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Abstract— While grounded language learning, or learning
the meaning of language with respect to the physical world
in which a robot operates, is a major area in human-robot
interaction studies, most research occurs in closed worlds or
domain-constrained settings. We present a system in which lan-
guage is grounded in visual percepts without using categorical
constraints by combining CNN-based visual featurization with
natural language labels. We demonstrate results comparable to
those achieved using handcrafted features for specific traits, a
step towards moving language grounding into the space of fully
open world recognition.

I. INTRODUCTION

As robots become more capable and ubiquitous, they are
increasingly moving into traditionally human-centric envi-
ronments such as medical spaces, workplaces, and homes.
In these environments, interacting with and learning from
people is a key component of intuitive, natural human-
robot interaction. Natural language is a powerful, widely
understood way of conveying instructions and information.
However, pre-defining language models for all possible tasks
and objects in a dynamic human environment is infeasible,
especially in grounded language, where unfamiliar language
may refer to anything in a robot’s perceptual world.

Grounded language learning and understanding has been
an active research area in recent years. It is worth noting
that ‘grounded language’ has different meanings in each of
natural language, vision, and robotics research. In this paper,
we refer to the understanding of human language in the
context of the limited, noisy, and idiosyncratic perceptual
data received by a physical agent. This task is qualitatively
different from that of grounded language learned from large
corpora of fixed images that incorporate only vision, or
from learning language grounded in the virtual space of
purely linguistic phenomena. In this work, models of the
environment and language semantics are jointly learned in
order to understand language in the context of a robot’s
sensed environment.

Significant progress has been demonstrated in robots that
learn from language in tasks as diverse as understanding
pick-and-place [1], kitchen [2] commands, and learning
objects characteristics from unconstrained language [3] or
via dialog [4]. Although there has been substantial effort on
reducing and focusing the supervisory signal required for
such learning, the majority of existing work still operates on
pre-defined categories in which new concepts can occur—
e.g., learning shapes or colors, learning the meaning of a
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Fig. 1: Examples of object descriptions from Amazon Me-
chanical Turk workers above RGB point clouds. The robot
then learns classifiers for each concept and whether they re-
late to the given visual input. Note the correct application of
concepts not explicitly present in class labels, e.g., electric,
which is learned solely from user descriptions.

pre-defined set of attributes such as weight, or learning to
understand action commands in a context with a tightly
constrained set of elements such as the kitchen domain.

This is a significant limitation. Adaptable robots should
to be able to learn to understand previously unconsidered
categories of things in the world, and not merely previously
unseen members or combinations of those categories. We
explore how such constraints may be relaxed, using convo-
lutional neural network (CNN)-based visual feature under-
standing paired with a joint-probability grounded language
model to learn language from user given descriptions to
household objects without defining categories of language
that can be learned. This work fits broadly in the category
of open world recognition [5, 6], in which the set of objects
present in the world is assumed to be unknown.

In this work, we demonstrate that it is possible to relax
constraints that define the space of possible learned ground-
ings in real, physical sensor data by using multimodal deep
learning to understand language referring to an environment
regardless of category. We refer to the method presented here
as category-free language learning [7], in order to differ-
entiate it both from approaches that learn into previously
delineated spaces, and from fully open world learning.

Our primary contributions are twofold. First, we demon-
strate the effectiveness of learning concepts from novel
language descriptions. The system presented is able to learn
descriptive concepts that are not explicit in the training
data, but that human descriptions convey (e.g., the idea that
an object is made of a particular substance, e.g., ceramic
or aluminum). Second, we show that deep learning-driven
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featurization is effective for perceptual open world language
grounding, yielding results that are comparable to those ob-
tained by learning language in specific, pre-existing attribute
and object categories. In addition, we make the annotated
UW-RGBD dataset available, providing a source for other
efforts in this domain.1

II. RELATED WORK

This work builds on substantial existing research on lan-
guage grounding in robotics, deep learning, learning from
scarce data, and open world learning. Here, we describe some
of the most closely related efforts.

Open World Recognition and Zero-Shot Learning Our work
is closely related to open world recognition and zero-shot
learning. Open world recognition [6] and open set recog-
nition [5] describe the concept of learning non-predefined
concepts in an open world. In this work, we learn classifiers
for novel classes not considered in the original vision model’s
categorizations, based on the natural language descriptions
provided by human users. However, we differentiate our
work from both. In most approaches to zero-shot learning,
the mapping between raw-input and descriptions (semantic
feature space) is learned, and then using a semantic knowl-
edge base the unseen class can be labeled [8, 9]. In our work
we assume no knowledge base except noisy natural language
given by human users.

Deep Learning With recent advancements in multi-layer
(deep) neural network in machine learning, it is a natural
advancement to examine how these methods can apply to lan-
guage grounding. Work in this space varies from multimodal
approaches in which parallel images and language datasets
are treated as an alignment problem [10], to image caption
generation tasks [11], to question-answering given complex
natural language queries and images [12]. In the specific
space of deep learning for robotic language grounding, there
auto-encoders have been used to learn the semantic meanings
of words in a single-classifier approach by inputting multiple
feature sets [7]. Our work extends [13], in which we outlined
using deep learning vision models to obtain rich features for
grounded language learning.

Few-Shot Learning Much of machine learning operates
under the assumption that there will be copious data to learn
from. However, this is rarely the case for robotics. Few-shot
learning offers methods in which classes are learned with few
examples [14]. In our work, we have instances where a single
positive instance of a class is seen during training. This is
particularly relevant in natural language descriptions, where
a word or concept may only be mentioned once but still
be critical for understanding. Training state-of-the-art object
recognition models is not always plausible without large sets
examples. Some methods try to utilize rich embedding spaces
to curtail this issue [15, 16, 17, 18]. However, many of these
works deal with RGB images, rather than RGB-D where rich
natural language labels are less abundant.

1https://iral.cs.umbc.edu/datasets

RGB-D Object Recognition and Analysis Object recognition
is a wide-ranging area of research. In our work we focus
on a multimodal combination of RGB and depth images.
RGB-D data is a typical perceptual source in robotics, and
there has been substantial work demonstrating that depth sig-
nificantly aids learning, especially in knowledge-constrained
settings [19]. In this section we briefly describe the related
work in vision using RGB-D data. Early methods of RGB-D
object recognition focused on extracting features for separate
categories such as gradient, color, and shape [20]. Extracting
features with hierarchical matching pursuit (HMP) introduces
an unsupervised feature extraction network, which allows
learning models of high-level features through a layered
approach to combining RGB and depth images [21]. This
was early work in obtaining visual features that would be
descriptive of the entire object.

Transfer learning combined with deep learning has been
a major catalyst in the success of computer vision tasks
by introducing transferable layers in vision models. These
initial layers learn fundamental steps in visual perception
and can be applied to other vision tasks. This concept has
been particularly popular due to the success of the large-scale
dataset ImageNet [22] being used to learn generalized con-
cepts between vision tasks. While the ImageNet dataset [22]
has furthered work in RGB object recognition, the RGB-D
vision community is still exploring ways to transfer such
transfer learned models to depth effectively.

Additionally, the concept of a neural network that can be
trained on a low cost single graphics processing unit (GPU)
that can be shared and trained, CaffeNet [23], led to even
more success in the space. Eitel et al. [24] introduced a
method that combines the benefits of transfer learned RGB
models to both RGB and depth images for object recognition
and the practicality of a lower compute neural network
model. In our work, we use this joint transfer learned RGB
and depth model paradigm to extract visual features (see III-
B for details).

Grounded Language Learning Language is used to commu-
nicate about, refer to, and describe the physical world, so the
use of robots in learning to comprehend and use natural lan-
guage is intuitive. Grounded language learning is the concept
of learning the groundings of language to perception [25, 26].
This has been an active area in the intersection of natural
language processing and vision communities. Work such as
image caption generation and recognition [27, 28] and text-
to-image synthesis [29] showcase this overlapping interest.

When this interest moves into the physical world using
robotic agents, the perceptual space that language can be
grounded to increases. Language can be grounded to manip-
ulation tasks [30, 31], navigation tasks [32, 33], and assistive
robotics [34], among others. In all these tasks, there is a need
to understand the referent language (nouns, adjectives, and
more) that aligns with objects in physical spaces. Typically,
the grounding of the rich language humans use for individual
objects is abstracted in robotic learning environments to
sparse labels such as color, shape, and object name.

8401



Work in learning language models for color, shape, object,
haptics, and sound with predefined unique feature chan-
nels [35, 36, 37] have resulted in successful groundings.
However, our work explores using a set of general features
to learn groundings outside of predefined feature channels.
This allows our robotic learner to expand upon a single
source of features derived through a neural network to ground
language that ties to other visual phenomena such as texture,
symbols, size, and complex color, to name a few. This
work and previous work [7] classify this single classifier
system as category-free learning. While previous work [7]
has utilized methods to take category-based visual features
and learn category-specific classifiers for each token, we use
non-category-based visual features to learn a single classifier.

While datasets of rich natural language aligned with
images [38, 39] are increasing, to our knowledge no such
dataset exists for RGB images with depth (RGB-D) [40].
RGB-D data creates a new learning paradigm for grounded
language learning that includes physical proxy. Our dataset
is similar to [41] by aligning RGB-D sensor data with user
assigned attributes; however, in that work the descriptions
were limited to strict categories (color, shape, object, mate-
rial). Our work uses the same sensor dataset, but we learn
from full-sentence natural language rather than single word
attributes in categories. Our hope is this work will assist
in the effort to curate rich language datasets aligned with
robotic data to benchmark further research within the com-
munity and encourage further complexity to be augmented
into other grounded language tasks.

III. APPROACH

In this section, we introduce a novel dataset of language
descriptions, collected to augment the widely used RGB-
D objects dataset [42]. We describe how annotations were
collected using crowdsourcing (see fig. 2 for details), then de-
scribe how we modify the robust RGB-D object identification
approach of Eitel et al. [24] to extract visual features. Finally,
we outline how we use a novel joint learning objective that
combines both visual and language features to train word-
as-classifier models for linguistic concepts (see fig. 5 for
an overview). This system learns how a person might refers
objects in at a semantic level, leaving low-level classification
and action details to a hypothetical robot assistant.

A. Data Corpus

We extend the well-known UW RGB-D object recognition
dataset [42, 43], which includes roughly 40,000 RGB-D
images of 300 objects in 51 categories. This dataset includes
point clouds as well as RGB and depth images and masks.
We select five images of each object instance using stratified
random sampling, giving us a sample of 1,500 RGB-D
images with an unfixed collection of angles from each object.
Images were then uploaded to Amazon Mechanical Turk,
where workers gave short descriptions of each object as if
they were speaking to another person (see fig. 2 for the
instructions given to workers). In order to obtain diverse
descriptions, we avoided using language that would ‘prime’

Fig. 2: Example of the Amazon Mechanical Turk Human In-
telligence Task (HIT). We asked workers to provide complete
sentences of the cropped RGB image, or “NA” if they were
unable to recognize the cropped image. Each HIT contained
images of 5 objects.

workers to describe objects in a particular way. Workers were
only encouraged not to describe the picture itself (such as
“the photo is blurry” or “the photo has a red cap”).

114 unique workers participated in the study, an average
of doing about 14 tasks (70 images) per worker. All workers
were located in the United States. monitored results in
real time, allowing for quality screening of work being
submitted. This increasingly allowed workers to continue
giving high-quality descriptions while discouraging subpar
or non-conforming work. We found small amounts of noise
in mistyping, spelling, and grammatical issues. While this
creates a more challenging learning problem, it also adds
noise that would be present in everyday human-robot lan-
guage interactions.

We obtained a total of 8,186 raw object descriptions.
While some workers provided incomplete sentences or de-
scribed the photo rather than the object, the majority gave
rich contextual language about the images. Descriptions
which clearly did not follow instructions or in which the
worker was unable to provide a description due to visual
ambiguity were removed, yielding a total of 7,455 complete
sentence descriptions of 300 objects in 51 categories, or
almost 25 descriptions per object. There were 4 to 8 com-
plete sentence description responses per image of the object
instance, unique form of an object (see fig. 3 for a breakdown
of responses for each object). These descriptions contained
59,998 total tokens, 23,366 tokens with stop words and
punctuation removed, and 1,965 unique words. On average
there were 7.32 tokens per description.

Nouns and adjectives are widely used by people in every-
day task commands, and as such, are valuable in the language
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Fig. 3: A breakdown of the number of responses received for
each of the objects versus the number that were complete
sentence descriptions. While there were more instances in
the dataset for some objects due to the distribution of the
original dataset, this shows where Amazon Mechanical Turk
workers faced ambiguity of what the image was showing and
opted out of giving a description.

grounding task. In this corpus, 100% of the complete sen-
tence descriptions have a noun present. 3,733 descriptions, or
45.6% of the dataset, also contain an adjective(s) according
to the Stanford Part-of-Speech parser [44]. The frequency
of description part-of-speech syntax is shown in fig. 4.
The syntactic structures of the descriptions as well show
variety and diversity as users were encouraged to describe
the objects without any priming and as naturally as possible.
While there a high percentage of workers who used short
phrases, other users were more descriptive and thorough.
This gives a diverse dataset of natural language for human-
robot interaction in describing objects. To the best of our
knowledge, this is the only openly available RGB-D dataset
aligned with rich natural language.

B. Visual Features

Our approach to extracting visual features is drawn from
the robust object recognition method of Eitel et al. [24];
however, in our results, we demonstrate that with minor
modifications, this approach can be used to extract features
suitable for understanding a user’s high-level language in a
variety of unspecified categories (see fig. 1). While more
advanced and powerful vision models have been developed
in recent years for RGB-D object recognition [45], many
require large amounts of compute resources to train. We ar-
gue our methodology can be applied to these more advanced
models with respective increase in performance. However, in
this work, we explore the viability of using neural network
features for robotic grounded language learning in the con-
text of the word-as-classifiers, rather than the development
and testing of advanced RGB-D vision models.

Broadly, artificial neural networks (ANNs) allow for high
dimensional inputs to be condensed to meaningful repre-
sentations of features in the data. Due to the nature of
neural networks, the final layer offers high-level features
for the objects. This is true of convolutional neural net-
works (CNNs), especially for extracting useful features in

Fig. 4: The syntax of the descriptions was analyzed using
Stanford Part-of-Speech tagging [44] and the format of the
structures were then totaled. The most common structure was
phrases like “This is a <noun>,” followed by “This is a
<adjective><noun>”.

object recognition tasks [46]. While many employ a softmax
function to perform classification, such as Eitel et al. [24],
removing the softmax function exposes rich features that can
be used directly for grounded language learning.

The network consists of two seven layer CNNs, one per
sensor type (RGB and depth), that combine into two final
fusion layers. The final layer of the network allows for 51
features to be extracted from the joint networks of the RGB
and depth images. We extract these features for each of the
1,500 images sampled from the RGB-D object dataset paired
with the natural language descriptions given from workers
on Amazon Mechanical Turk. Once the visual features and
language is paired, we start the grounded language model
learning process.

C. Category-Free Joint Language Learning

In order to provide a meaningful evaluation of our work in
the context of language grounding, we evaluate on an exten-
sion of the grounded language learning system of Pillai and
Matuszek [3]. The basis of this work is a joint model combin-
ing perception and language models [36] to learn completely
novel language groundings. For this model, groundings are
learned solely from dataset. No prior representations of the
objects or the language are required. In that comparison
work, a words-as-classifiers approach is taken, meaning each
token has a single binary classifier trained to predict whether
an object is described by that word. In our infrastructure,
“red”-as-classifier would classify a red apple and a green
apple as positive and negative, while “apple”-as-classifier
would classify both as positive.

The word-as-classifiers concept increases the number of
concepts that can be learned. Meanwhile, a naı̈ve end-to-end
deep learning approach would require an extensive number
of output classes—one for each word—as well as requiring
retraining of the final layer. As well, with our negative
example selection, there are cases in which an instance is
neither a positive or negative example for a token (that is,
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objects are not positively described as a concept are not
necessarily counterexamples).

While previous work was constrained by the domains of
language that could be learned (such as shape or object
type), we seek to use multipurpose visual features from the
method described in III-B to introduce end-user abstraction.
Our system therefore learns from a single source of features
rather than separate domain-specific sets such as those in
previous work, which learned from hand-engineered average
RGB channel values to, for example, encode color and depth
kernel descriptors for learning shapes. Another change is
learning language per image, rather than learning from a
larger collection of descriptions of an object instance. This
preserves visual differences in the object, such as orientation
and appearance under different lighting, so the system has the
opportunity to learn language relevant to only some images
of a single object. (For example, from some angles the
baseball cap in fig. 1 might look like a hemisphere, whereas
in the image shown it does not.)

We aggregate all descriptions given by workers of each
image, creating a more exhaustive ‘descriptive document’ for
each image. These descriptive documents are processed to
remove singletons and stop words. Visual features (extracted
per image) are paired with documents aligned with that
image. We consider an instance as a positive training example
of the token if that token occurs more than once in the
description document. Due to the non-exhaustive nature
of natural language, determining which examples can be
considered negative is an ongoing research area. We use
the negative exemplar method of [3], which is unsupervised
(in the sense negatives are not explicitly given. In this
approach, a distributional semantic model is trained on
language descriptions for each image, and then the cosine
distance between two description document vectors is used to

Fig. 5: Our proposed domain-free model using the visual
features from object recognition system [24], creating word-
as-classifier models. This method fuses two CNN architec-
tures for RGB and depth images into fully connected fusion
layers. We remove the softmax layer from their approach,
exposing rich multimodal features for learning groundings.

determine negative examples. Each token classifier is trained
using logistic regression.

IV. EXPERIMENT

We train our word-as-classifier models (see section III-A)
using four-fold cross validation. We report the results of these
tests averaged over 200 runs with random splits. First, we use
embeddings extracted from the convolutional neural network
(CNN) for both depth and RGB image inputs, and examine
treating the layer before softmax as an embedding layer
of 51-dimensional embedding. Previous work has shown
value in various layers of a convolutional neural network
providing embeddings that perform certain tasks better than
later layer embeddings [47]. In using the multi-modal CNN
as an embedding network, we examine using the second-
to-last fully-connected layer as the embedding to examine
whether previous layers with higher dimensionality exploit
more generalized embeddings compared to the layer before
the softmax for the language learning task.

For this penultimate layer, we run dimensionality reduc-
tion by using singular value decomposition (SVD) to reduce
the embedding’s dimensionality from 4,096 to 150 to create
a computationally feasible learning space for the logistic re-
gression model, which still preserves a higher dimensionality
than the layer before the softmax. While in the era of end-
to-end pipelines this reduction would be performed through
training a final linear layer, our work utilizes a pre-trained
network as a static visual feature extraction process. We
report the results compared to features extracted from the
final layer, which is 51-dimensional (see table I).

We examine our method in relation to a previous approach
that uses feature extraction specifically oriented to learn-
ing color, shape, and object word-as-classifiers [3]. In that
work, ‘color’ is featurized using k-means centroids, ‘shape’
features are extracted from depth kernel descriptors [48],
and ‘object’ features are a vector in which color and shape
features are concatenated. Each token then has three separate
classifiers for each respective category. Additional classifiers
are generated that encompass the hypothesis that a new token
may be a synonym for a previously-encountered concept.
This leads to a large set of classifiers that must be trained in
tandem as new data is observed.

V. RESULTS

Each classifier was trained on a median of two examples,
and the maximum number of positive examples was 149,
while the minimum was one (see fig. 6). This positions our
work in the space of few-shot learning, as we attempt to
classify labels with majority of the classifiers learning on less
than two positive labels at training. For the classifiers trained
with the category-free CNN features, the average F1-score
is 0.68, with a standard deviation of 0.059. Meanwhile the
best result from the previous method’s work was the object-
category classifier with an average F1-score of 0.668 with
a standard deviation of 0.061. This shows that our method,
while not drastically improving on the performance of the
language grounding system, accomplished similar results
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Features F1-Score Recall Precision

CNN 51 0.6801 0.6047 0.8843
CNN SVD 150 0.6837 0.6027 0.8920

Object 0.6675 0.6037 0.8602
Shape 0.6625 0.5990 0.8562
Color 0.4349 0.4722 0.5033

TABLE I: Average F1-Scores for classifiers trained on color
(simple k-means), shape (depth kernel descriptors [48]),
object (concatenation of shape and color features), or our
proposed category-free CNN 51, and CNN SVD 150

with a vastly less constrained set of possible learned features.
This demonstrates that the shift to category-free, non-hand-
engineered features matches or exceeds the performance of
more specialized approaches. Additionally, for each token,
there is only one classifier being trained rather than several,
saving on compute time, as well as eliminating the need to
re-engineer category features for varied datasets.

Qualitative analysis provides the following insights. We
see drastic performance decreases from the color-category
classifiers as compared to our category-free classifiers; the
average F1-score is the lowest of all four types of classifiers,
0.435. This is likely due to the fact that datasets used
in previous work [3] used very homogeneously colored
objects. The complexity of household objects’ color cannot
be accurately featurized using k-means averaging of RGB
channels. More specifically, we note that while CNN features
do a better job at detecting colors even compared to color
features, some of them were close. The ‘yellow’ token in
this work has an average f1 score of 0.88, compared to 0.81
for previous work. In the hand-engineered feature space, even
shape features do a better job of detecting colors in five cases:
brown, white, black, pink, and blue. This reflects overfitting
of shape features to specific cases in the household objects
data. The tokens ‘kettle,’ ‘mobile,’ and ‘pot’ are some of the
poorest-performing classifiers in this work, with the average
f1 scores of 0.57, 0.55, and 0.57 respectively.

Some tokens in our dataset do not described grounded
objects and instead represent more abstract concepts, such
as “appears,” “built,” “image,” and “called.” These tokens
are ambiguous and difficult. When removing token classifiers
that were unsuccessful groundings results in an average F1
score of 0.7310. We report these scores help to examine
failures and ambiguity in the methodology and system.

Finally, the result of comparison between 51-dimensional
embedding (CNN 51) resulted from the layer before
the softmax of CNN, and 150-dimensional embedding
(CNN SVD 150) resulted by applying SVD to reduce dimen-
sionality on the second-to-last layer of CNN suggests that we
gain 1% improvement in precision, and slightly better F1-
score (0.6801 for CNN 51, and 0.6837 for CNN SVD 150).
This sheds light on the plausibility of earlier layers being
relevant to grounded language learning as they may be more
visually generalized beyond class-based classification. Both
findings support that these features are broad enough to be
used in the context of single source feature category-free

Fig. 6: Distribution of the average number of positive exam-
ples each classifier is trained on. This showcases the nature
of the problem with the majority of classifiers being learned
on 2 positive examples or less.

grounded language learning.

VI. CONCLUSION

We present a grounded language learning system suitable
for supporting user-specific, language-based human-robot
interfaces. We employ the well-known object recognition
system of Eitel et al. [24] to extract rich visual features
for an intuitive, category-free joint model grounded language
learning system, and introduce a dataset of natural language
aligned with a popular real-world sensor dataset. A series
of classifiers denoted by descriptions are trained and evalu-
ated on a held-out data set. Our results support the theory
that category-free language learning is both feasible and
desirable. We outline that our method, relying on a single
model’s embedding output, performs just as well if not better
than previous work that relied on hand-engineered feature
representations from multiple models concatenated.

In future work, we intend to explore more sophisticated
language models, using semantic parsing to further the
information provided from the natural language descriptions.
We plan to use the insights from this work in exploring
multimodal object embeddings in pursuit of furthering work
in category-free grounded language learning. We then plan
to deploy this system on a mobile robot in a human-robot
user study to collect more real world data to enrich the
parallel dataset. Our hope is that this work will encourage the
development of robust and effective robotic systems utilizing
natural language.
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