the desired barrier (level-set)
function. A formal guarantee on zero misclassification of
unsafe samples is provided along with guarantees on safety
of the robot. Experimental simulations were conducted on
an omnidirectional robot in a ROS-based simulator using
synthetic LiDAR data. Some ideas for future work include
understanding how to generate barrier functions that respect
the constraint in Definition 1, and understanding the effect
of computational lag in the safety guarantees.
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