
B-spline Surfaces for Range-Based Environment Mapping*

Rômulo T. Rodrigues1, Nikolaos Tsiogkas2,3, A. Pedro Aguiar1, and António Pascoal4

Abstract— In this paper, we propose a mapping technique
that builds a continuous representation of the environment
from range data. The strategy presented here encodes the
probability of points in space to be occupied using 2.5D B-
spline surfaces. For a fast update rate, the surface is recursively
updated as new measurements arrive. The proposed B-spline
map is less susceptible to precision and interpolation errors that
are present in occupancy grid-based methods. From simulation
and experimental results, we show that this approach leverages
the floating point resolution of continuous metric maps and
the fast update/access/merging advantages of discrete metric
maps. Thus, the proposed method is suitable for online robotic
tasks such as localization and path planning, requiring minor
modification to existing software that usually operates on metric
maps.

I. INTRODUCTION

Advances in the field of robotics have reached a point
where autonomous mobile robots can accomplish a variety
of missions from indoor service robotics to ocean sampling.
In most scenarios, the robot requires a model of the envi-
ronment for performing different tasks such as localisation,
navigation, path planning, or even to reason about its actions.
A common method to model the environment is a map, which
is constructed by the robot using its onboard sensors.

Over the years, multiple mapping strategies have been
proposed. An initiative to standardize the robot map data
representation is presented in the IEEE Standard for robot
map data representation [1], which classifies 2D maps in two
categories: topological and metric. Topological maps encode
the connectivity between places or regions in an environment.
Metric maps, on the other hand, retain geometric informa-
tion of the environment, which allows computing a metric
distance between two points of the model. This paper focuses
on metric maps, which are useful when precision plays a key
role, as is the case with localisation [2] and navigation [3]
tasks. Metric maps are further categorised into continuous
and discrete map representations.

This work was supported by PDMA-NORTE-08-5369-FSE-000061;
IMPROVE POCI-01-0145-FEDER-031823; HARMONY POCI-01-
0145-FEDER-031411; SYSTEC - FCT Project UIDB/00147/2020;
Flanders Make/VLAIO: SBO MULTIROB, LARSyS - FCT Project
UIDB/50009/2020; and EU BluRoses project/GA No. 863619.

1Rômulo T. Rodrigues and A. Pedro Aguiar are with Fac-
ulty of Electrical Engineering, University of Porto, Porto, Portugal
{romulortr,pedro.aguiar}@fe.up.pt

2Nikolaos Tsiogkas is with Department of Mechanical Engineering,
Division RAM, KU Leuven, Leuven, Belgium and with

3FlandersMake@KULeuven, Core Lab ROB, Leuven, Belgium
nikolaos.tsiogkas@kuleuven.be

4António Pascoal is with Laboratory of Robotics and Engineering
Systems (LARSyS), ISR/IST, University of Lisbon, Lisbon, Portugal
antonio@isr.tecnico.ulisboa.pt

A continuous metric map uses a set of geometric features
for representing the environment. These features have a
continuous range of values, i.e., floating point resolution. In
[4], the authors model the environment using points, linear
segments, and curved lines. The computed map is accurate,
but it cannot handle the inherent uncertainty that arises from
noisy sensor data. A compact, and yet accurate representation
using wireframes is shown in [5]. The method performs well
while the assumption that the environment can be represented
by line segments holds, e.g., straight walls. To cope with
map uncertainty, their solution relies on a particle filter that
assigns a particle to each wireframe candidate. More recent
approaches as [6], [7] have shown that B-splines curves are
a well-suited tool for modeling obstacles of different shapes
and sizes. The main drawbacks in most geometric approaches
are merging the geometric primitives and the cost to evaluate
whether a point in the space belongs to the occupied or free
space. Gaussian Processes (GPs) maps [8], [9] tackle the
fore-mentioned limitations at the expense of computational
complexity. In [10], the authors presented for the first time
an online GP-mapping. This promising method was shown to
be able to map regions at rates close to 10 Hz, which is fast
enough for many applications. However, modern sensors can
produce data at higher rates, making this method not suitable
for data-intense applications.

Discrete metric maps represent the world in a discrete
fashion. The most popular metric map, known as occupancy
grid maps [3], belongs to this category. It discretises the
environment into cells with a specific resolution. Each cell
represents the occupancy probability of the represented area.
The main advantages are the computational efficiency to
update the map, to evaluate the occupancy of a specific
point and merge measurements taken at different sensor
readings. Most likely, these are the reasons that led the
simultaneous localization and mapping (SLAM) community
to favor occupancy-maps, e.g., [2], [11], [12]. However, the
precision of an occupancy map is limited. Also, its discrete
nature does not permit the direct computation of interpolated
values or derivatives. Such properties are desirable, as they
allow to query the occupancy at a sub-grid cell accuracy.
Therefore, a continuous model is often obtained by applying
an extra processing step such as bilinear filtering [11] or
bicubic interpolation [12]. However, as demonstrated later
in this paper, information is lost in the process, leading to
errors in terms of accuracy and precision.

The mapping strategy presented in this work represents the
environment using continuous B-spline surfaces. The control
points of the surface are updated recursively as new range-
based measurements arrive. This allows updating the map at

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 10774

fast rates, and, therefore, the method is suitable for online
applications. We show that B-spline surface maps have the
floating point resolution of continuous metric maps and the
low computational complexity of discrete metric maps. This
work is motivated by the fact that a more accurate map at
the bottom level of a SLAM architecture will improve the
overall performance of localization and mapping and other
tasks that rely on them such as motion planning and control.

To evaluate the proposed approach, simulated and real-
world experiments are conducted. In both cases, the robot is
provided with the same positioning information, and a map
of the environment is constructed by manually driving the
robot around. Common positioning is required so that all
the mapping methods can construct the map using the same
poses and sensor measurements. This contributes to a fair
comparison between the different strategies. The simulations
allow for the evaluation of the accuracy of the constructed
map against a ground truth representation of the robot
environment. The real-world experiments provide qualitative
comparison with other well-established literature methods.

The paper is organised as follows. Section II introduces
B-splines, the main tool employed in the proposed solution.
In section III, the theoretical development of the proposed
mapping strategy is presented in detail. Then, in section IV
simulation and real-world experiments are presented and
their corresponding results are discussed. Finally, section V,
concludes the paper, providing final remarks and potential
paths for future research on the topic.

II. PRELIMINARIES

A. Notation

The following notation is adopted. Scalar values are
written in lower-case letters and vectors in lower-case bold
letters. Matrix and random variables are typed in upper-
case letters. Given a random variable X with probability
distribution p(X), the probability of X = x is shortened as
p(x). Throughout the text, the words spline and B-spline are
used interchangeable.

B. B-splines

A B-spline is a vector-valued function b(τ) : R →
Rm that spans a polynomial space of degree d and is
supported by a knot vector {ti}m+d

i=0 , with ti ≤ ti+1,∀i.
Given b(τ) = [bd0(τ), . . . , bdm−1(τ)]T , it follows from the
De Boor’s recursive algorithm [13] that

bri (τ) =
τ − tj
ti+r − ti

br−1i (τ) +
ti+r+1 − τ
ti+r+1 − ti+1

br−1i+1 (τ), (1)

where, in particular,

b0i (τ) =

{
1 , ti ≤ τ < ti+1

0 , otherwise (2)

From this definition, we conclude that the following three
properties hold:

Property 1: (Local support) For τ ∈ [tµ, tµ+1) the func-
tion b(τ) has at most d+1 non-zeros coefficients. These are
the coefficients bdµ−d, . . . , b

d
µ.

Fig. 1. Problem setup: a robot equipped with a range sensor detects
occupied space (red dots) at discrete intervals. The points between the robot
and the obstacle are assumed as free space (blue dots) and obtained at
sampling intervals of ∆r along a beam.

Property 2: (Local knot) The B-spline coefficient bdµ(τ)

depends only on the knots {ti}µ+d+1
i=µ .

Property 3: (Continuity) Suppose that the knot tµ occurs
κ times among the knots (ti)

µ+d
i=µ−d, with κ some integer

bounded by 1 ≤ κ ≤ d + 1. Then, the spline function b(τ)
has continuous derivatives up to order d− κ at the knot tµ.

A spline surface s(τ) : R2 → R, where τ = [τx, τy]T ∈
R2, is defined by the tensor product of two spline spaces,
that is,

s(τ) =

mx−1∑
i=0

my−1∑
j=0

ci,jb
dx
i (τx)b

dy
j (τy) (3)

where dx and dy are the degrees of the spline functions
bx(τx) and by(τy), respectively. The tensor product s(τ)
has degree d = dxdy . Let C ∈ Rmx×my be a real matrix
with entries ci,j . Then a B-spline surface can be written in
matrix form as

s(τ) = bx(τx)TCby(τy) (4)

Now, let vec represent the vectorization operator - a linear
transformation that stacks the columns of a matrix on top
of one another, yielding a single column-vector. Then, the
previous tensor product can be written as

s(τ) = vec (bx(τx)TCby(τy)) (5)

= vec (by(τy)T ⊗ bx(τx)T) vec (C) (6)

= φ(τ)T c, (7)

where φ(τ)T = vec (by(τy)T ⊗ bx(τx)T), c = vec(C),
and ⊗ stands for the Kronecker product. A B-splinesurface
inherits the convex hull property of B-spline curves [14]:

Property 4 (Convex hull): A B-spline surface s(τ) lies
within the convex hull of its control points (c).

III. RANGE-BASED MAPPING USING B-SPLINES

Consider an inertial coordinate frame {M} attached to
the origin of the map and a body fixed coordinate frame
{B} attached to the center of mass of a vehicle equipped
with a 2D range sensor, as shown in Fig. 1. For the sake of
simplicity, assume that the sensor lies at the center of mass
of the vehicle.1 The pose of the robot describes its position
and orientation and it is denoted as ξ = [x, y, ψ]T . The

1In real applications, the user must provide a rigid transformation from
the sensor to the body fixed coordinate frame.

10775

position represents the translation of the origin of {B} with
respect to {M} described in the inertial coordinate frame.
The orientation represents the angular misalignment of the
x-axis of {B} with respect to the x-axis of {M}.

The sensor provides l range measurements of the envi-
ronment (ri)

l−1
i=0 at discrete angle intervals (αi)

l−1
i=0 w.r.t. the

x-axis of {B}. Applying polar to cartesian transformation,
we obtain the coordinates of the space detected as occupied:

Bτ occi = ri

[
cosαi
sin γi

]
, ∀i = 0, . . . , l − 1. (8)

Equivalently, let Bτ freei,j be the discrete samples detected as
free space, i.e., no obstacle. This corresponds to points along
a range beam between the robot and the obstacle, given by

Bτ freei,j = n∆r

[
cosαi
sin γi

]
,∀i = 0, . . . , l − 1,

j = 0, . . . , ri/∆r − 1,

(9)

where ∆r is an appropriate sampling interval. Figure 1
illustrates both occupied and free space measurements.

A vector Bτ described in the body frame is transformed
to the map frame as follows:

τ = R(ψ)Bτ +

[
x
y

]
, with R(ψ) =

[
cosψ − sinψ
sinψ cosψ

]
,

(10)
where R(ψ) is known as rotation matrix.

The remainder of this section presents the theoretical
development of the spline mapping strategy proposed here.

A. Mapping

Let Mi and Zi be discrete random variables that rep-
resents the occupancy state and the sensor perception at
τi = [τx, τy], respectively. The occupancy state is either free
(Mi = 0) or occupied (Mi = 1). Similarly, the report of the
sensor can be either free (Zi = 0) or occupied (Zi = 1).

The probabilistic map is continuously updated upon re-
ception of the sensor data, which provides the likelihood
p(zi|mi). Applying Bayes’s rule, we have

p(Mi = 1|zi) =
p(zi|Mi = 1)p(Mi = 1)

p(zi)
, (11)

p(Mi = 0|zi) =
p(zi|Mi = 0)p(Mi = 0)

p(zi)
. (12)

Dividing the first equation by the second yields:

p(Mi = 1|zi)
p(Mi = 0|zi)

=
p(zi|Mi = 1)

p(zi|Mi = 0)

p(Mi = 1)

p(Mi = 0)
. (13)

The notation is simplified as

odd(mi|zi) = odd (zi|mi) odd (mi), (14)

where the odd of a random variable X , that has exactly two
possible outcomes (X = 0 or X = 1), is defined as

odd(x) =
p(X = 1)

p(X = 0)
(15)

Now, taking the logarithm of both sides leads to the update
equation for an occupancy-grid map:

log odd (mi)
+ = log odd (mi)

− + κ, (16)

where we short the notation by substituting
κ ≡ log odd (zi|mi) (measurement), log odd (mi)

− ≡
log odd (mi) (prior), and log odd (mi)

+ ≡ log odd (mi|zi)
(posterior). The knowledge of the map is given by the
posterior probability, which is obtained by incorporating the
measurement to the prior. In occupancy-grid maps, the world
is represented by discrete cells. Up to a saturation, the map
update in occupancy-grid is given by (16), which iterates
the i-th cell according to its corresponding measurement.
Here, we propose representing the world by a continuous
B-spline surface, that is,

log odd(mi) ≈ s(τi) = φ(τi)
T c, (17)

where c are the control points that define the spline surface
and must be updated upon the reception of new measure-
ments. To obtain the spline map update equation, first, re-
write (16) as

s(τi)
+ = s(τi)

− + κ (18)

φ(τi)
T c+ = φ(τi)

T c− + κ (19)

where, similarly to the original equation, s(τi)+ and s(τi)−

are the posterior and prior log-odd probabilities of the space
being occupied. We want to find the control points of the
posterior spline map distribution, i.e., c+. Consider the
following error function

ei(c
+) = φ(τi)

T c+ − φ(τi)
T c− − κ, (20)

and the cost function

Ji(c
+) =

1

2
‖ei(c+)‖2. (21)

Given the map prior and a measurement, the map update
in (19) is equivalent to finding the control points c+ that
minimize the cost function J(·). In order to do this, we
update the control points using the gradient descent method
as follows:

c+ = c− − µ∇c+Ji(c
+), (22)

where µ ∈ R+. The gradient of the cost function with respect
to the control points is

∇c+Ji(c
+) =

[
∂Ji
∂c+

]T
(23)

=
dJi
dei

[
∂ei
∂c+

]T
= ei(c

+)φ(τi) (24)

Substituting the gradient back into the recursive equation
(22) and the error as defined in (20) yields:

c+ = c− − µφ(τi)e(τi) (25)

= c− − µφ(τi)[φ(τi)
T c+ − φ(τi)

T c− − κ]. (26)

10776

With some algebraic manipulation, we obtain

[I + µφ(τi)φ(τi)
T]c+ = [I + µφ(τi)φ(τi)

T]c−+

µφ(τi)κ,
(27)

where I is an identity matrix with appropriate dimensions.
The matrix [I + µφ(τi)φ(τi)

T] is full rank and, therefore,
invertible. Multiplying both sides of the equality by its
inverse yields:

c+ = c− + [I + µφ(τi)φ(τi)
T]−1φ(τi)µκ. (28)

Using the Sherman-Morrison formula [15], the following
equality holds:

[I + µφ(τi)φ(τi)
T]−1 = I − µ φ(τi)φ(τi)

T

1 + µ‖φ(τi)‖2
. (29)

Replacing the inverse matrix in (28):

c+ = c− + [I − µ φ(τi)φ(τi)
T

1 + µ‖φ(τi)‖2
]φ(τi)µκ (30)

= c− + φ(τi)[1−
µ‖φ(τi)‖2

1 + µ‖φ(τi)‖2
]µκ (31)

= c− + φ(τi)
µ

1 + µ‖φ(τi)‖2
κ (32)

Applying this result in (20), the mapping error becomes

ei(c
+) = φTφ(τi)

µ

1 + µ‖φ(τi)‖2
κ− κ. (33)

In particular, as µ→∞, we have that

ei(c
+) = lim

µ→∞

‖φ(τi)‖2µ
1 + µ‖φ(τi)‖2

κ− κ = 0 (34)

We conclude that as the gain µ, which can be made
arbitrarily large, goes to infinity the error converges to zero.
Finally, applying this result in (32), the map update equation
upon reception of a measurement at τi is given by

c+ = c− +
φ(τi)

‖φ(τi)‖2
κ. (35)

B. Implementation notes

As presented in Sec. II, the tensor product φ(τ) is the
Kronecker product of two B-splines of degree dx and dy .
Based on the Property 1 (Local Support) of B-splines, each
of these functions has at most dx + 1 and dy + 1 non-
null B-splines coefficients. Therefore, φ(τ) has at most
(dx + 1)(dy + 1) non-null B-splines coefficients. In our
implementation, we use cubic splines, i.e., dx = dy =
3. This allows some degree of freedom for the spline to
cope with high curvatures. At the same time, at most 16
control points are updated by a measurement, which keeps
the computational cost bounded within an acceptable time.
The knots are evenly spaced on a grid. The space between
the knots, called knot interval, is associated with the map
resolution. The knot interval and the size of the map defines
the memory required. We do not store the knot vector, but
only the control points associated to them in a grid matrix.
Therefore, smaller knot intervals require more control points
for a constant map size. Since the knots are evenly spaced,

Property 3 (Continuity) holds. This is an important feature,
as many map applications require a continuous and smooth
map. The recursive equation (1) was expanded for a constant
knot interval ∆t. Then, the Kronecker product of two splines
computed, obtaining a closed form non-recursive manner to
evaluate φ(τ).

Similarly to occupancy-grid maps, we saturate the belief
of the map. For this purpose, we apply Property 4 (Convex
hull) as follows

c+ = min(max (c− +
φ(τi)

‖φ(τi)‖2
κ, cmin), cmax). (36)

This ensures that the surface is bounded within the interval
[cmin, cmax]. For the results shown in this paper, we use the
following parameters values: cmax = 100, cmin = −100,
∆r = 1.41∆t, where ∆t is the knot interval. Also, we
set κ = 0.9 for measurements corresponding to occupied
space, and κ = 0.3 for measurements corresponding to
free space. An algorithmic representation of the whole map
update process can be seen in Algorithm 1.

Algorithm 1 B-spline map update algorithm.

Input: Pose ξ, Range Scans (ri)
l−1
i=0

1: Remove wrong measurements
2: Transform range to coordinates: (8)
3: Detect free space: (9)
4: Transform free and occupied space to global coordinate
frame: (10)
5: Update the B-spline map: (36)

IV. EXPERIMENTS

In this section, the proposed mapping strategy is compared
against other methods described in the literature. The com-
parison is performed using both simulated and real-world
data of a LiDAR sensor mounted on a mobile robot. The
simulations are used to discuss quantitative performance.
While using a real-robot, we show qualitative results. All the
experiments were run using a notebook Intel Core i5-3317U
CPU @ 1.70 GHz, 8 GB RAM.

For a fair comparison, we implemented our proposed
solution and a vanilla version of the occupancy-grid mapping
algorithm in Python. Both are available in our repository2.
The occupancy-grid implementation follows the Algorithm 1,
but we use (16) to update the discrete cells mi and ray
rasterization (Bresenham’s line algorithm) for detecting the
free space.

A. Simulations

The proposed method is compared against occupancy-grid
based strategies in a controlled environment, using extensive
computer simulations. To this end, synthetic range data is
generated that correspond to a sensor having 360 beams
equally spaced using one degree intervals. The maps are
constructed using the artificial data. The occupancy-grid

2https://github.com/C2SR/spline slam/

10777

Fig. 2. Mapping result for an artificially generated square room using: (a)
occupancy-grid, (b) occupancy-grid + bilinear interpolation, (c) occupancy-
grid + bicubic interpolation, and (d) proposed B-spline map. The robot is
in the center of the room.

Fig. 3. Mapping error using the room scenario shown in Fig. 2. Both the
cell resolution and knot vector grid have a resolution of 0.1 m. Throughout
the scenarios, the shortest distance from the robot to the wall varies from
2 m to 2.09 m.

map cell resolution and the B-spline map knot interval are
both set to 0.1 m - therefore, having the same memory
storage requirements. Then, for obtaining a continuous map,
bilinear and bicubic interpolations are applied to the resulting
occupancy-grid map, as proposed in [11] and [12], respec-
tively. The maps are finally normalized into the floating
interval -1 (free) to 1 (occupied).

In order to compare the mapping accuracy of the contin-
uous maps, the following metric is used:

n−1∑
i=0

[1−Mcont(τi)]
2, (37)

where Mcont is a continuous map. The metric, which is
called here the mapping error, translates as the alignment
between the measurements detected as obstacles and the
actual continuous map belief. It is often used in localisation
for estimating the relative displacement between consecutive
readings.

The first simulated environment evaluates the limitations
of a continuous map obtained from an occupancy-grid map
versus the inherent continuous B-spline map. The robot
stands still in the center of a square room, while taking mea-
surements. There were enough sensor readings to stabilize
the map cells/control points. The resulting maps for a square
room of side length 4 m can be seen in Fig. 2. The methods
managed to accurately map the given environment. Then, to
analyze the discretisation error that rises in occupancy grid
mapping, we varied the side length of the square room from
4 m to 4.18 m. Figure 3 shows the mapping error. It can be
see that the mapping error using the proposed approach is
consistently lower than any of the other approaches. When
the length of the square is 4 m the walls are aligned with
the cell representation of the occupancy grid. Therefore,

Fig. 4. Mapping result for an artificially generated circular room using: (a)
occupancy-grid, (b) occupancy-grid + bilinear interpolation, (c) occupancy-
grid + bicubic interpolation, and (d) proposed B-spline map.

Fig. 5. Statistical analysis using noisy sensor data for the scenario shown
in Fig. 4. The noise follows a zero-mean Gaussian distribution. Different
standard deviations were considered. Lin., Cub., and Spl. stands for the
bilinear, the bicubic, and the B-spline map, respectively.

the occupancy grid based methods are able to achieve null
error, which is slightly better than the spline map. Then, as
the length increases, there is an increasing offset between
the walls and the cells that represent them in the discrete
map. The critical point occurs around half-cell resolution.
The interpolation methods fail to capture the reality. In
essence, the position within a cell which corresponds to
a measurement is not registered by occupancy-grid map
approaches. Meanwhile, the error in the B-spline map is
considerable lower because when building the map, it is
considering the exact place where the obstacle was detected.

The second simulated environment assesses the impact of
noise in the range measurements provided by the sensor. This
time, the robot stands still at the center of a circular space
of 2 meters radius. The sensor range data is perturbed with
zero mean Gaussian noise. The standard distribution of the
noise varies from .025 m to .1 m, which corresponds from
a quarter to one cell/knot interval length. The final map was
built after 500 sensor readings. The resulting maps for the
noiseless case are shown in Fig. 4. The occupancy based
methods have regions of unknown space caused by their
discrete nature and due to the ray-casting used, where sensor
rays are not intersecting all the cells. The B-spline map does
not present the gaps because a measurement has impact on
nearby regions. The statistical analysis for the noisy case
can be seen in Fig. 5. In total, 33 simulations for each set of
map and standard deviation were performed. The proposed
method behaves better in all the scenarios. A reason for that
is because B-splines naturally filters the noise while building
the map.

B. Real-data

The results using real-data were obtained using a Turtle-
bot3 equipped with a LiDAR sensor. The robot was teleoper-

10778

Fig. 6. Experimental results using turtlebot/LiDAR setup in the corridors
of FEUP. The results shown correspond to the output of occupancy-grid (a),
Fast-GPOM (b), and the proposed B-spline map (c). The proposed approach
is representing the environment in an accurate manner being able to capture
even small obstacles. Annotations are depicted in red numbers.

TABLE I
RUNNING-TIME FOR BUILDING THE MAPS SHOWN IN FIG 6

Occupancy-grid Fast-GPOM Spline-Map
Time (ms) 16.34 142.60 11.48

ated through the corridors of the Faculty of Engineering of
the University of Porto (FEUP). For generating the maps,
first we recorded a bagfile. Then, we estimated the pose
of the robot using GMapping [2], [16]. The estimated pose
and LiDAR measurements were fed into different mapping
techniques - all of them implemented in Python. The maps
were generated using 5 cm resolution for both the discrete
cells and knot spacing. Figure 6(a) shows the occupancy-grid
map obtained using our vanilla implementation. Figure 6(b)
illustrates the output of Fast-GPOM [10], a continuous Gaus-
sian Process map. Figure 6(c) shows the map obtained using
the proposed B-spline surface method. A few annotations are
shown in red numbers. The three methods perform rather
well. A careful inspection shows that the upper right section
of the Fast-GPOM map is slight deformed, representing the
region larger than it actually is. As highlighted in annotation
1, Fast-GPOM is not able to register well features with
high curvature. Although this is a typical limitation of
continuous maps, our method is able to capture sharp re-
gions significantly better. The proposed B-spline map is also
capable of handling small objects. For example, annotation
2 corresponds to the three legs of a large bench, each leg is
5 cm wide.

The average time per iteration for building the maps
is shown in Table I. The results show that the B-spline
map is the fastest one, followed by the occupancy-grid
map. This was not expected, because an occupancy-grid
map updates one cell per measurement, while the proposed
strategy updates 16 control points per measurement. It is
most likely that our B-spline map implementation is more
optimized than our occupancy-grid map implementation.
While both aforementioned methods have computational
complexity O(1) per measurement update, Gaussian Process
maps have computational complexity O(n3) [17], where n
is the size of the sub-matrix of the kernel to be updated. This

explains the high average time per iteration.

V. CONCLUSION

This work presented a novel 2.5D continuous mapping
approach based on B-spline surfaces. The proposed method
allows for more accurate representations of the world lever-
aging floating point resolution of continuous metric maps
with the fast update/access/merging advantages of discrete
metric maps. The B-spline map was evaluated in simulations
and on real world data. In terms of error in representation,
it performed better than a vanilla implementation of the
occupancy grid map. In terms of speed, it performed better
than a state of the art implementation of a Gaussian Process
mapping technique that also represents the world in a contin-
uous fashion. Potential future directions of this work include
the extension to a full SLAM, using the continuous properties
of B-spline to estimate the localisation of the robot.

REFERENCES

[1] “IEEE standard for robot map data representation for navigation,”
1873-2015 IEEE Standard for Robot Map Data Representation for
Navigation, pp. 1–54, Oct 2015.

[2] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for
grid mapping with rao-blackwellized particle filters,” IEEE Transac-
tions on Robotics, vol. 23, no. 1, pp. 34–46, Feb 2007.

[3] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, no. 6, pp. 46–57, June 1989.

[4] R. Vazquez-Martin, P. Nunez, A. Bandera, and F. Sandoval,
“Curvature-based environment description for robot navigation using
laser range sensors,” Sensors, vol. 9, no. 8, pp. 5894–5918, 2009.

[5] A. Caccavale and M. Schwager, “Wireframe mapping for resource-
constrained robots,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Oct 2018, pp. 1–9.

[6] L. Pedraza, G. Dissanayake, J. V. Miro, D. Rodriguez-Losada, and
F. Matia, “Bs-slam: Shaping the world.” in Robotics: Science and
Systems, 2007, pp. 1–8.

[7] R. T. Rodrigues, A. P. Aguiar, and A. Pascoal, “A b-spline mapping
framework for long-term autonomous operations,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2018, pp. 3204–3209.

[8] S. T. O’Callaghan and F. T. Ramos, “Gaussian process occupancy
maps,” The International Journal of Robotics Research, vol. 31, no. 1,
pp. 42–62, 2012.

[9] M. G. Jadidi, J. V. Miro, and G. Dissanayake, “Gaussian processes au-
tonomous mapping and exploration for range-sensing mobile robots,”
Autonomous Robots, vol. 42, no. 2, pp. 273–290, 2018.

[10] Y. Yuan, H. Kuang, and S. Schwertfeger, “Fast gaussian process
occupancy maps,” in 2018 15th International Conference on Control,
Automation, Robotics and Vision (ICARCV). IEEE, 2018, pp. 1502–
1507.

[11] S. Kohlbrecher, J. Meyer, O. von Stryk, and U. Klingauf, “A flex-
ible and scalable slam system with full 3d motion estimation,” in
Proc. IEEE International Symposium on Safety, Security and Rescue
Robotics (SSRR). IEEE, November 2011.

[12] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-time loop closure
in 2d lidar slam,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA), 2016, pp. 1271–1278.

[13] C. de Boor, A Practical Guide to Splines. New York, NY: Springer-
Verlag, 1978.

[14] T. Lyche and K. Morken, Spline Methods. Norway: Unpublished,
2018.

[15] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes 3rd Edition: The Art of Scientific Computing,
3rd ed. USA: Cambridge University Press, 2007.

[16] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on
graph-based slam,” IEEE Intelligent Transportation Systems Magazine,
vol. 2, no. 4, pp. 31–43, winter 2010.

[17] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning (Adaptive Computation and Machine Learning).
The MIT Press, 2005.

10779

