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Abstract— A significant amount of people die in road ac-
cidents due to driver errors. To reduce fatalities, developing
intelligent driving systems assisting drivers to identify potential
risks is in an urgent need. Risky situations are generally
defined based on collision prediction in the existing works.
However, collision is only a source of potential risks, and a
more generic definition is required. In this work, we propose
a novel driver-centric definition of risk, i.e., objects influencing
drivers’ behavior are risky. A new task called risk object
identification is introduced. We formulate the task as the cause-
effect problem and present a novel two-stage risk object iden-
tification framework based on causal inference with the pro-
posed object-level manipulable driving model. We demonstrate
favorable performance on risk object identification compared
with strong baselines on the Honda Research Institute Driving
Dataset (HDD). Our framework achieves a substantial average
performance boost over a strong baseline by 7.5%.

I. INTRODUCTION

More than 1.3 million people die in road accidents world-
wide every year, approximately 3,700 people per day [34].
Car accident deaths are the 1st leading causes of death,
excluding health illness. A massive number of car accident
fatalities are due to driver errors such as the lack of aware-
ness [1]. To reduce the fatality rate, developing intelligent
driving systems assisting drivers to identify potential risks
is in an urgent need. The identification of potential risks
has been studied extensively in the risk assessment litera-
ture [20]. At the core of risk assessment is the definition of
risk. In the context of intelligent vehicles, the risk is generally
defined based on collision prediction. While the definition
is widely used, road collision is only a source of potential
hazards in driving [20].

In this paper, we propose a driver-centric definition of
risk, i.e., objects influencing drivers’ behavior are risky.
Imagine driving in a scenario shown in Fig. 1 that we are
planning to pass the intersection while yielding to a crossing
pedestrian. Without the presence of the pedestrian, we would
have passed the intersection without stopping. In other words,
if we did not slow down or stop, a dangerous situation would
occur. During our daily driving, we frequently interact with
different traffic participants under diverse configurations.
These reactive scenarios are commonly encountered than
collisions. Thus, we believe that the proposed definition
captures various learning signals for assessing risk.
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Fig. 1: A two-stage risk object identification framework.
Intervening the input by removing the pedestrian changes
the driver’s behavior (effect) from ‘Stop’ to ‘Go’, indicating
the removed object is the risk object (cause) for ‘Stop’.

A natural question arises: who makes drivers stop? We
propose a new task called risk object identification, which
aims to identify the object influencing drivers’ behavior. The
proposed task can be approached via two existing methodolo-
gies: (1) supervised learning algorithms that learn to localize
risky regions [39], recognize important objects [9], and imi-
tate drivers’ gaze behavior [3], and (2) salient regions/objects
identification via self-attention mechanisms in end-to-end
networks [16], [32].

In the first category, risky regions and important objects
are identified by formulating as a two-class object detec-
tion problem. Specifically, object-object interaction [39], [9],
object-environment interaction [39], object motion trajec-
tory [39], [9] are designed to enable models to identify
risky regions or important objects. Alternatively, objects
influencing drivers’ behavior can be obtained via predicting
pixel-level driver’s attention learned by imitating human gaze
behavior [3], [35], [31]. While promising performances have
been shown, labeling risky regions or important objects for
training two-class object detectors requires extensive human-
labeled annotations. Human gaze behavior is intrinsically
noisy, and fixations may not directly associate with objects
influencing drivers’ behavior.

For the second strategy, objects influencing behaviors of
drivers can be formulated as selecting regions/objects with
high activations in visual attention heat maps learned from
end-to-end driving models [16], [32]. Kim and Canny [16]
proposed a two-stage framework. In the first stage, a visual
attention mechanism is designed to highlight image regions
that influence the end-to-end driving model’s output. A
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causal filtering step as the second stage is applied to deter-
mine the regions influencing the network’s behavior. Wang
et al. [32] incorporated an object-level attention mechanism
into end-to-end driving models to increase robustness and
interpretability. Both attention mechanisms are trained to
optimize task-dependent objective functions. However, there
is no guarantee that networks will attend the regions/objects
that influence drivers’ behavior. It is worth noting that the
issue ‘causal misidentification’ is discussed in training end-
to-end driving models [8].

To address the issues mentioned above, we formulate the
definition as the cause-effect problem [26] and propose a
novel risk object identification framework. The core concept
is depicted in Fig. 1. First, an object-level manipulable
driving model is learned to predict drivers’ behavior. In
this work, we simplify the possible driver behaviors to be
‘Go’ or ‘Stop.’ Note that modeling of more fine-grained
drivers’ behavior is our future work. Second, given a ‘Stop’
prediction (i.e., driver behavior is influenced by objects), we
intervene input video by removing a tracklet at a time and
inpainting the removed area in each frame to simulate a
scenario without the presence of the tracklet. The trained
driving model is used to predict the corresponding driver
behavior. Note that we assume that the cause of driver
behavioral change is vehicles or pedestrians in this work.
The object causes the maximum effect change is the one
that influences drivers’ behavior. We benchmark the proposed
framework on the Honda Research Institute Driving Dataset
(HDD) [27]. Experimental results show that the proposed
framework achieves favorable risk object identification per-
formance compared with strong baselines, both quantitatively
and qualitatively. Furthermore, extensive ablation studies are
conducted to justify our design choices.

The contributions of this work are summarized as follows.
First, we propose a novel driver-centric definition of risk, i.e.,
objects influencing drivers’ behavior are risky, and a new task
called risk object identification is introduced. Second, we
formulate the task as the cause-effect problem and propose a
novel two-stage risk object identification framework based on
causal inference with the proposed object-level manipulable
driving model. Third, we demonstrate favorable performance
on risk object identification in comparison with strong base-
lines on the HDD dataset [27].

II. RELATED WORK

A. Risk Assessment

Living agents can assess risk for decision making. Lefèvre
et al. [20] surveyed existing methods for motion prediction
and risk assessment in the context of intelligent vehicles. A
popular risk assessment methodology is to predict all pos-
sible colliding future trajectories. While many works follow
the direction, Lefèvre et al. [19] defined the computation
of risk as to the probability that expectation and intention
do not match. The paradigm is very closed to the proposed
definition of risk, i.e., objects influencing drivers’ behavior,
the underlying risk object identification process is different.
In [19], a risk object is identified by computing the ‘hazard

probability’ based on the same computation of risk. We
recognize the risk object by simulating the causal effect by
removing an object using end-to-end driving models.

B. Causal Confusion in End-to-end Driving Models

Recent successes [5], [36] demonstrated that a driving
policy can be learned in a supervised manner from human
demonstration [6], [32], [17]. Additionally, recent driving
datasets [27], [38] with high-quality drivers’ demonstration,
enable training driving models under different real-world
scenarios. However, the issue of causal confusion in training
end-to-end driving models is raised in [7], [11], [8]. Haan
et al. [8] proposed incorporating the concept of functional
causal models [26] into imitation learning to address the
issue of ‘causal misidentification.’ In [11], they overcame
the causal misidentification issue by adding noises to inputs.

Our work is complementary to [11], [8]. Specifically, the
focus of [11], [8] is to improve the robustness of driving
models. Instead, our proposed driving model is to enable
intervention for risk object identification. We believe the
two lines of work should be studied jointly to obtain robust
driving models with explicit reasoning mechanisms.

III. METHOD

We formulate the risk object identification problem as the
cause-effect problem [26]. Specifically, we leverage and real-
ize the concept of causal inference in a two-stage framework
to identify the cause (i.e., the object) of an effect (i.e., driver
behavioral change) via the proposed object-level manipulable
driving model. We discuss the methodology of the proposed
framework in the following.

A. Object-level Manipulable Driving Model

To realize causal inference for risk object identification, we
propose an object-level manipulable driving model with the
two properties. First, the driving model should be able to pre-
dict the corresponding driver behavior in an intervened sce-
nario, i.e., an object is removed from historical observations.
Second, the driving model needs to predict driver behavior
while interacting with traffic participants. To realize the
properties, we use partial convolutional layers [23] instead of
standard convolutional layers. A partial convolutional layer
is initially introduced for image inpainting. We utilize partial
convolutions to simulate a scenario without the presence of
an object. A partial convolutional layer takes two inputs,
i.e., an RGB frame and corresponding one-channel binary
mask. The value of pixels within a mask is set to be 1 by
default. While training the driving model with an intervention
(Section III-B) and perform causal inference for risk object
identification (Section III-C), we set the pixels within as
elected object to be 0.

To obtain representations of objects, Mask R-CNN [12],
and Deep SORT [33] is applied to detect and track every
object. RoIAlign [12] is employed to extract the corre-
sponding object representation. The ego’s representation is
extracted via average pooling the features extracted from the
partial convolution networks. Here we use ‘ego’ to denote
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Fig. 2: An overview of our framework. The right and left figures show the inference process with and without intervention,
respectively. Both employ the same driving model to output the predicted driver behavior. The inputs to the driving model
include a sequence of RGB frames, a sequence of binary masks, and object tracklets. Partial convolution and average pooling
are employed to obtain the ego features, while object features are extracted by RoIAlign. Each feature is modeled temporally
and then propagates information to form a scene representation for final prediction. On the right, the input is intervened at
an object level by masking the selected object on the convolution mask and removing it from the tracklets. For example,
we remove the car in the green box, and the driving model returns a high confidence score of ‘Go.’

the representation of a driver. We use a long short-term
memory(LSTM) module [13] to model the ego and objects’
temporal dynamics.

Motivated by [32] and [21], modeling interaction is es-
sential for driver behavior modeling. We model interactions
between the ego and objects via the following message
passing mechanism,

g = he ⊕
1

N
(

N∑
i=1

hi) (1)

where g is defined as the aggregated representation. The
ego’s representation he is obtained after temporal modeling
and ho = {hi, h2, · · · , hN} are representations of N objects.
⊕ indicates a concatenation operation. To manipulate the
representation at the object level, we set the pixel value of
the binary mask to 0 at the selected object’s location. The
mask influences representations extracted from the partial
convolution networks and disconnect the message of the
selected object from the rest of the objects and the ego. This
representation g is passed through fully connected layers
to obtain the final classification of driver behavior. In this
work, we categorize driver behavior to be ‘Go’ and ‘Stop’.
An overview of the proposed driving model architecture is
shown in Fig. 2.

B. Training with Intervention

We cluster and label the training samples into two cat-
egories — (1) ‘Go’: the ego vehicle moves without stop-
ping/yielding/deviating and (2)‘Stop’: the ego vehicle stops,
yields, or deviates for objects. We use the behavioral change
between these two states to reason the risk object that
influences driver behavior. It is worth noting that this is the
only supervision signal. The performance of driving models

can be improved by training with samples with different
traffic configurations [36]. Due to the limited real-world
human driver demonstrations, we design a training strategy
that utilizes the concept of intervention from causal infer-
ence [26] to improve the robustness of the driving model.
Specifically, we create new configurations based on a simple
yet effective notion, i.e., removing non-causal objects does
not affect driver behavior. For instance, in the ‘Go’ scenario,
the ego vehicle goes straight and passes an intersection while
pedestrians on the sidewalk. It is reasonable to assume if a
pedestrian was not present, the behavior of the ego vehicle
is the same.

This strategy is only applicable to the first category. In
the second category, we need to know the causal object
to remove non-casual objects. Intensive labeling of risk
objects’ locations is required. Note that this contradicts the
spirit of the proposed weakly supervised method. Moreover,
even if the annotations of causal objects are given, we
cannot intervene on the causal object and simply assume
the corresponding driver behavior to ‘Go’ because traffic
situations are inherently complicated, making the intervened
diver behavior unclear. For instance, imagine that under a
congestion circumstance where the ego vehicle stops for the
front vehicle at an intersection, while the traffic light shows
red. In such a case, the front vehicle is labeled as the risk
object (cause). However, removing the front vehicle does not
necessarily change the ego vehicle’s behavior because of the
red light.

Algorithm 1 provides the pseudo-code of the proposed
training process. For training samples in the first category, we
randomly select one object k to intervene. Based on detection
and tracking, a one-channel binary mask is generated and set
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Algorithm 1: Training Driving Model with Intervention

T : Number of frames
N : Number of objects in the given tracklet list
he: Hidden states of ego in LSTM module
ho: Hidden states of objects in LSTM Module ho :=
{h1, h2, · · · , hN}
A: Ground truth driver behavior (either ‘GO’ or ‘STOP’)
Input: A sequence of RGB frames I := {I1, I2, · · · , IT }
Output: Confidence score of driver behaviors sgo, sstop

1: O := DetectionAndTracking(I)

:= {O1, O2, · · · , ON} // List of tracklets
2: if A is ‘GO’ and N > 1 then
3: // Randomly choose one object to remove

k := RandomSelect(N)
4: else
5: k is empty
6: end if
7: // Mask out the region of object k on each mask frame

M := MaskGenerator(I,Ok)
8: // Remove the object k from the tracklet list

O′ = O − {Ok}
9: sgo, sstop := DrivingModel(I,M,O′) //Defined as

below
10: return sgo, sstop

1: function DRIVINGMODEL(I,M,O)
2: for t ∈ {1, 2, · · · , T} do
3: et := EgoFeature(It,Mt)
4: he := LSTM(et, he)
5: for Oi ∈ O do
6: f t

i := RoIAlign(oti) // Object Features (oti
is i-th object’s bounding box at time t)

7: hi := LSTM(f t
i , hi)

8: end for
9: end for

10: g := MessagePassing(he, ho)
11: sgo, sstop := ActionClassifier(g)
12: return sgo, sstop

13: end function

the pixels’ value within the k-th object’s region to be 0.

Mt(i, j) =

{
0, if (i, j) in region otk
1, otherwise

(2)

where Mt denotes the generated mask at time t, otk is the
bounding box of the k-th object at time t, and (i, j) is
the pixel coordinate. This mask and the corresponding RGB
frame will be the inputs to the partial convolutional networks.
Notice that the k-th object is discarded from the tracklet list
before feeding into the driving model.

C. Causal Inference for Risk Object Identification

The concept of causal inference is utilized for risk object
identification. Specifically, given video frames and tracklets,

Algorithm 2: Inference for Risk Object Identification

T : Number of frames
N : Number of objects
Input: A sequence of RGB frames I := {I1, I2, · · · , IT }
where the ego car stops
Output: Risk object ID

1: O := DetectionAndTracking(I)

:= {O1, O2, · · · , ON}// List of tracklets
2: for Ok ∈ O do
3: // Mask out the region of object k on each frame

M := MaskGenerator(I,Ok)
4: // Remove the object k from the tracklet list

O′ = O − {Ok}
5: // Predict the action of ego car without object k

sgok , sstopk := DrivingModel(I,M,O′)
6: end for
7: return argmax

k
(sgok )

# Training Frames # Validation Frames # Test Frames

Crossing Vehicle 18,696 5,652 311
Crossing Pedestrian 20,784 3,999 84

Parked Vehicle 11,484 3,537 136
Congestion 21,132 5,607 99

TABLE I: Statistics of train/val/test samples in HDD [27]
used in our experiments.

the masks of a tracklet and the corresponding video frames
are processed by the trained driving model. The driving
model predicts the confidence score of ‘Go’ and ‘Stop.’
We select the object with the highest confidence score of
‘Go’, indicating this object causes the most substantial driver
behavioral change as the risk object. Algorithm 2 describes
the process.

IV. EXPERIMENTS

A. Dataset

We evaluate the proposed framework on the HDD
dataset [27], a multisensory 104-hour naturalistic driving
dataset providing a 4-layer representation of tactical driver
behavior. The Stimulus-driven action layer includes behav-
iors such as ‘stop’ and ‘deviate’ and the Cause layer denotes
the reasons for behavioral changes such as an oncoming
vehicle. For example, while going straight, an oncoming
vehicle causes the driver to stop. In total, the dataset has 6
Cause scenarios, i.e., Stopping for Congestion, Stopping for
Crossing Vehicle, Deviating for Parked Vehicle, Stopping for
Pedestrian, Stopping for Sign, and Stopping for Red Light.
The first four scenarios are selected to evaluate the proposed
risk object identification framework. We utilize the frame-
level driver behavior label (i.e., ‘Go’ and ‘Stop’) to train our
driving model.

The dataset consists of 137 sessions, and each session
represents a navigation task performed by a driver. In [27],
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Driving
Model Mask Training with

Intervention

Crossing Vehicle Crossing Pedestrian Parked Vehicle Congestion

Acc0.5 Acc0.75 mAcc Acc0.5 Acc0.75 mAcc Acc0.5 Acc0.75 mAcc Acc0.5 Acc0.75 mAcc

Vanilla CNN RGB 7 36.0 35.7 31.4 20.2 16.7 14.9 36.8 32.4 29.7 87.9 83.9 76.8

Partial CNN

RGB 7 38.6 37.6 33.5 22.6 19.0 16.2 36.0 32.4 29.0 81.8 81.8 73.7
RGB 3 41.2 40.5 36.2 19.0 16.7 13.5 39.0 36.8 32.4 94.9 91.0 82.6

Convolution 7 38.6 37.6 33.6 22.6 17.9 16.2 36.8 33.1 29.5 88.9 84.8 78.0
Convolution 3 44.4 43.1 38.5 25.0 22.6 19.3 34.6 33.1 28.8 88.0 84.8 77.3

Partial CNN
+ Object

Convolution 7 39.9 38.9 34.4 27.4 22.6 18.9 31.6 27.9 24.7 91.9 87.9 79.7
Convolution 3 49.2 48.6 43.0 35.7 32.1 27.0 47.1 44.9 39.8 92.9 88.9 81.0

TABLE II: Ablation studies. Results of risk object identification in four scenarios on the HDD. The unit is %. The best and
second performances are shown in bold and underlined, respectively.

the authors split the dataset into training and testing sets
according to the vehicle’s geolocation. We use the same
train/test data split as in [27] (i.e., 100 sessions for training
and 37 sessions for testing). The dataset provides annotations
of risk objects for a tiny portion of the dataset, making it
infeasible to train a robust supervised learning-based two-
class object detection model as in [39], [9]. The statistics of
train/val/test samples are presented in TABLE I.

We use accuracy, i.e., the number of correct predictions
over the number of ground truth samples as the evaluation
metric. An accurate prediction is that an Intersection over
Union (IoU) score is greater than a threshold. Like [22],
[40], accuracy at IoU thresholds of 0.5 and 0.75 are reported,
as well as mean accuracy mACC, which is the average
accuracy at 10 IoU thresholds evenly distributed from 0.5to
0.95.

B. Implementation Details

We implement our framework in PyTorch [2] and perform
all experiments on a system with Nvidia Quadro RTX 6000
graphics cards. The framework takes a sequence of frames
with a resolution of 299 × 299 at 3 fps, and T is set to 3
in all the experiments, approximately 1s. The corresponding
input mask maintains the same size as the input image.
The convolutional backbone is a InceptionResnet-V2 [30],
pre-trained on ImageNet [28] and is modified with partial
convolution layers [23], [24]. A Detectron model [10] trained
on MSCOCO [22] is used to generate object bounding boxes.
RoIAlign extracts an object representation with a size of
20×8×8 from the Conv2d 7b layer, which is then flattened
into a 1280-dimensional vector.

We follow the same initialization strategy as in [37], i.e.,
the hidden state units is set to 512, and dropout keep prob-
ability [29] is set to 0.5 at hidden state connections LSTM.
The aggregated feature g concatenated from ego features and
object features is a 1-D vector with 1024 channels. Similar
to [16], the output sizes of 3 fully-connected layers before
the final binary classifier are 100, 50, and 10, respectively.
The network is trained end-to-end for 10 epochs with batch
size set to 16. We use Adam [18] optimizer with default
parameters, learning rate 0.0005, and weight decay 0.0005.

C. Ablation Studies
We evaluate three aspects of our framework in TABLE II.

Architecture of the Driving Model. Our proposed driving
model uses features from CNN features and object features.
For CNN features, we test two backbone features, i.e., vanilla
convolution and partial convolution.

Intervention Mask. The input to Partial CNN includes an
extra mask, offering two options to intervene an image. We
either input an RGB image with selected region masked out
or feed in a binary mask with the selected region set to 0.
We denote the two ways of intervention as ‘RGB mask’ and
‘Convolution mask’ in TABLE II.

Training with Intervention. To understand the interven-
tion’s effect on training driving models, i.e., using inter-
vention to generate more traffic configurations, we explore
two experimental settings — training with and without
intervention. Note that we always use a convolution mask
to remove selected objects while using the training with the
intervention strategy for Partial CNN. In the Partial CNN
+ Object model, we additionally remove the selected object
features during message passing.

Our final framework (last row in TABLE II) boosts the
mACC by 11.6%, 13.5%, 11%, and 7.3%, respectively,
compared with the lowest accuracies. It ranks first in three
scenarios (Crossing Vehicle, Crossing Pedestrian and Parked
Vehicle) and second in Congestion case. Training with in-
tervention always leads to an increase in accuracy when
object-level information is modeled. However, it does not
necessarily help the performance when the driving model is
modeled using only partial CNN.

Regarding the intervened mask types, we observe that in
Crossing Vehicle and Crossing Pedestrian scenarios, inter-
vening with a convolution mask achieves higher accuracy
than an RGB mask. However, in the other two scenarios, it
is the opposite. We conjecture that, when the ego vehicle
deviates for parked cars or stops for congestion, the target
risk object is salient and closed to the ego vehicle. Under
such a circumstance, inputting a masked RGB frame could
be sufficient for the driving model to predict correct driver
behavior. Therefore, the hallucination effect of partial con-
volutional layers is negligible.

D. Quantitative Evaluation

There is no existing work being developed for risk ob-
ject identification. Therefore, we re-implement three ap-
proaches [16], [32], [35], and follow their design philosophy
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Method

mAcc

Crossing
Vehicle

Crossing
Pedestrian

Parked
Vehicle Congestion

Random Selection 15.1 7.1 6.4 5.5
Driver’s Attention Prediction * [35] 16.8 8.9 10.0 21.3

Object-level Attention Selector * [32] 36.5 21.2 20.1 8.9
Pixel-level Attention + Causality Test * [16] 41.9 21.5 34.6 62.7

Ours 43.0 27.0 39.8 81.0

TABLE III: Comparison with baseline methods. The methods
with * are our re-implementation. The unit is %. The best
and second performances are shown in bold and underlined,
respectively.

to select important/risk objects. The comparison with our
method is shown in TABLE III.

Random Selection and Driver Attention Prediction. The
results of these two methods are not directly comparable to
ours, and we show the results to provide an essential measure
of the difficulty of this task. We first propose a naive baseline,
randomly selecting one object as the risk object from all the
detections for a given frame. This method does not process
any visual information. In TABLE III row 2, we use a pre-
trained model [35] to predict the driver’s gaze attention maps
at each frame. We compute the average attention weight of
every detected object region. The risk object is one with the
highest attention weight, indicating the driver’s gaze attends
this region. The model is trained with the human gaze as
supervision, which is unavailable in the HDD dataset. Thus,
we use the model pre-trained on the BDD-A dataset [35]. The
performance of this method is slightly better than Random
Selection. By visualizing the predicted attention map, we
discover that the heated spots tend to cluster around the
vanishing point. Note that the issue has been raised in [4].
The reference highlights that this is one of the challenges of
imitating human gaze behavior.

Object-level Attention Selector. Wang et al. [32] de-
signed an object-centric driving model by learning object-
level attention weights, which can be further used as an
object selector for identifying risk objects. Motivated by
their design, we modify the message passing in our driving
model to be object-level attention and re-train our model. We
evaluate the accuracy in four scenarios based on the selected
object with the highest attention weight.

Pixel-level Attention + Causality Test. Kim et al. [16]
proposed a causality test to search for regions that influence
the network’s output. They utilized the pixel-level attention
map learned from an end-to-end driving model to sample
particles conditioned on the attention value over an input
image. The sampled particles are clustered to produce a
convex hull further to form region proposals. Each convex
hull is masked out on an RGB image, and the image is sent to
the trained model to perform a causality test, iteratively. The
region, which leads to the maximum decrease of prediction
performance, will be the risk object. For a fair comparison,
we replace the region proposals with object detections and
utilize the pixel-level attention to filter out detections with
low attention values. In the experiments, we set the threshold
at 0.002.

The reason for this modification is that, compared with our
detections generated from the state-of-the-art object detection
algorithm, the region proposals obtained from pixel-level
attention are not guaranteed to be an object, which results
in an extremely low IoU and accuracy. Additionally, the
code of generating region proposals is not publicly available.
This method’s performance is the closest to our results
since the causality test is similar to our inference with
intervention Our performance is better because our driving
model is manipulated at the object-level and is trained with
the intervention strategy for robustness.

E. Visualization

We visualize the qualitative results of our method in
the four scenarios. In Fig. 3, ground truth risk objects are
enclosed in red bounding boxes, and our predicted results
are colored in green. To better visualize the interactions
between traffic participants, we provide a birds-eye-view
(BEV) pictorial illustration in the second row. The BEV
figures depict the scene layout, the intention of the ego
vehicle and other traffic participants’, and the identified risk
object in the green box. In Fig. 3 (b), three pedestrians are
presented in the scene, crossing the road towards different
destinations. Our approach correctly tags the left-hand side
pedestrian to be the risk object. The ego vehicle intends
to take a left turn, indicating that our driving model can
implicitly anticipate the ego vehicle’s intention based on
historical observations.

In addition to risk object identification, our framework can
also assess the risk of every object in the scene. We visualize
the corresponding results in Fig. 4. All detected objects are
localized using colored bounding boxes, and the related risk
scores are in a bar chart with related colors. The risk score of
an object is defined as the predicted confidence score of ‘Go’
when the object is masked using the proposed risk object
identification framework. A higher score of ‘Go’ represents
a higher possibility that the object influences the ego vehicle
behavior. We use a black horizontal line to indicate the
predicted confidence score of ‘Go’ without any interventions
on the input. If the score of ‘Go’ is less than 0.5, the driver
behavior is classified as ‘Stop.’ Our framework generates
satisfactory risk assessment results qualitatively.

In Fig. 4 (b), when multiple risk objects (a group of
people) exist, our framework assigns high-risk scores to all
pedestrians. The result seems correct at first glance. However,
even if one of the pedestrians was not present, the ego
vehicle should have stopped. We conjecture that the partial
convolutional operation not only hallucinates the removed
area but also affects the surrounding regions due to the
growing receptive field as networks go deeper. As pedestrians
are adjacent, removing one person by partial convolutions
may dilute the surrounding ones and return high-risk scores.
To verify the conjecture, we manually inpainting the im-
age by masking every pedestrian iteratively and feed the
inpainted image to the same driving model without applying
partial convolutions. The corresponding results are shown in
Fig. 5. A lower risk score of each pedestrian is observed that
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(a) Crossing Vehicle (b) Crossing Pedestrian (c) Parked Vehicle (d) Congestion

Fig. 3: Risk object identification results on sample scenarios selected from the HDD dataset. The top row shows an egocentric
view where green boxes are the predicted risk objects, and ground truth ones are in red. A birds-eye-view representation
is presented in the bottom row, providing information including scene layout, intentions of traffic participants, and the ego
vehicle. The objects in green frames are the risk objects detected by our method.

\

(a) Crossing Vehicle (b) Crossing Pedestrian

(c) Parked Vehicle (d) Congestion

Fig. 4: Risk assessment results on sample scenarios selected from the HDD dataset. On the left, all detected objects are
localized in colored bounding boxes. The risk score of each object is depicted in a bar chart on the right. The color of each
bar is one-to-one matched to the bounding box. A black horizontal line is used to indicate the predicted ‘Go’ score without
any interventions.

aligns with our intuition. It also proves our conjecture that
partial convolutional operations influence the behavior of the
proposed driving model while more studies are needed.

F. Failure Cases

While our model shows the possibility to identify the
intention of the ego vehicle (Fig. 3 (b)), there are situations
that our driving model selects an incorrect risk object due
to wrong intention prediction. In Fig. 6 (a), the ego vehicle
plans to take a right turn and stops for the car in the red box.
However, our framework selects the white pickup truck as
the risk object because of the incorrect prediction of the ego
vehicle due to ambiguous and historical cues. Additionally,
in Fig. 6 (b), our driving model cannot distinguish which
car will move first at a 4-way stop intersection and where it
is going, resulting in a wrong selection. Hence, we believe
explicitly modeling the intention of drivers, and other par-

ticipants’ in the driving model will render better inference
results.

V. CONCLUSIONS
In this paper, we propose a novel driver-centric definition

of risk, i.e., objects influencing drivers’ behavior are risky.
A new task called risk object identification is introduced.
We formulate the task as the cause-effect problem and pro-
pose a novel two-stage risk object identification framework
based on causal inference with the proposed object-level
manipulable driving model. Favorable performance on risk
object identification in comparison with strong base-lines is
demonstrated on the HDD dataset. Extensive quantitative and
qualitative evaluations are conducted. For future works, as
highlighted in IV-F, explicit intention modeling of driver
and traffic participants’ will be beneficial. Additionally, a
more sophisticated driver behavior modeling that considers
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Remove by inpainting Remove by partial convolutions

Fig. 5: An example of computed risk scores by using
inpainted images and partial convolutions (our method).

(a) (b)

Fig. 6: Examples of failure cases. Our prediction is in green
and ground truth is in red.

acceleration, brake, and steering are essential for reasoning
the causal and effect. Furthermore, it will be valuable for
practical applications to formulate the framework into a
single-stage framework, as presented in [15], [25], [14], [8].
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[20] S. Lefèvre, D. Vasquez, and C. Laugier. A Survey on Motion
Prediction and Risk Assessment for Intelligent Vehicles. ROBOMECH
Journal, 1:1, 2014. 1, 2

[21] C. Li, Y. Meng, S. H. Chan, and Y.-T. Chen. Learning 3D-aware
Egocentric Spatial-Temporal Interaction via Graph Convolutional Net-
works. In ICRA, 2020. 3

[22] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick. Microsoft COCO: Common Objects in
Context. In ECCV, 2014. 5

[23] G. Liu, a. K. J. S. Fitsum A. Reda, T.-C. Wang, A. Tao, and
B. Catanzaro. Image Inpainting for Irregular Holes using Partial
Convolutions. In ECCV, 2018. 2, 5

[24] G. Liu, K. J. Shih, T.-C. Wang, F. A. Reda, K. Sapra, Z. Yu, A. Tao,
and B. Catanzaro. Partial Convolution based Padding. arXiv preprint
arXiv:1811.11718, 2018. 5

[25] S. Nair, Y. Zhu, S. Savarese, and L. Fei-Fei. Causal Induction
from Visual Observations for Goal Directed Tasks. In NeurIPS 2019
Workshop on Causal Machine Learning, 2019. 8

[26] J. Pearl. Causality. Cambridge University Press, 2009. 2, 3
[27] V. Ramanishka, Y.-T. Chen, T. Misu, and K. Saenko. Toward Driving

Scene Understanding: A Dataset for Learning Driver Behavior and
Causal Reasoning. In CVPR, 2018. 2, 4, 5

[28] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei. ImageNet LargeScale Visual Recognition Challenge. In
IJCV, 2015. 5

[29] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. JMLR, 2014. 5

[30] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alem. Inception-
v4, Inception-ResNet and the Impact of Residual Connections on
Learning. In AAAI, 2017. 5

[31] A. Tawari, P. Mallela, and S. Martin. Learning to Attend to Salient
Targets in Driving Videos using Fully Convolutional RNN. In ITSC,
2018. 1

[32] D. Wang, C. Devin, Q.-Z. Cai, F. Yu, and T. Darrell. Deep Object
Centric Policies for Autonomous Driving. In ICRA, 2019. 1, 2, 3, 5,
6

[33] N. Wojke, A. Bewley, and D. Paulus. Simple Online and Realtime
Tracking with a Deep Association Metric. In ICIP, 2017. 2

[34] World Health Organization. Global status report on road safety 2018:
Summary, 2018. 1

[35] Y. Xia, D. Zhang, J. Kim, and D. W. Ken Nakayama, Karl Zipser.
Predicting Driver Attention in Critical Situations. In ACCV, 2018. 1,
5, 6

[36] H. Xu, Y. Gao, F. Yu, and T. Darrell. End-to-end Learning of Driving
Models from Large-scale Video Datasets. In CVPR, 2017. 2, 3

[37] M. Xu, M. Gao, Y.-T. Chen, L. Davis, and D. Crandall. Temporal
Recurrent Networks for Online Action Detection. In ICCV, 2019. 5

[38] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and
T. Darrell. BDD100K: A Diverse Driving Video Database with
Scalable Annotation Tooling. In arXiv preprint arXiv:1805.04687,
2018. 2

[39] K.-H. Zeng, S.-H. Chou, F.-H. Chan, J. C. Niebles, and M. Sun. Agent-
Centric Risk Assessment: Accident Anticipation and Risky Region
Localization. In CVPR, 2017. 1, 5

[40] Z. Zhang, C. Yu, and D. Crandall. A Self Validation Network for
Object-Level Human Attention Estimation. In NeurIPS, 2019. 5

10718


