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Abstract— We propose a surface-to-surface (S2S) point reg-
istration algorithm by exploiting the Gaussian Process Implicit
Surfaces for partially overlapping 3D surfaces to estimate the
6D pose transformation. Unlike traditional approaches, that
separate the corresponding search and update steps in the inner
loop, we formulate the point registration as a nonlinear non-
constraints optimization problem which does not explicitly use
any corresponding points between two point sets. According
to the implicit function theorem, we form one point set as a
Gaussian Process Implicit Surfaces utilizing the signed distance
function, which implicitly creates three manifolds. Points on
the same manifold share the same function value, indicated
as {1, 0,−1}. The problem is thus converted into finding a rigid
transformation that minimizes the inherent function value. This
can be solved by using a Gauss-Newton (GN) or Levenberg-
Marquardt (LM) solver. In the case of a partially overlapping
3D surface, the Fast Point Feature Histogram (FPFH) algorithm
is applied to both point sets and a Principal Component Anal-
ysis (PCA) is performed on the result. Based on this, the initial
transformation can then be computed. We conduct experiments
on multiple point sets to evaluate the effectiveness of our
proposed approach against existing state-of-the-art methods.

I. INTRODUCTION

While the majority of European companies consists of
small and medium-sized enterprises, only a very limited
number of them currently uses robot systems in their pro-
duction. In contrast to larger companies, they mainly deal
with small lot sizes and constantly changing production
processes. Adapting a robot systems to new products and
parts is however very time-consuming and requires expert
knowledge in robotics that is not commonly found in shop
floor workers [1]. While a number of modern robot systems
currently on the market proposes an easier programming
concept based on reusable skills, these approaches still
require a manual adaptation to new processes. In contrast to
this, approaches from service robotics are able to automati-
cally solve declarative goal specifications by using semantic
knowledge in combination with reasoning and inference [2].

Synthesizing robot programs based on semantic product,
process, and resource descriptions enables an automatic
adaptation to new processes and involves handling the recog-
nition of objects and parts in the environment. These parts
are typically designed in CAD systems and described via
a boundary representation [3]. In order to grasp them with
a robot, a full 6D pose estimation is required. Given the
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Fig. 1: Robot setup for assembling a gear box with (a) a
lightweight robot and a 3D camera sensor, (b) point cloud
scene of mechanical gearbox parts on the table.

small lot size production of SMEs with constantly changing
objects, it is not feasible to train object recognition models
over a long period of time. Recognizing these parts effi-
ciently by directly using their CAD models during execution
is therefore essential in achieving short changeover times.
Fig. 1 shows an example of such an assembly use case
for a mechanical gearbox together with a point cloud scene
captured by the 3D camera sensor attached to the robot.

Point registration is one of the main approaches in com-
puting the pose transformation by two given point sets and
is widely used in MRI/CAT scan alignment [4] and robot
manipulation [5]. The problem is especially challenging
when two noisy point sets only partially overlap without
initial alignment. A standard approach for point registration
is based on the Iterative Closest Point (ICP) algorithm [6],
[7]. It is interesting due to its intuitive and straightforward
implementation. The identification of corresponding points
follows a greedy search algorithm that is subjective to local
minima and identifies incorrect points for some rotations.
Furthermore, the success of ICP heavily relies on a good
initial alignment. There are many variants which aim at
optimizing the process for correspondence search, such as
widening the convergence basin, heuristic global search,
relaxed assignments, or distance fields, which however often
fail to achieve a better performance and typically follow the
principle of point to point (p2p) or point to surface (p2s)
registration. Furthermore, with increasingly powerful neural
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networks, many researchers started applying deep learning
to the problem of computing a pose transformation [8].
However, these approaches still follow the concept of find-
ing the corresponding point and use a RANASAC-based
Perspective-n-Point(PnP) algorithm to acquire the 6D pose.
In addition, they require a large data set to encode a surrogate
task and cannot be transferred to another task efficiently. For
a flexible production application however, efficiency is a key
factor required in any suitable algorithm.

This work, to the best of our knowledge, is the first one
to consider the surface-to-surface (s2s) point registration and
to describe one surface as an implicit function by employing
Gaussian process regression, also referred to as Gaussian
Process Implicit Surfaces (GPIS). We define three manifolds
by borrowing the idea of signed distance functions (SDF) [9]
with values {1, 0,−1}. All points on a surface should have
the same value of 0. Instead of searching the corresponding
points between two different point sets, the goal is now to
find a rigid transformation that makes function value zero by
transferring the point using this transformation. We evaluate
the presented GPIS-based point registration on multiple
point sets. In comparison to state-of-the-art algorithms, the
presented approach can arrive at or exceed the same accuracy.
We prioritize robustness over convergence speed and our
approach can achieve more robust results than most of the
existing algorithms. The primary advantage in contrast to
other algorithms is that our approach does not require finding
the corresponding point iteratively. The initialization for the
transformation can be calculated based on a FPFH and PCA.
The registration problem is efficiently solved with a Lie
algebra-based Gaussian Newton solver.

II. RELATED WORK

6D pose estimation is widely used and extensively studied
and point registration technology is commonly used to find
the spatial relationship between two point sets. Most of the
advanced algorithms in this field are based on ICP and
several variants exist [10], [7]. The typical work flow for
geometric registration consists of two stages: initial (global)
alignment and local refinement. Initial alignment is either
based on simple Euclidean distance or on more complex
sampling-based algorithms that identify matching points by
utilizing local geometrical descriptors like Fast Point Feature
Histogram (FPFH) [11], [12]. RANSAC [13] can be applied
against outliers. In the following, the initial rigid transforma-
tion can be estimated by using a least squared method or by
using the branch-and-bound framework (BnB) [14], which is
a global optimization algorithm. In both cases, finding a good
initial alignment can be computationally expensive. After the
initial alignment, local refinement is executed by alternating
the steps for finding the nearest neighborhood and the steps
for updating the transformation based on the greedy search
algorithm. This is susceptible to local minima and can only
produce an accurate result with a good initialization. Several
variants can be used to improve the performance: Fitzgibbon
et al. [15] proposed a Levenberg-Marquardt algorithm that
uses finite differences to optimize the objective function.

Granger et al. [6] applied Expectation-Maximization (EM)
principles to consider Gaussian noise, which can improve
the robustness of local registration. Li et al. [16] utilize the
Gaussian mixture model to model the surface uncertainty so
that it increases the robustness of the registration. Myronenko
et al.[17] introduced Coherent Point Drift (CPD), which is
agnostic as to the used transformation model and similar
to GMM takes a probabilistic approach to the alignment of
point sets. Chavdar et al. [18] applied stochastic optimization
to consider noise robustness, outlier resistance, and optimal
global alignment. Yang et al. [14] proposed Globally Optimal
ICP (Go-ICP) by using the Branch and Bound framework to
derive the lower and upper bound for the error function and
to integrate a local ICP in the same frame. Guo et al. [12]
introduced the Fast Global Registration (FGR) algorithm
that uses a scaled Geman-McClure estimator to describe
the error function, optimizes the objective function by using
Block Coordinate Descent, and applies FPFH to search the
corresponding set before optimization.

All algorithms mentioned above share the requirement of
finding the correct corresponding pair. This is followed by
using either greedy search or a global optimizer to get the
final rigid transformation. With continuous improvement in
the field of deep learning, many researchers began to learn
the 6D pose directly by using RGB images [19]. However, a
large number of point sets is required to learn the surrogate
task and the underlying relationship between learned loss
function and the pose accuracy is still unclear. Such an
approach cannot be easily deployed in a flexible production
line. In this paper, we introduce a different approach for
GPIS-based point registration (GPIS-S2SPR), that does not
need to explicitly use corresponding points. By applying
Gaussian Process Implicit Surfaces, we can achieve a more
robust performance compared to state-of-the-art algorithms.

III. PROBLEM FORMULATION

The standard ICP algorithm aims to estimate a rigid
transformation T = {R, t} between given two point sets = {xi}, i = 0,… , n and  = {yi}, i = 0,… , m, that
minimizes the object function

E(T ) = min
∑n

i=1

(

xi − T yargminj=0,…,m

(

‖xi−T yj‖2
)

)

(1)

by iteratively finding corresponding points. The objective
function in (1) however is a non-convex function and there-
fore susceptible to local minima.

In this paper, we consider the problem from a different
angle: aligning two point sets independent of corresponding
points. We model one of the point set as an implicit surface,
which can capture the local structure of the surface and then
transfer another point set to this implicit surface. We assume
that all points on the same surface share the same function
value of 0. Then, the point registration problem is turned
into finding a transformation that minimizes the objective
function

E(T ) = 1
2
∑m

j=0
‖

‖

‖

f (T yj ,)‖‖
‖

2
. (2)
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IV. PRELIMINARY KNOWLEDGE

A. Gaussian Process Implicit Surfaces

According to the implict function theorem, the implicit
function can be formally described as f (x) = 0, where f is
a scalar function that takes an input x ∈ ℝd and results
in a d − 1 dimensional manifold  . For point registra-
tion, we will constrain d to dimension 3. Many existing
methods can be used to describe the implicit surface, e.g.,
trimmed B-splines [20], transcendental functions, or thin
plate splines [21]. In this work, Gaussian Process Implicit
Surfaces [22] will be used to describe the 3D mesh surface.
Unlike thin plate splines, the Radial Basis Function (RBF)
kernel can only describe a local patch whose distribution will
rapidly converge to zero when a point is not near the queried
point and not on the surface, which however is in contrast
to our assumption. As an alternative, thin plate splines will
be selected via

kij(r) = 2r3 − 3Cr2 + C3 , (3)

with a maximum radius of C inside the training point
cloud sets  . The parameter r is the distance between two
points. Gaussian Process Implicit Surfaces can be considered
as a standard regression problem, which is expressed as
f ∼  (

0,K( ,) + �TI�
)

, where  denotes a normal
distribution with the mean �() = 0 and variance K( ,)+
�TI�. The covariance matrix K(., .) consists of kij(xi,xj)
and � corresponds to the noise.

The goal therefore is to predict the value by evaluating the
following formulas for the queried point yj :

f∗(yj|) = kT
∗
[

K + �TI�
]−1 f = kT

∗� (4)

V (yj|) = k(yj , yj) − kT∗
[

K + �TI�
]−1 k∗ . (5)

The kernel function k∗( , yj) is used to describe the corre-
lation between source point set  and target point set yj .
The function value f∗(yj|) is a prediction of yj with
the corresponding variance, which is expressed as V (yj|)
and can be used to evaluate the reliability of the predicted
value. For simplification, this value is not included inside
the objective function. The 3D model points according to
SDF are denoted as

{

Xi ∈ 0 ∣ Xi = {xi, �i, 0}
}

. To aid
the training of an implicit function, two additional point sets
will be created:

{

Xi ∈ 1 ∣ Xi = {xi, �i, 1}
}

lies outside
the surface and

{

Xi ∈ −1 ∣ Xi = {xi, �i,−1}
}

lies inside
the surface. How to generate these two additional point sets
is presented in [23]. The final training point sets consist
of  = 0 ∪ 1 ∪ −1 ∈ ℝn×3.

After modeling the training point sets as the GPIS in the
sense of a manifold, the objective function E can be further
expressed as

fj(yj|) = kj( , yj)T� =
∑n

i=0
k(xi, yj)�i (6)

E = 1
2
∑m

j=0
f 2
j (yj|) =

∑m
j=0

�TkjkTj � , (7)

where m is the number of points in the target point cloud
and n is the number of points in the source point cloud. fj

is the predictive value given by yj that is equal to zero if
the target point lies on the mesh surface. The main benefits
of this formulation are that no corresponding points between
two point sets are required and that it converts the problem
into a standard nonlinear squares problem, which can be
solved by standard convex solvers.

B. Lie Algebra for Optimization

The transformation matrix T consists of a rotation ma-
trix R and a translation t, which can be interpreted in
terms of Lie groups SE(3) [24] with the corresponding Lie
algebra se(3). It can also be converted to a Lie group by
utilizing the exponential map T = exp(�∧), where �T =
[

�T �T]T ∈ ℝ1×6 with � ∈ ℝ3 and � ∈ so(3). In this
optimized formulation, the target point set is transferred
by T to align the source point set, which is embedded
into f (). The gradient-based optimization uses the Jacobian
matrix to search for the minimum solution. We apply the
perturbation method for calculating the gradient of T and
consider the directional of the derivative of T with respect
to the perturbation � ∈ ℝ6, which can be computed as

T = exp
(

�∧
)

Top ≈ (I + �∧)Top ,
)(T ŷj)
)�

= (T ŷj)⊙ . (8)

The operator (.)⊙ ∶ ℝ4 → ℝ4×6 is defined as ["T, �]T⊙ =
[

�I −"∧
0T 0T

]

, where " ∈ ℝ3 and � is a scalar that maps the

vector space to a higher manifold. For simplification, we
omit xi in ki(xi,T ŷj) and use ki(T ŷj) instead. By integration
of the perturbation formula (8) with the first order Taylor
series in kernel function, it can be approximated as

ki(T ŷj) = ki
(

exp(�∧)Topŷj
)

≈ ki
(

(I + �∧)Topŷj
)

≈ ki(Topŷj) +
( )ki
)yj

)T
|

|

|yj=Topŷj

)T ŷj
)�

� (9)

≈ �i + �iT� ,

where �i = ki(Topŷj) ∈ ℝ,
( )ki
)yj

)T ∈ ℝ1×4 and �iT =
(

)ki
)yj

)T
|

|

|yj=Topŷj

(

(T ŷj)⊙
)

∈ ℝ1×6. The derivative of the

kernel function )ki
)yj

in (9) is expressed as

)ki
)yj

=
)ki
)rij

)rij
)yj

= 6(rij − C)(yj − xi) .

V. GPIS-BASED S2S REGISTRATION ALGORITHM

For the partially overlapping situation, the transformation
matrix T is considered in the kernel’s corresponding distance
function with r = ‖xi−Rŷj−t‖ = ‖xi−T ŷj‖. Therefore, the
equation (6) is updated as fj = k( ,T ŷj)T�. By combining
this with the approximation of the kernel function (9), the
objective function (7) can be further simplified as

fj =
∑n

i=0
(�i + �Ti �) �n = k

T(�, �T�)� (10)

E(T ) = 1
2
∑m

j=0
�Tk (�, �T�)kT(�, �T�)� , (11)
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Fig. 2: The algorithm consists of three stages: In the first
stage, two additional point sets 1 and 2 are created to
augment the original point set as  = 0 ∪ 1 ∪ −1,
which is used to form the implicit function GPIS. In stage
two, we compute FPFH for each point in the source and
target point set and a cross-checking is executed to identify
a corresponding group. The PCA is utilized to compute the
initial transformation by evaluating the objective function. In
the last stage, the alignment is optimized by a convex solver.

with kT(�, �T�) =
[

�1 + �T1�, ⋯ , �n + �Tn�
]

∈ ℝ1×n. As
a result, (11) is converted to a nonlinear quadratic equation
with the approximated nonlinear kernel function k(�, �T�)
and the argument for this optimized problem is changed from
the Lie group T ∈ SE(3) to the perturbation variable of the
Lie algebra � ∈ se(3).

A. Gradient of Objective Function

By taking the derivative of J with respect to �T, we get

)E(T )
)�T

=
∑m

j=0

)
(

�Tk(�, �T�)
)

)�T
kT(�, �T�)�

=
∑m

j=0

(

∑n
i=0

)(�i�i + �i�T�i)
)�T

)

kT(�, �T�)�

=
∑m

j=0

(

∑n
i=0

�i�i
)

kT(�, �T�)�

=
∑m

j=0
�j
(

∑n
i=0

�i�i + �Ti ��i
)

, (12)

where �j is defined as
∑n
i=0 �i�i ∈ ℝ6×1 and can capture the

surface’s curvature by summing up all gradients in the kernel
function. To get the optimum perturbation �⋆ at the current
position, the formula )E(T )

)�T is forced to be zero, leading to
∑m

j=0
�j

∑n
i=0
�Ti �i�

⋆ = −
∑m

j=0
�j

∑n
i=0

�i�i

J�⋆ = −
∑m

j=0
�j

∑n
i=0

�i�i (13)

�⋆ = −J−1
∑m

j=0
�j

∑n
i=0

�i�i , (14)

with J =
∑m
j=0 �j�

T
j ∈ ℝ6×6. T is therefore updated as

Top,ℎ ← exp
(

(�⋆)∧
)

Top,ℎ−1, (15)

which captures the local structural manifold by means of the
Lie algebra. The optimization process follows the principle
of the Gauss-Newton algorithm. We can further adapt J as
∑m
j=0 �j�

T
j + � diag(S), which is the LM algorithm.

B. Initial Alignment Using PCA and FPFH

A good initial guess for the optimization is important in
order to guarantee a good result and run-time. We present

a new method for computing the initial alignment by em-
ploying the PCA and FPFH [11] algorithms. First, a FPFH
is calculated for each point in the two point sets, which are
referred to as F (0) and F (). We then embed F (0) into a
k-d tree KdF (0) and a nearest neighbor search is performed
for each feature F (yj) ∈ F (), such that 1 is a group pair
set of the results xi|j for the queries yj :

1 = {

{yj ,xi|j} ∣ KdF (0)
(

F (yj)
)

, ∀yj ∈ }

. (16)

Subsequently, we embed F () into another k-d tree KdF ()
and perform a nearest neighbor search for each result stored
in 1, such that 2 is a group pair set of the results yj|i for
the queries xi|j that are stored in 1:

2 = {

{xi|j , yj|i} ∣ KdF ()
(

F (xi|j)
)

, ∀xi|j ∈ 1} (17)

We only keep the subset 1 ∩ 2 that contains bidirectional
nearest neighbors and refer to these as  ′ and  ′. Statis-
tical analysis techniques are then applied to remove any
outliers in these groups [25]. The final selected points are
grouped together and are denoted as group,FPFH ∈ ℝnFPFH×3

and group,FPFH ∈ ℝmFPFH×3. After this, a PCA is used to
compute the initial transformation TPCA between group,FPFH
and group,FPFH. Note, that TPCA has four different possibil-
ities according to the right-hand rule (Fig. 3). By evaluating
the formula

Tinit ← min
k∈{0,⋯3}

∑m
j=0

‖

‖

‖

f (TPCA,kŷj ,)‖‖
‖

2
, (18)

we select the transformation matrix Tinit that has the smallest
function value. The whole process is illustrated in Fig. 2 and
the algorithm is summarized in Alg. 1.

VI. EVALUATION

In order to compare our algorithm against the state of
the art, we evaluated it against other registration algorithms

Algorithm 1 Optimization of transformation matrix by
Gauss-Newton/Levenberg-Marquardt algorithm
Require:  ,  , H

1: Modeling GPIS f () ⊳ Section IV-A
2: Compute FPFH features F (0) and F () ⊳ Section V-B
3: Calculate 1 and 2 ⊳ (16), (17)
4: {group,FPFH,group,FPFH} ← StaticalRemove(1 ∩ 2)
5: T ←PCA(group,FPFH,group,FPFH) ⊳ (18)
6: Top,0 ← argmin

∑m
j=0 f ( ,T yj)

7: for ℎ = 1 ∶ H do
8: Approximate ki(yj) ∀yj ∈  ⊳ (9)
9: if Gauss-Newton then

10: Set J =
∑m

j=0 �j�
T
j

11: end if
12: if Levenberg-Marquardt then
13: Set J =

∑m
j=0 �j�

T
j + � diag(S)

14: end if
15: calculate �⋆ = −J−1 ∑m

j=0 �j
∑n

i=0 �i�i ⊳ (14)
16: Update Top,h ⊳ (15)
17: if ‖�⋆‖F ≤ � then break
18: end if
19: end for
20: return Top⋆
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(a) (b) (c) (d)

Fig. 3: The four possible coordinate systems for the PCA
when computing the initial transformation matrix.

regarding accuracy RMSE and time on the Stanford 3D
Scanning Repository’s Happy Buddha, Stanford Bunny, and
Chinese Dragon [26] as well as Blender’s Suzanne model.
PCL-ICP [25] is the standard implementation of the ICP
algorithm in the Point Cloud Library, which is a local
registration algorithm as it relies on a good initial align-
ment. SAC-IA-ICP [11] employs FPFH to get the initial
alignment and then uses ICP to iteratively align the two
point clouds. It is therefore considered a global point reg-
istration algorithm. GoICP and its variant GoICPT with
trimming [14] are global registration algorithms that use the
BnB algorithm in their implementations and also support
partial overlapping point registration. Global registration
RANSAC (Gl.RANSAC) [27] requires no initial alignment.
Instead, it utilizes RANSAC for the initialization alignment
by searching corresponding points in the FPFH feature
space. Fast Global Registration (FGR) is another registration
algorithm that utilizes FPFH for searching corresponding
points. The algorithm presented in this paper is labeled
GPIS-S2SPR. In this section, three different experiments
were conducted. In order to reduce the computational burden,
the tested point sets were downsampled for every algorithm
into small scale numbers (1500–2500) by using voxel fil-
tering. All evaluations were performed on a laptop with
a 2.6 GHz Intel Core i7-6700HQ and 16 GB of RAM.

A. RMSE for Random Transformations

For exploring the capability of our algorithm, we evaluated
algorithms using the Stanford Bunny point set with 50 290
points without Gaussian noise and only partial over-
lap (85%). We reduced the number points by applying a
voxel grid filter with a size of 0.005 [25]. We ran each algo-

a b c

0.105

0.111

0.117

d e f g

0.0010

0.0035

0.0060

Fig. 4: RMSE for the Stanford Bunny with par-
tial overlap (85%) without Gaussian noise: (a) GoICP,
(b) GoICPT (10%), (c) PCL-ICP, (d) Gl.RANSAC, (e) SAC-
IA-ICP, (f) FGR, (g) GPIS-S2SPR.

rithm on a set of 40 random transformation matrices (Fig. 4).
From the results, we can see that GoICP and its variant

GoICP with trimming (GoICPT) (10%), as suggested in [14],
performed worse in this experiment with median values
of 0.110 and 0.108. PCL-ICP was evaluated using an identity
matrix as initialization and behaved slightly better with a
median value of 0.109 and a smaller variance in comparison
to GoICP. Gl.RANSAC showed significant improvement
with a median value of 0.005 and SAC-IA-ICP achieved
a median value of 0.002. FGR achieved a median value
of 0.001. In contrast to the previous algorithms however, its
mean value of 0.017 deviated from the median and is much
higher. This is due to its lack of robustness in handling large
rotational changes, which is further evaluated in the next
experiment (Section VI-B). Our algorithm showed the best
overall performance, with a median value of 0.001 and a
small variance.

B. Rotation and Translation Invariance

Rotation and translation invariance are essential factors
for point registration. We conducted two experiments with
the Stanford Bunny dataset to evaluate these two proper-
ties. For the first experiment, we rotated the source point
set 50◦ around the y axis and translated it with a vector
of [0.1, 0.2, 0.3], as illustrated in the first row of Fig. 5.
In the second one, we rotated the point set 180◦ around
the z axis without translation, as shown in the second row
of Fig. 5. The same initial alignment is used for each
algorithm in both cases. We repeated both experiments 40
times. The best results are shown in Fig. 5. PCL-ICP and
FGR show entirely different behaviors in these two cases,
while they failed with a more than 0.1 RMSE value in
the second case. For these two algorithms, we conducted
further experiments with different rotations. FGR failed with
a high probability for high rotation values and we therefore
conclude, that FGR is not rotation invariant. SAC-IA-ICP
showed no significant difference in both experiments, achiev-
ing roughly the same mean value of 0.009. Gl.RANSAC
also showed similar performance in both cases with mean
values of 0.003 and 0.006. In this experiment, rotation and
translation showed no significant effect in our GPIS-S2SPR
approach, with an approximate RMSE of 0.002.

C. Noise and Overlap Robustness

We evaluated the algorithms on all four point sets with
the number of points varying from 30 000 to 50 000. Fur-
thermore, we applied three different levels of noise based
on a Gaussian distribution with variances set to 0, 0.00025,
and 0.0005, respectively. We also evaluated the capability
of point registration in a partially overlapping scenario,
where only a subset of the points from the source point
cloud is used for the target point cloud. Three different
overlap factors were used in the experiments: 100%, 85%,
and 65%. Furthermore, we used an identity matrix for the
initial alignment in each test to maintain identical conditions.
Each algorithm was executed 40 times for each configuration,
leading to a total of 1440 times for all possible combinations.
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(a) Source/Target (b) PCL-ICP (c) SAC-IA-ICP (d) FGR (e) Gl.RANSAC (f) GPIS-S2SPR

(g) Source/Target (h) PCL-ICP (i) SAC-IA-ICP (j) FGR (k) Gl.RANSAC (l) GPIS-S2SPR

Fig. 5: Stanford Bunny together with alignment results of selected algorithms for (a)–(f) 50◦ rotation around the y axis and
small translation, (g)–(l) 180◦ rotation around the z axis with translation set to zero.

TABLE I: Benchmark results for all algorithms on four different point sets with three levels of Gaussian noise and three
different overlap factors. The best RMSE value � for each configuration is highlighted in green.

noise = 0.00000 noise = 0.00025 noise = 0.00050

1.00 0.85 0.65 1.00 0.85 0.65 1.00 0.85 0.65

� t � t � t � t � t � t � t � t � t

B
un

ny
[2

6]

PCL-ICP 0.081 0.5 0.090 0.4 0.067 0.3 0.046 0.4 0.082 0.6 0.046 0.3 0.069 0.4 0.107 0.6 0.073 0.3
GoICP 0.115 20.3 0.110 20.1 0.097 20.0 0.046 20.1 0.024 20.1 0.063 20.2 0.089 20.1 0.101 20.1 0.046 20.1

GoICPT 0.100 21.5 0.108 21.5 0.099 21.4 0.106 21.5 0.104 21.7 0.098 21.4 0.103 21.4 0.109 21.7 0.103 21.4
SAC-IA-ICP 0.001 6.1 0.002 5.6 0.010 7.1 0.001 6.6 0.002 6.1 0.011 8.2 0.001 7.0 0.003 6.4 0.011 7.9
Gl.RANSAC 0.001 1.6 0.005 1.7 0.005 2.3 0.001 1.7 0.005 1.8 0.005 1.9 0.001 1.7 0.005 1.9 0.005 2.3

FGR 0.017 0.4 0.009 0.4 0.017 0.3 0.004 0.4 0.007 0.4 0.020 0.3 0.004 0.4 0.007 0.4 0.015 0.3
GPIS-S2SPR 0.001 0.6 0.001 0.5 0.001 0.5 0.001 0.5 0.001 0.6 0.002 0.5 0.001 0.5 0.002 0.6 0.002 0.7

Su
za

nn
e

[2
8]

PCL-ICP 0.134 0.8 0.108 0.8 0.116 0.7 0.049 0.6 0.127 1.3 0.095 0.6 0.131 0.9 0.115 0.6 0.106 0.9
GoICP 0.089 23.5 0.055 21.6 0.086 22.0 0.089 21.8 0.081 21.8 0.089 21.8 0.064 21.8 0.072 21.7 0.117 21.5

GoICPT 0.092 23.2 0.059 21.5 0.084 21.5 0.079 21.6 0.071 21.7 0.097 21.7 0.045 21.5 0.091 21.6 0.062 21.5
SAC-IA-ICP 0.001 11.2 0.005 10.6 0.018 10.3 0.001 11.7 0.006 10.7 0.027 11.4 0.001 12.4 0.006 11.5 0.018 11.1
Gl.RANSAC 0.014 1.7 0.018 1.7 0.040 2.0 0.016 1.8 0.011 1.8 0.039 2.3 0.013 1.9 0.025 1.9 0.022 2.7

FGR 0.049 0.6 0.039 0.6 0.060 0.5 0.070 0.6 0.049 0.6 0.061 0.5 0.046 0.7 0.071 0.6 0.052 0.6
GPIS-S2SPR 0.003 0.8 0.002 1.1 0.002 1.1 0.001 4.3 0.002 2.1 0.002 1.8 0.002 1.3 0.003 1.2 0.002 1.6

D
ra

go
n

[2
6]

PCL-ICP 0.087 0.5 0.100 0.3 0.079 0.4 0.090 0.2 0.065 0.3 0.096 0.4 0.071 0.5 0.082 0.5 0.101 0.4
GoICP 0.017 21.6 0.022 21.7 0.018 21.4 0.034 21.5 0.035 21.7 0.021 21.5 0.018 21.5 0.053 21.5 0.033 21.6

GoICPT 0.022 21.4 0.014 21.4 0.021 20.0 0.011 19.9 0.009 20.0 0.084 20.1 0.013 20.1 0.044 20.2 0.017 20.2
SAC-IA-ICP 0.001 5.9 0.003 5.3 0.009 4.8 0.001 6.0 0.003 5.4 0.009 4.9 0.001 6.5 0.004 5.8 0.009 5.2
Gl.RANSAC 0.001 2.1 0.005 2.6 0.005 2.9 0.001 2.3 0.005 2.5 0.004 2.8 0.001 2.6 0.005 2.5 0.005 2.8

FGR 0.012 0.5 0.022 0.5 0.024 0.4 0.012 0.5 0.016 0.4 0.017 0.4 0.021 0.5 0.015 0.5 0.013 0.4
GPIS-S2SPR 0.002 0.7 0.002 0.9 0.002 1.0 0.002 0.8 0.002 0.9 0.003 1.0 0.002 0.7 0.002 1.0 0.003 0.9

H
ap

py
B

ud
dh

a
[2

6] PCL-ICP 0.094 0.2 0.086 0.4 0.110 0.3 0.095 0.5 0.076 0.2 0.071 0.2 0.124 0.4 0.047 0.4 0.064 0.4
GoICP 0.043 21.5 0.032 21.4 0.085 21.3 0.075 21.4 0.050 21.3 0.052 21.3 0.051 21.4 0.067 21.5 0.012 21.4

GoICPT 0.013 20.2 0.025 20.1 0.028 20.2 0.016 20.2 0.031 20.2 0.022 20.1 0.023 20.0 0.031 19.9 0.020 20.0
SAC-IA-ICP 0.001 5.5 0.007 5.2 0.009 6.3 0.001 6.2 0.014 7.3 0.017 7.4 0.001 6.7 0.011 7.5 0.015 6.2
Gl.RANSAC 0.002 1.1 0.005 1.3 0.006 1.8 0.002 1.0 0.005 1.4 0.006 1.6 0.002 1.1 0.005 1.5 0.005 1.8

FGR 0.022 0.4 0.022 0.4 0.019 0.3 0.016 0.4 0.019 0.4 0.015 0.3 0.024 0.4 0.022 0.4 0.021 0.3
GPIS-S2SPR 0.003 1.0 0.002 0.8 0.002 0.8 0.001 0.6 0.003 0.7 0.002 0.8 0.002 0.7 0.002 0.7 0.003 1.2

TABLE II: Mean RMSE over all noise levels and overlap
factors for all point sets and algorithms. The best result is
highlighted in green.

Data PCL-ICP GoICP GoICPT SAC-IA-ICP Gl.RANSAC FGR GPIS-S2SPR

Bunny 0.073 0.077 0.103 0.005 0.004 0.011 0.001
Suzanne 0.109 0.083 0.076 0.009 0.022 0.055 0.002
Dragon 0.086 0.028 0.013 0.004 0.004 0.017 0.002
Buddha 0.085 0.052 0.052 0.008 0.004 0.020 0.002

Mean 0.088 0.060 0.061 0.007 0.009 0.026 0.002

The results with individual RMSE values � and runtime t
for each configuration are listed in Table I. The algorithms
GoICP and GoICPT (10% trimming) consistently showed
the worst performance in all test cases with regard to the
mean value of RMSE and total computation time. The
BnB algorithm in these algorithms is very expensive to
compute and the constant switch between ICP and BnB
was not able to achieve a global optimum solution. PCL-
ICP was able to converge very fast but is susceptible to
local minima. SAC-IA-ICP achieved the best performance
in case of an overlapping factor of 100% with an RMSE

of 0.001. However, the RMSE value increased drastically
to 0.01 in case of a partial overlap, Gl.RANSAC explores the
corresponding points in terms of FPFH and showed similar
performance. FGR converged very fast but showed a bad
performance in all experiments for the reasons explained in
Section VI-B. Our GPIS-S2SPR algorithm does not rely on
identifying corresponding points and is therefore stable for
different transformations. In this experiment, the RMSE for
GPIS-S2SPR is stable in terms of the overlapping factor and
noise for all point sets. As it is able to consider noise in its
formulation, the RMSE is approximated equal to 0.002 for all
noise levels. Table II shows the total RMSE computed over
all possible combinations for each point set and algorithm.
GPIS-S2SPR showed the best overall performance. In terms
of computation time, it is not always the fastest approach,
since GPIS is time-consuming due to the computation of an
inverse of the covariance matrix with a complexity of (m3).

D. Gearbox Assembly Application
We explore the capability of our algorithm by using real

point cloud data captured by the system shown in Fig. 1b,
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 6: The first column shows the CAD models of the
gearbox components tree, bearing, and pipe. The second one
shows the mesh sampled point cloud from the CAD model
for each component. The cluster extracted from the point
cloud scene (Fig. 1b) is shown in column three. Column four
shows the initial source and target point cloud. The alignment
results of GPIS-S2SPR are shown in the last column.

where the task is to assemble a mechanical gearbox. In order
to grasp the objects on the table with the attached parallel
gripper, we require a 6D pose transformation.

The gear box assembly task consists of four parts, a
mechanical tree (Fig. 6a), two ball bearings (Fig. 6f), and a
mechanical pipe (Fig. 6k). All parts are available in the form
of CAD models. For the 6D pose estimation, we apply mesh
sampling to acquire a detailed point cloud (PC) for each
CAD model, shown in Fig. 6b, 6g, and 6l. The noisy point
cloud data shown in Fig. 6c, 6h, and 6m is extracted from the
actual data captured by the camera sensor as demonstrated
in Fig. 1b. We combine the Euclidean Cluster Extraction and
Region growing segmentation from PCL [25] to extract each
component from the point cloud scene. The initial position
relationship between the source and target point cloud is
shown in the fourth column of Fig. 6, where the tree is
lying on the table and the pipe is rotated by 90◦. As only
one 3D camera is used, we can only get a partial view
of the objects. The noise added by the camera sensor is
not a Gaussian distribution. We evaluate our algorithm with
these three components, the results are shown in the last
column of Fig. 6. Although the tree and ball bearing are two
highly symmetrical components, the algorithm can match the
bottom and the upper part with an error of 0.004 In the case
of the pipe alignment, the pipe cluster has two disconnected
parts and only an approximated 25% of object information
is available, which further increases the complexity. Our
algorithm can match the objects with an error of 0.009

E. Evaluation with Scanned Datasets

To further verify our algorithm, we evaluate the point
sets from semantic-8 [29] and Urban Scenes Velodyne Point
Cloud Dataset [30]. The corresponding results are shown
in Fig. 7. We compare our algorithm with PCL-ICP in
Fig. 7a, where the RMSE of PCL-ICP is 48 times that of
our algorithm. In Fig. 7b–7h, each sub-figure consists of two

images, where the left one is the initial state, and the right
one is the result of point registration. It can be seen that
our algorithm can work in different scenarios, such as urban
scenes [30] and different kinds of buildings. Furthermore,
we evaluate our algorithm with two additional point sets
from [27] and Shapenet [31], which are shown in Fig. 8. The
source point sets in Fig. 8 are indicated as blue points and
the target point sets as orange points. The initial setting for
source and target point sets are demonstrated in Fig. 8a, 8b
and 8c. From Fig. 8d, 8e, and 8f, we can see that the
alignment accuracy is very high in both point sets with an
RMSE value of 0.002, 0.0001, and 0.0001, respectively.

VII. CONCLUSION

We propose a new algorithm for a partially overlapping
3D surface registration algorithm. In this algorithm, we
abandon the traditional idea of point to point or point to
plane correspondence search to register the points. Instead,
we view the 3D surface as a Gaussian Process Implicit
Surfaces, which utilizes the signed distance function to
describe three manifolds. Furthermore, we convert the point
registration as a nonlinear least-squares problem to find a
rigid transformation between two point sets. For accelerating
the optimization process, we use a Principal Component
Analysis (PCA) together with Fast Point Feature Histograms
descriptors to compute the initial transformation. Moreover,
we derive the Jacobian matrix by applying the Lie algebra
perturbation method, which approximated the kernel function
with the first-order Taylor series. The whole optimization
follows the principle of Gauss-Newton algorithm. By slightly
adapting the Jacobian matrix with a damping value, we can
convert the algorithm to Levenberg-Marquardt solver. Our
approach demonstrated a higher accuracy performance and
more robust rotation invariant properties compared to state-
of-the-art methods by evaluating diverse experiments.
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