
What the HoloLens Maps Is Your Workspace: Fast Mapping and Set-up
of Robot Cells via Head Mounted Displays and Augmented Reality

David Puljiz1, Franziska Krebs2, Fabian Bösing1, Björn Hein 1,3

Abstract— Classical methods of modelling and mapping robot
work cells are time consuming, expensive and involve expert
knowledge. We present a novel approach to mapping and
cell setup using modern Head Mounted Displays (HMDs) that
possess self-localisation and mapping capabilities. We leveraged
these capabilities to create a point cloud of the environment
and build an OctoMap - a voxel occupancy grid representation
of the robot’s workspace for path planning. Through the
use of Augmented Reality (AR) interactions, the user can
edit the created Octomap and add safety zones. We perform
comprehensive tests of the HoloLens’ depth sensing capabilities
and the quality of the resultant point cloud. A high-end laser
scanner is used to provide the ground truth for the evaluation
of the point cloud quality. The amount of false-positive and
false-negative voxels in the OctoMap are also tested.

I. INTRODUCTION

Knowledge of the robot environment is essential both in
offline programming and for auto-generated trajectories as
most manipulators lack external sensors needed to map their
own environment.

Programming robotic manipulators is classically a time
consuming process requiring expert knowledge. Offline pro-
gramming is generally preferred to online, lead-through
programming due to smaller downtimes [1]. Offline pro-
gramming, however, requires a precise model of the working
environment which is often a time-consuming undertaking
requiring exact 3D models of the objects around the robot
and precise measurements of their placement. Even then, the
final program needs to be tested and verified inside the real
workspace itself. As offline programming requires significant
financial investment, expert knowledge and long delivery
times, it is unsuited for small and medium enterprises which
require intuitive and fast robot programming paradigms [2].

Likewise, setting up safety zones is a time consuming
process, mostly done offline and then checked and rechecked
until all safety zones are validated.

We propose a cost-efficient method to set-up the working
environment of the robot that doesn’t require any expert
knowledge and combines exceedingly well with newer AR
programming paradigms such as the one presented in [3]. It
leverages the localisation and depth sensing capabilities of
modern HMDs to map the workspace of the robot as the user

1Intelligent Process Automation and Robotics Lab (IPR), Institute for
Anthropomatics and Robotics, Karlsruhe Institute of Technology, Karlsruhe,
Germany david.puljiz@kit.edu

2 High Performance Humanoid Technologies Lab (H²T), Institute for
Anthropomatics and Robotics, Karlsruhe Institute of Technology, Karlsruhe,
Germany

3 Karlsruhe University of Applied Sciences, Karlsruhe, Germany

Fig. 1: Bottom: The real scene mapped with the HoloLens.
Top: The resulting OctoMap after the HoloLens mapped the
environment and the point cloud was filtered and converted
to a voxel occupancy representation.

walks around the robot cell. A mesh of the mapped environ-
ment is displayed to the user as feedback, so occlusions and
unmapped areas can be noticed and remapped. The map is
then represented as an OctoMap - a 3D occupancy grid of
voxels [4]. The user adds safety zones and edits the OctoMap
in situ using the AR capabilities. The user can, for example,
add no-go zones or allow collisions where the use case
requires contact with specific surfaces. This planning scene
is then used for path planning software, in our case MoveIt!.
The approach is agnostic in regards to the environment and
the robot so long as a universal robot description file (urdf)
and the link meshes are available.

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 11445

(a) (b)

Fig. 2: Purple - points closer than 1 meter (a) Point cloud with points more than 3.3 meters distance removed. One can see
the presence of sparse outliers that can be filtered out; (b) Point cloud with points more than 3.4 meters distance removed.
The outliers are much denser requiring more aggressive filtering which may degrade the quality of the inliers.

II. RELATED WORK

Although most industrial robot manufacturing companies
offer software for offline programming of robots, such as
ABB’s RobotStudio or KUKA’s KUKA.Sim, these require
precise CAD models of all objects in the environment as
well as exact calibration between the virtual and the real
robot cell.

Neto et al. [5] describe a more intuitive offline program-
ming method based on the common CAD package Autodesk
Inventor. The user inputs tool coordinates and a program is
automatically created. This still requires precise CAD models
and calibration. They note that calibration errors are a major
source of inaccuracies. According to the authors, calibration
requires expensive measurement hardware, software and ex-
pert knowledge. They also note that external sensing can help
mitigate the errors of offline programming.

In [6] a trajectory is auto-generated for a spray-painting
task by using range images of the part to colour. This
eliminated the need for any programming on the part of the
user. The collision-free trajectory generation, however, still
required a model of the robot cell. Therefore the set-up step
requires considerable input from the user and is not truly
flexible or quick.

In the field of AR-based robotics, several approaches exist
to plan robot motion in unknown environments. Ong et al.
[7] use a tracked pointer tool to manually input trajectories
and define collision-free volumes. However, no map of the
environment is created and only a small part of the total
collision-free volume is used. The authors themselves note
that alternative methods for generating collision-free volumes
should be explored.

Similarly, Quintero et al. [3] use holographic waypoints
and B-spline interpolation to plan robot trajectories. The
system relies on the user to manually modify trajectories
to avoid obstacles. The mesh of the environment generated
by the HoloLens is used to define waypoints on surfaces, yet
the map itself is not used further.

In [8] the environment of a telepresence robot is mapped
to allow the overlay of virtual fixtures - virtual objects for
operator assistance. The motion of the robot arms, however,

is guided by the user and no programming was implemented.

A. Contributions

This paper extends the previous approaches in several
ways. Firstly, by mapping the environment with multi-
purpose HMDs, we eliminate the need for any overhead
equipment for cell setup or the need for CAD data of
the surrounding objects. HMDs have been used for robot
intention visualisation [9], collaborative task planning [10]
and as previously mentioned programming [3] just to name
a few.

Secondly, the map created this way can be used both
for offline programming or as an addition to AR-based
approaches such as the one in [3]. In the latter case, it allows
the use of higher-level motion planning to plan collision-free
trajectories, such as MoveIT!. This significantly decreases
the programming effort for the user.

Finally, we perform thorough tests of the depth sensing
capabilities of the HoloLens. As of yet such tests have not
been performed. This data will provide useful metrics and
possible failure cases for future research.

III. METHODOLOGY

The system consists of two main components, the
HoloLens HMD and a desktop computer connected to the
robot and running the Robot Operating System (ROS) [11].
Communication between the desktop and the HoloLens is
mediated via the ROSBridge package that allows seamless
interfacing between ROS nodes and programs running on
different systems. For point cloud editing and filtering the
open source Point Cloud Library (PCL) [12] was used. The
OctoMap representation and the path planning is done using
the MoveIt! path planner.

On the HoloLens side, the AR interface was constructed
using the Unity3D engine. For the capture and streaming
of depth information the HoloLensForCV library package
was used. Communication with ROS was done using the
ROS# library which provides ROSbridge clients for .Net
applications like Unity3D.

11446

(a) (b)

Fig. 3: (a) Visualisation of the voxel grid representation of the environment in the HoloLens. The individual voxels can be
added, moved and removed; (b) Adding safety zones in situ using the HoloLens. Such definition of safety zones is more
intuitive and faster than classical offline robot programming.

A. Mapping

One of the main benefits of using HMDs for mapping
is their mobility. To map the environment, the user simply
walks around the robot cell. The mesh of the environment is
displayed for feedback, thus the user knows if some part of
the cell is left unmapped due to e.g. occlusions. Two different
methods of obtaining the point cloud of the environment have
been implemented.

The first approach uses the mesh of the environment
already generated by the HoloLens. Randomly a mesh trian-
gle is chosen, weighted by the size of the triangles. Then,
using barycentric coordinates, a random point within the
triangle is selected and saved to the point cloud. The number
of iterations of this process, and therefore the size of the
resulting point cloud, can be chosen. The resulting point
cloud is filtered with voxel grid filtering to obtain a uniform
point density.

Fig. 4: The edited environmental voxel grid and safety zones
as visualised in RViz. The table in this application was part
of the urdf. If a CAD model of the object exists and the
robot should interact with it, adding it to the robot model
will filter out the unwanted voxels automatically.

The second approach was made possible after Microsoft
allowed access to the depth stream. The depth sensor on the
HoloLens provides two depth streams, the short-throw depth
stream, with 30 frames per second update rate and a range
of 0.2-1 meters, and a long-throw depth stream, with 1-5
frames per second update rate and a range of 0.5-4 meters.

We discard points that are below the minimum cut-off
distance Dcut−off min to eliminate points that may belong
to the user’s hand, and above the maximum cut-off distance
Dcut−off max to eliminate low quality points. The maximum
cut-off distance was experimentally determined to be 3.3
meters (Fig. 2). The minimum cut-off distance was taken to
be one meter, around the reach of the user’s arms. Therefore,
we use only the long-throw stream and discard points further
away than 3.3 meters.

With the localisation capabilities of the HoloLens, the
different depth frames can be fused into a single point cloud
of the environment. Point clouds of different frames are
registered to the main point cloud using ICP [13], with
the HoloLens’ own localisation as the initial guess. It was
found, however, that the HoloLens’ localisation is precise
enough that ICP does not significantly increase the precision.
Therefore, the registration step may be skipped. This shall
be demonstrated in the experiments in Section IV-A.

The resulting point cloud is down-sampled using voxel-
grid filtering to ensure uniform point density. It is then
filtered with an outlier removal filter, removing any point
that had less than 9 neighbours in a radius of 5 cm, and
smoothed with moving least squares [14]. Finally RANSAC
plane detection is used to detect planes and map all the points
near the plane to the plane itself. This improves the resolution
of objects on floors and tables.

B. Referencing

To get a robust coordinate transform between the
HoloLens and the robot world coordinate system, a semi-
automatic referencing approach is used [15]. The user is
asked to position a seed hologram near the robot base and
rotate it approximately towards the front of the robot. Using

11447

the urdf and the link meshes of the robot, a point cloud of
the robot is created. The model, together with the map of the
environment and the position of the seed hologram, are used
as the input to an ICP registration algorithm. As the ICP is
highly sensitive to local minima, the seed cube is paramount
to get a robust coordinate transform. As shown in [15] the
positioning of the seed hologram doesn’t have to be precise
but merely near the base of the robot. The referencing itself
is agnostic to the type of the robot and has been tested with
the Kuka KR 5, KR 16 and KR 120 robots.

C. Workspace Representation and Editing

The point cloud is once again down-sampled with a voxel-
grid filter with the voxel size of the OctoMap, Dleaf . A kD-
tree representation of the point cloud is then constructed. The
kD-tree is a data structure that facilitates radius and nearest-
neighbour searches. Knowing the pose of the robot from
the referencing step, all points belonging to the robot are
removed as well as all points further away than the maximum
reach of the robot Dreach. The resulting point cloud is used
to generate an OctoMap voxel grid representation of the
occupancy as seen in Fig. 1.

The voxel occupancy grid is sent to the HoloLens where a
user may edit the occupancy grid. This step allows the user to
correct errors in the map if needed or to remove voxels from
parts of the environment where contact with the environment
is needed to perform the robot’s task. Finally, safety zones
can be defined in situ, drastically reducing the set-up and
test times. In Fig. 3 the overlayed robot model, the rendered
OctoMap, and the set up of the safety zones can be seen.

When the user is done, the safety zones and the edited
OctoMap are sent back to the computer. As the user can
freely move and add voxels through AR on the HoloLens,
these voxels must be snapped back to the voxel grid. The
OctoMap environmental representations can be saved, loaded
in MoveIt! and edited with the HoloLens as many times
as necessary. Likewise, one could save different voxel grids
and safety zones depending on the task for future uses. A
representation of an edited map and safety zones in RViz can
be seen in Fig. 4.

An algorithmic representation of the proposed method
from the desktop computer’s side can be found in Algorithm
1. The point cloud frames Pi are generated directly on the
HoloLens from the depth frames and the transformation
matrix between the frames. The xguess is the position of the
seed hologram that the user positioned to indicate the pose
of the robot. The point cloud of the robot Pr is automatically
generated from the urdf and the link meshes of the robot on
the desktop computer itself. The urdf and the link meshes
can be freely changed depending on the robot used.

IV. EXPERIMENTS AND RESULTS

Here we present in-depth tests of the HoloLens’ depth
sensor precision and the resultant point cloud (Section IV-A)
as well as the quality of the generated OctoMap by counting
the amount of false-positive and false-negative voxels in the
occupancy grid of a test scene (Section IV-B). Further tests

Algorithm 1 Proposed Method of Cell Set-up

Input: Point Cloud Frames from Hololens Pi, Robot Point
Cloud Pr, Robot Pose Guess from HoloLens xguess

Output: MoveIt! Planning Scene M
Parameters : Dvoxel, Dcut−off min, Dcut−off max

1: while no ”Send Map” voice command do
2: Get Pi from HoloLens
3: Remove points pi from Pi s.t. pi ≤ Dcut−off min ‖

pi ≥ Dcut−off max

4: Add Pi to scene point cloud P
5: end while
6: Filter and downsample P
7: Get xguess from the HoloLens
8: HoloLens to robot transform TrH = ICP(source: Pr,

target: P , first guess: xguess)
9: Remove Pr from P

10: Convert P to Octomap with voxel size Dvoxel and send
to HoloLens

11: Use ”Get Scene” voice command to load and edit
Octomap in HoloLens

12: Edit Octomap and Safety Zones on the HoloLens
13: Wait until ”Send Scene” voice command
14: Create M using edited Octomap and safety zones from

Hololens
15: return M

with the robot and the MoveIt! motion planer itself were
conducted in which we showed that such an approach is
indeed valid and works well with motion planners. However
the motion planner tests also revealed a particular failure case
which will be addressed in Section IV-C. The results of the
previous tests shall also be discussed there.

A. Evaluation of Depth Sensing Capabilities

The first set of experiments was aimed at calculating
spatial deviations of the HoloLens’ depth sensor, while the
second set was aimed at temporal deviation. Both use the
same set-up where a flat cardboard surface was positioned
at 1 and 2 meters respectively from the HoloLens’ depth
sensor.

For the first set, to measure spatial variation, the HoloLens
was rotated so that one of the designated five points pictured
in Fig. 5(a) lies on the cardboard surface. A total of fifteen
consecutive depth frames were taken for each pixel and each
distance for a total of 150 measurements. The results are
depicted in Table I. The standard deviation of the depth
measurement fluctuations around the average was found to
be 3 mm and the maximum fluctuation around the average 5
mm with no major difference between pixels and distances.

In the second set of experiments, to measure temporal
variations, a 5x5 pixel square in the centre of the depth image
was selected and the values measured. For each distance 5
repetitions were carried out to average out human positioning
error. For each repetition 5 consecutive frames were used
for a total of 50 measurements. The setup can be seen
in Fig. 5(b). The averages can be seen in Table II. The

11448

maximum error of the averages of each square is 11.2 mm
and the total average error is 6 mm.

TABLE I: The distances with smallest and highest error as
well as the average distance and standard distance deviations
for one and two meters respectively. Measured in meters.

Center Top Right Bottom Left
Minimum Error Distance 1m [m] 1.050 1.016 1.012 0.885 1.016
Maximum Error Distance 1m [m] 1.056 1.024 1.015 0.893 1.020

Average Distance 1m [m] 1.05233 1.01907 1.0138 0.88813 1.018
Standard Deviation Distance 1m [m] 0.00171 0.00228 0.00063 0.00269 0.00106

Minimum Error Distance 2m [m] 2.006 2.005 2.001 2.042 2.004
Maximum Error Distance 2m [m] 2.013 2.012 2.006 2.049 2.008

Average Distance 2m [m] 2.00907 2.00907 2.00387 2.0458 2.00567
Standard Deviation Distance 2m [m] 0.00200 0.00222 0.00130 0.00231 0.00100

TABLE II: The observed averaged depth values for each
repetition of experiment 2. Measured in Meters

Repetition 1 Repetition 2 Repetition 3 Repetition 4 Repetition 5
1 Meter 0.998400 1.007512 0.998728 1.005440 1.003424
2 Meters 2.011248 2.006576 2.005984 2.008064 2.000224

In the third set of experiments we took scans of our
entire laboratory using a Faro FocusS laser scanner with
1 mm precision as the ground truth. We compared it to
a point cloud generated by the HoloLens, with the user
walking around the laboratory to map it. All four different
permutations using ICP for registration or not and using
a post-processing step (consisting of MLS smoothing and
RANSAC plane detection and projection) or not were tested.
First, we removed discrepancies between the two point
clouds - areas not covered by the laser scanner or due to the
changing environment (as the point clouds were captured at
slightly different times). To evaluate the difference between
the two point clouds we used CloudCompare. CloudCompare
gives the percentile distribution of distances between the two
point clouds and therefore offers a good insight into the
quality of the point cloud generated from the HoloLens. The
results are shown in Table III. One can see that the best

(a) (b)

Fig. 5: Experiments to calculate the standard deviation of
depth measurements. A flat cardboard surface was placed at
one and two meters respectively. (a) Set 1 to calculate the
spatial deviation, we used the 5 points depicted here with
the surface at one and two meters. Pictured here the setup
the middle pixel. (b) Set 2 to calculate the time deviation i.e.
noise, of the centre 5x5 pixel area for 5 consecutive frames,
here at 2 meters distance

performance is the mapping without ICP, meaning that the
HoloLens localisation is as precise as the point cloud, and
with post-processing. In this case 75 percent of points have
an error of 3.6 cm or lower. A visual comparison of the four
point clouds to the ground truth can be seen in Fig. 6.

TABLE III: The percentiles of the distances of each spatial
map combination to the laser scan.

Percentile Without ICP, With ICP, Without ICP, With ICP,
not postprocessed not postprocessed postprocessed postprocessed

10th [m] 0.00591 0.00629 0.00588 0.00513
25th [m] 0.01177 0.01254 0.01135 0.01099
50th [m] 0.02192 0.02503 0.02150 0.02582
75th [m] 0.04105 0.04573 0.03673 0.04183
90th [m] 0.06447 0.06994 0.05275 0.06057

B. Evaluation of the OctoMap
To evaluate the quality of the OctoMap generated from the

HoloLens’ point cloud we placed a wooden 20x20x30 cm
cuboid on the front-left of the table. We assumed the worst
case scenario of using the sampled environmental mesh of
the HoloLens. Khoshelham et al. [16] found that the average
global error of the HoloLens’ environmental mesh is around
5 cm. We counted the total number of false-positives, i.e. the
voxels that are detected as occupied by the object that are in
fact not, and false-negatives, i.e. voxels detected as free that
are in fact part of the object. The results presented in Table
IV show that on average there are 9.58 false-negatives and
61.33 false-positives with 12 point clouds tested. Point clouds
were generated at different times with the user walking a
different path around the robot cell. Worth noting is that
the false-negatives are much more critical as they can cause
crashes while false-positives only slightly limit the collision-
free volume. Also worth noting is that some false-negatives
are hidden behind false-positive voxels or near the table and
are therefore unreachable.

We also carried more than 50 tests with the MoveIt! path
planner to try and provoke collisions in the cluttered scene
shown in Fig. 1. The tests showed that there are indeed edge
cases were a collision might happen i.e. when objects are
positioned diagonally. A solution for these edge cases are
presented in the next subsection.

C. Discussion
We have shown that the HoloLens’s environment mapping

capabilities, with a MLS smoothing and RANSAC plane
finding and fitting stage can produce a point cloud where
75 percent of the points lie within 3.6 cm of the ground
truth captured with a high-end laser scanner.

This could be improved further. We used the in-built
HoloLens image processing pipeline for distortion correction
that, according to the official documentation, gives a max-
imum error of 10 pixels. Calculating a better undistortion
matrix for further rectification would give a further increase
in precision.

The OctoMap voxel occupancy grid performs adequately
even in the worst case scenario where a sampled environ-
mental mesh of the HoloLens was used with a mean square
error of around 5cm.

11449

(a) (b)

(c) (d)

Fig. 6: Comparison of the HoloLens point cloud with the ground truth obtained via laser scan; (a) Point cloud without
ICP registration between frames and without the post-processing step of MLS smoothing and RANSAC plane detection and
projection; (b) Point cloud with ICP registration and without postprocessing; (c) Point cloud without ICP registration but
with post processing; (d) Point cloud with ICP registration and with post-processing.

To mitigate the edge cases, a padding algorithm was
developed. Each new level pads the surface of the starting
voxels iteratively with voxels half the size of the starting
voxels, as illustrated in Fig. 7. Tests with the motion planer
have shown that the edge cases were eliminated and no
collisions occurred anymore even with only one level of
padding.

V. CONCLUSION AND FUTURE WORK

For robotic applications to really become ubiquitous in
enterprises of any size, easy set-up and programming of
robots is crucial. In this paper, we presented a robot cell
modelling approach that relies on the Microsoft HoloLens to
reference and map the previously unknown environment of
the robot. As research in AR-based human-robot interaction
and programming has seen major growth in recent years,
a plethora of such programs can be combined with our
approach to reduce user workload and extend the area of
possible applications.

We have proven that the mapping and localisation capabil-
ities of the HoloLens are more than adequate. Even if errors
do occur, the interactive editing of the environmental map
and the safety zones allows the user to quickly remove such
errors. Furthermore the map can be edited for different task
quickly and efficiently.

There is still plenty of room for improvement. We devel-
oped several programming approaches, one of them based on
the work of Quintero et al. [3], which should be integrated
with the cell set-up algorithm presented here to make an
end-to-end system. User tests should then be made to see
if the perceived workload of the users is indeed lowered
which such a system compared to more classical approaches.
The effect of the density of the environmental point cloud in
regards to the precision of robot referencing and the quality
of the final OctoMap will be explored further in follow up
papers.

Another exciting research direction is using a dynamic
map for the interaction with the robot as well as sharing and
fusing of sensor data in the case the robot is also equipped
with sensors. In the authors opinion such on-line sharing
of data could be a great benefit in proximal human-robot
collaboration.

ACKNOWLEDGMENT

This work has been supported from the European Union’s
Horizon 2020 research and innovation programme under
grant agreement No 688117 “Safe human-robot interac-
tion in logistic applications for highly flexible warehouses
(SafeLog)”.

11450

TABLE IV: The number of false-positives and false-negatives in the OctoMaps generated from 12 different mappings

1 2 3 4 5 6 7 8 9 10 11 12 ∅ σ

false positive 83 60 67 71 52 75 78 61 41 35 58 55 61.33 14.48
false negative 6 16 10 5 5 8 14 7 12 15 11 6 9.58 3.99

(a) (b) (c)

Fig. 7: The padding process to remove the edge cases that might result in collisions. (a) The original OctoMap; (b) First
level padding with voxels of size 2.5 cm; (c) Second level padding with voxels of size 1.25 cm on top of the level 1 padding.

REFERENCES

[1] Z. Pan, J. Polden, N. Larkin, S. V. Duin, and J. Norrish, “Recent
progress on programming methods for industrial robots,” in ISR 2010
(41st International Symposium on Robotics) and ROBOTIK 2010 (6th
German Conference on Robotics), June 2010, pp. 1–8.

[2] R. D. Schraft and C. Meyer, “The need for an intuitive teaching method
for small and medium enterprises,” VDI BERICHTE, vol. 1956, p. 95,
2006.

[3] C. P. Quintero, S. Li, M. K. Pan, W. P. Chan, H. F. M. V. der Loos,
and E. Croft, “Robot programming through augmented trajectories in
augmented reality,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Oct 2018, pp. 1838–1844.

[4] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss,
and W. Burgard, “OctoMap: An efficient probabilistic 3D
mapping framework based on octrees,” Autonomous Robots, 2013,
software available at http://octomap.github.com. [Online]. Available:
http://octomap.github.com

[5] P. Neto and N. Mendes, “Direct off-line robot programming via a
common cad package,” Robotics and Autonomous Systems, vol. 61,
no. 8, pp. 896 – 910, 2013.

[6] M. Vincze, A. Pichler, and G. Biegelbauer, “Detection of classes of
features for automated robot programming,” in 2003 IEEE Interna-
tional Conference on Robotics and Automation (Cat. No.03CH37422),
vol. 1, Sep. 2003, pp. 151–156 vol.1.

[7] S. K. Ong, J. W. S. Chong, and A. Y. Nee, “A novel ar-based
robot programming and path planning methodology,” Robotics and
Computer-Integrated Manufacturing, vol. 26, no. 3, pp. 240–249,
2010.

[8] D. Lee and Y. S. Park, “Implementation of augmented teleoperation
system based on Robot Operating System (ROS),” in 2018
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 5497–5502. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8594482

[9] M. Walker, H. Hedayati, J. Lee, and D. Szafir, “Communicating robot
motion intent with augmented reality,” in Proceedings of the 2018
ACM/IEEE International Conference on Human-Robot Interaction,
ser. HRI ’18. New York, NY, USA: ACM, 2018, pp. 316–324.
[Online]. Available: http://doi.acm.org/10.1145/3171221.3171253

[10] T. Chakraborti, S. Sreedharan, A. Kulkarni, and S. Kambhampati,
“Alternative modes of interaction in proximal human-in-the-loop
operation of robots,” CoRR, vol. abs/1703.08930, 2017. [Online].
Available: http://arxiv.org/abs/1703.08930

[11] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “Ros: an open-source robot
operating system,” in Proc. of the IEEE Intl. Conf. on Robotics and
Automation (ICRA) Workshop on Open Source Robotics, Kobe, Japan,
May 2009.

[12] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in
IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, May 9-13 2011.

[13] P. J. Besl and N. D. McKay, “A method for registration of 3-d shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 14, no. 2, pp. 239–256, Feb 1992.

[14] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T.
Silva, “Computing and rendering point set surfaces,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 9, no. 1, pp. 3–15,
Jan 2003.

[15] D. Puljiz, K. S. Riesterer, B. Hein, and T. Kröger, “Referencing
between a head-mounted device and robotic manipulators,” in
Proceedings of the 2nd Workshop on Virtual, Mixed and Augmented
Reality Human.Robot Interaction, HRI 2019, 2019. [Online].
Available: http://arxiv.org/abs/1904.02480

[16] K. Khoshelham, H. Tran, and D. Acharya, “Indoor Mapping Eyewear:
Geometric Evaluation of Spatial Mapping Capability of Hololens,” IS-
PRS - International Archives of the Photogrammetry, Remote Sensing
and Spatial Information Sciences, vol. 4213, pp. 805–810, Jun. 2019.

11451

