
Real-World Human-Robot Collaborative Reinforcement Learning*

Ali Shafti1, Jonas Tjomsland1, William Dudley1 and A. Aldo Faisal1

Abstract— The intuitive collaboration of humans and intel-
ligent robots (embodied AI) in the real-world is an essential
objective for many desirable applications of robotics. Whilst
there is much research regarding explicit communication, we
focus on how humans and robots interact implicitly, on motor
adaptation level. We present a real-world setup of a human-
robot collaborative maze game, designed to be non-trivial and
only solvable through collaboration, by limiting the actions to
rotations of two orthogonal axes, and assigning each axes to one
player. This results in neither the human nor the agent being
able to solve the game on their own. We use deep reinforcement
learning for the control of the robotic agent, and achieve results
within 30 minutes of real-world play, without any type of
pre-training. We then use this setup to perform systematic
experiments on human/agent behaviour and adaptation when
co-learning a policy for the collaborative game. We present
results on how co-policy learning occurs over time between the
human and the robotic agent resulting in each participant’s
agent serving as a representation of how they would play the
game. This allows us to relate a person’s success when playing
with different agents than their own, by comparing the policy
of the agent with that of their own agent.

I. INTRODUCTION

Human-Machine Interaction methods are changing. Efforts
were previously focused on creating “user-friendly” inter-
faces, so that human users can better learn to work with
a system that is persistent in its behaviour. With the ever-
increasing success of artificially intelligent agents, however,
the possibilities for creating a fluid, adaptive and ever im-
proving interface and interaction are increasing. Instead of
the conventional paradigm of the human adapting to the ma-
chine, we want machines that can adapt to humans – a mutual
adaptation happening over time, leading to more intuitive and
explainable interactions. To achieve this, we need intelligent
control agents that can learn as they interact with a human
user. A common tool for this is reinforcement learning (RL)
as it follows the same learning mechanism driving human
learning [1]. We are interested in implementing Human-in-
the-Loop RL, i.e. having an agent that interacts with and
learns directly from a human counterpart.

Human in-the-loop RL can be mapped as a specific case
of a multi-agent system, which has been an ongoing area of
research for the past two decades [2], [3]. However, specific
complications arise from having a human in-the-loop, mainly
due to the stochastic nature of human behaviour, and limited
observability of human intent, reasoning and theory of mind.
Similarly, the agent is not fully observable for the human

1 AS, JT, WD and AAF. are with the Brain and Behaviour Lab, Dept.
of Bioengineering and Dept. of Computing, Imperial College London, SW7
2AZ, London, UK {a.shafti,a.faisal}@imperial.ac.uk

Fig. 1: Our Human-Robot co-learning setup: A ball and maze
game is designed to require two players for success; one player
per rotation axis of the tray. One axis is tele-operated by a human
player, and the other axis by a deep reinforcement learning agent.
The game can only be solved through collaboration.

(e.g. lack of explainability), causing challenges for interac-
tive learning, making this area unique in its challenges.

Within Robotics, the advent of safe collaborative robots
presents an opportunity for use of human in-the-loop sys-
tems, i.e. creating robotic systems that learn through col-
laboration, and develop personalised collaborative policies
with humans, through interaction – similar to how two co-
workers would do over time. We present a real-world setup
for studies on how humans and intelligent robotic agents can
learn and adapt together for the completion of a non-trivial
collaborative motor task. We have designed a human-agent
collaborative maze game, see Figure 1, where a tray needs
to be tilted to navigate a ball to a goal. The human controls
one axis of tilt, and the agent controls the other. Hence, the
agent and the human need to learn to collaborate together.
We report the methods used in creating the setup, followed
by experiments investigating the possibility, and results of
human-robot real-time, real-world collaborative learning.

II. RELATED WORK

Human in-the-loop intelligent systems are a topic of active
research. In many cases, this takes the form of human-aided
learning, e.g. the TAMER framework [4], [5] where the
agent learns via real-time qualitative feedback from a human
advisor rather than environment reward, outperforming both
humans and state-of-the-art RL algorithms in ATARI Bowl-
ing within 15 minutes. Similarly, sparse human feedback has
been shown to result in successful complex behaviour in
ATARI and MuJoCo environments within an hour of human
time [6]. More active roles for the human counterparts can

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 11161

be seen in cases of shared autonomy. Here, environments
involve multiple agents (human or artificial) acting at the
same time, to achieve shared or individual goals. This has
been used e.g. in drone-flying tasks, where sub-optimal
human actions are augmented by a deep RL agent, to achieve
better performance [7] or in human-robot teaming setups [8].

An important aspect of such human in-the-loop systems
is how to interface the human [9]. We have shown low-
cost, intuitive human interfacing through head movements
monitoring [10]. Human gaze is an intuitive interface for
implicit robot interaction e.g. with assistive robotic systems
[11], but also to learn and predict human visual attention, e.g.
while driving, to train better performing, human interpretable
self-driving agents [12]. Other aspects of human behaviour,
such as kinematic and muscle activity data can be used e.g.
for creating ergonomic, intuitive human-robot collaboration
[13] or with supervised learning approaches to improve the
performance of robotic prosthetics [14]. Deep RL has been
used to infer social norms regarding pedestrian behaviour
to motion plan robotic vehicles in a meaningful manner for
humans [15]. Implicit interfacing of human advice has been
implemented through an agent that modulates its speed based
on how unsure of an action it is, naturally prompting the
human for feedback [16]. Opponent modelling and theory
of mind have been leveraged to gain insights regarding RL
in multi-agent scenarios, showing that in tasks relying on
collaboration being aware of the other learning agent, leads
to better performance [17].

The above approaches in human in-the-loop systems are
either trained in simulation, operate solely in a simulated
world or are based on sequential or interval-based interac-
tions involving explicit communication or unbalanced re-
sponsibilities within the task. In this work we are inter-
ested instead in real-world, real-time collaborative learning
between a human and an agent, with implicit communication.

III. METHODS
A. Robotic Setup

We use a Universal Robots UR10 (Universal Robots A/S,
Odense, Denmark) as the robotic manipulator. A 50cm ×
50cm square tray is built out of cardboard material, and
attached to the UR10 end-effector, through a 3D printed
mechanical interface. The tray has barrier walls on all four
sides to keep the ball from falling off as well as two obstacle
walls, positioned diagonally, with a 9cm opening in the
centre (refer to Figure 1 and Figure 2). A 5cm-diameter
hole is cut near one of the board’s corners, representing
the goal for a rolling ball to fall into. The ball is 6cm in
diameter and made out of transparent acrylic. The game,
i.e. the task of rolling the ball from a given start point on
the tray, to the goal, is solved purely by rotating the tray
around its x-y axes (two orthogonal axes on the tray plane,
with the centre of the square tray as the origin – see Figure
2); no rotation around the z-axis, nor translations along any
axes is allowed. The human player’s commands are sent via
a smaller tray that they hold and rotate (Figure 1 and 2).
The human tray’s orientation is tracked with three optical

Fig. 2: Overview of our collaborative maze game setup. The human
and the RL agent’s actions are mapped to orthogonal rotation axes
of the tray. The individual effects of human and agent actions are
marked on the ball with green and red arrows respectively. The
states fed to the RL agent are x and y position of the ball in the
tray frame, x and y ball velocity, rotation angles along the two axes
(θ for x and φ for y rotations), and respective rotational velocities.

markers placed on top of it, through a motion capture system
consisting of Optitrack Flex 13 cameras (NaturalPoint, Inc.
DBA OptiTrack, Corvallis, Oregon, USA). The position of
the ball on the tray is similarly tracked via optical markers
placed inside it (Figure 1 and 2).

To integrate the above, we used the Robot Operating
System (ROS) [18], running on a Linux workstation (ROS
Melodic, Ubuntu 18.04). The motion capture software was
running on a Windows 10 workstation networked with the
ROS master. Through ROS, we are able to track the position
of the ball with respect to the tray frame: (x, y), the rotation
of the tray along its x and y axes: θ and φ respectively, and
the rotation of the human’s handheld tray along its y axis:
φhuman, see Figure 2. Human actions are then calculated
through a simple proportional control setup:

ahuman = kp(φhuman − φ) (1)
with kp = 2 selected empirically for our setup and ahuman
limited to [−1, 1], i.e. smaller and larger values set to −1 and
1 respectively. To send motion commands to the robot, we
used the jog_arm1 ROS package which simplifies the com-
munication of smooth velocity commands to ROS-enabled
robots, allowing us to send real-time jogging commands.

B. Reinforcement Learning Setup

Reinforcement learning (RL) agents explore and navigate
in an environment, taking actions (a) given a state (s),
with the intention of maximising a long-term reward [19].
This results in trajectories of state-action transitions, τ =
(s0, a0, s1, a1, ..), generated by following a specific policy
π that provides a mapping from states to actions. For our
setup, we define an eight-dimensional state space,

s = [x, y, ẋ, ẏ, θ, φ, θ̇, φ̇] (2)

1https://github.com/UTNuclearRoboticsPublic/jog_arm

11162

consisting of the position (x, y) and velocity (ẋ, ẏ) of the
ball in the game tray frame, and rotation angles (θ,φ) and
rotational velocities (θ̇,φ̇) of the game tray about its x and
y axes respectively. Human behaviour is included in the
state space through the game tray rotation around its y-axis,
which is mimicking the human’s tray via the tele-operation
interface. The RL agent’s action space is one-dimensional,
a continuous value at ∈ [−1, 1] is mapped to rotational
velocity commands along the game tray’s x axis. We use
a sparse reward function,

r(s, a) =

{
+10, goal reached
−1, otherwise

(3)

meaning that the agent does not have explicit knowledge
of the goal position, and thus experiencing goal reaches is
crucial to it forming a representation of state values with
respect to the goal.

To implement our human in-the-loop RL approach above
we base it on the Soft Actor Critic (SAC) method [20]. SAC
is an off-policy, maximum entropy RL method. Running off-
policy allows us to reuse state-action transitions sampled in
previous trials when training our networks. This is crucial for
our case where fewer interaction steps are feasible. The max-
imum entropy framework [21] adds an entropy maximisation
term to our RL objective function for an optimal policy π∗,
which encourages exploration:

J(π) =

T∑
t=0

E
τ
[r(st,at)− αtlogπt(at|st)︸ ︷︷ ︸

Entropy term

]

π∗ = argmax
π

J(π)

(4)

We can balance the exploration/exploitation relationship by
the temperature parameter α, where a larger α encourages
more exploration, and a smaller one corresponds to more
exploitation. Using the automatic entropy tuning method
introduced by Haarnoja et al. [22], we can constrain the
policy’s entropy to a desired value throughout the learning
process. This removes the need for us to perform intricate
hyperparameter tuning, allowing for a very sample-efficient
training process.

Our RL setup learns multiple function approximaters mod-
elled by neural networks. These include the Actor, π(a|s),
a policy network outputting a Gaussian distribution over
the continuous action space. A Critic, Q(s, a), which is
represented by two Q-value functions evaluating the value
of an action in a given state. Only the minimum of the Q-
functions is used for the value gradient, this has shown to
speed up training and remove bias in the policy improvement.
Additionally, a separate function approximator is used for the
soft state value, V (s). All our function approximators above
are parametrised with fully connected feed-forward neural
networks with two hidden layers, with 32 neurons each, and
tanh activations.

During training, the action, at, is sampled from the Gaus-
sian distribution output of the Actor network. During testing,
the mean of the distribution is used, thereby removing the
stochasticity, to fully exploit the policy. This, together with
the human action (ahuman in Equation 1) are applied on the

two rotational axes of the game tray. These actions, being
velocity commands, are executed on the robot for 200ms.
Limits are set for both the rotational velocity, and the angles
of the tray to keep the workspace safe. The resulting state
st+1, reward rt and whether or not the state was terminal,
d, are then extracted and stored in a replay buffer of past
transitions used for gradient updates of the networks. We
implement our deep RL agent as described above, using
PyTorch [23], and integrate it with the robotic system through
ROS.

C. Experimental Setup

We now have a foundation for applying human and agent
actions together on the robot manipulator. Each velocity
action is applied constantly for 200ms. We refer to this as a
single control frame. This approach, plus the inherent loop
delay and velocity limits of the system, mean that depending
on the timing of the human’s movements, they will observe
a variable delay of maximum 300ms in their intended action
being fulfilled. While efforts can be made to reduce this, we
see it as an interesting component of the system, as it adds
complications from the human’s point of view, making the
interaction with an untrained RL agent more fair.

For our experimental setup, we define each trial to consist
of 200 control frames, a total of 40 seconds. A trial ends
immediately if the ball reaches the goal, and otherwise times
out in 40 seconds – i.e. after 200 control frames have been
applied. Each trial, therefore, consists of 200 state transitions
for the RL agent, which are stored in its replay buffer, to be
used for network updates. We set the size of the agent’s
replay buffer to be 5 trials, meaning a buffer of 1000 (i.e.
5 × 200) state transitions. The game always starts with the
ball in one of the corners of the side of the tray opposite the
goal-side, alternating between the three corners on each trial.
For trial results, scores are defined on a linear scale with a
maximum score of 200, and one point lost for each applied
control frame – i.e. if the goal is not reached by the end of
the trial, the score will be zero.

IV. EXPERIMENTS

A. Preliminary study and results

Pilot experiments of the system were conducted to evaluate
its functionality and plan out for the main experiments
described in the next sub-section. To closely follow the
original application of SAC [24], training is counted in terms
of control frames (i.e. RL agent’s state transitions), each
frame followed by a single gradient update of all networks.
All agent transitions are stored in the buffer without limit.
Offline updates of the network based on the stored buffer are
also performed to accelerate learning.

Two sets of tests were performed in this format. First,
a single participant interacted with a previously untrained
agent. The training process consisted of 3,500 control frames
and 140,000 offline gradient updates. Offline updates were
divided throughout training, running 20,000 offline updates
for every 500 control frames. After completion of each

11163

of these offline updates, performance was tested in trial-
based format, for 10 trials, as described before, with results
reported averaged over the 10 trials, shown in Figure 3, left.

For the second set of tests, 10 participants trained with
a previously untrained agent on a trial-based manner. Par-
ticipants first trained for 8 trials. The agent then undergoes
30,000 offline gradient updates on that buffer followed by a
second training set of 7 trials, with transitions added to the
original buffer, resulting in a 15-trial long buffer. Another
30,000 offline gradient updates are then applied. Ten trials
of testing with the agent follow, with scores averaged and
reported. Each participant was then asked to do another ten
trials, this time with a human “expert” (one of the system’s
designers who had the most experience with the game) acting
as the interaction partner for human-human trials, controlling
the axis previously under control of the RL agent. During the
human-human trials we ensured the two players cannot see
each other, and that they do not communicate in any way.
Score results are averaged over ten trials and reported in
Figure 3, right. Results from the single-subject experiment
(Figure 3, left) show the human-agent team as able to solve
the interaction task within the time provided. Furthermore,
performance consistency is increasing as the human-robot
team learn to collaborate. This is possibly the effect of
both the agent learning, and human motor adaptation. In
the second experiment, the RL-agent’s ability to collaborate
with humans was compared to how humans collaborate with
each other. In five out of the ten preliminary participants
(S1, S4, S5, S6, S7) there was no significant differences
in performance between the two scenarios. The remaining
half of the participants exhibit worse performance when
collaborating with the agent. We observed that the players
having worse results with their agents, also failed to reach the
goal, or at most reached it one time, in the first 500 control
frames of the game, which affects the agent’s representation
of the game’s goal. This might be due to these participants
being inherently worse players at the game, and would
perhaps have been resolved with longer training.

B. Co-learning experiments

Having confirmed the feasibility of human in-the-loop
learning with our system, we move to experiments on
collaborative learning. We ran 7 participants. To accelerate
learning, participants start their training on a common pre-
trained agent. The pre-trained agent is the result of 8 trials
of interactions by the expert player from the preliminary
study, followed by 30,000 offline gradient updates – total
elapsed time is about 15 minutes. This is effectively half
of the training done on the agents in the preliminary study.
The pre-trained agent is able to navigate the ball towards the
general direction of the goal, with coarse movements and
low precision, not making it beyond the obstacle barrier.

Participants are completely naive to the experimental
setup. Before training starts, a description of the system is
given to the participant. They are told about the RL agent,
with a brief description of how RL works. They are also
told about what they can control, and how to do it. Each

Fig. 3: Left: Learning curve of a single human player training with
the agent, including both online and offline updates of the agent.
Tests are performed at 500-step intervals, scores averaged over ten
trials. Plot shows mean score and standard error of the mean. Right:
Results of ten participants playing the game with their trained agent,
and with a human expert. Mean score and standard error of the mean
is shown.

participant is allowed to try out the interface and rotate the
tray for 40 seconds. This is without the ball on the tray, and
without the RL agent acting.

Training is done in a trial-based manner, allowing us
to observe performance results during training. The replay
buffer’s length is limited to 5 trials. Training consists of 80
trials, performed in blocks of 10, with the participant given a
chance to rest briefly in between blocks. The agent’s policy
is not updated during the trial. At the end of each trial (i.e.
200 control frames or goal reached), the agent undergoes
200 gradient updates. No further offline gradient updates are
performed. Before each trial starts, the participant is alerted
by three beeps played over speakers, and a trial’s end is
similarly announced, by a single beep. Score results and the
full state space of the agent’s data are recorded for analysis.

Once 80 trials of training are complete, the participants
are tested with their own final agent, as well as four agents
trained with different players. The agents are frozen during
testing, and are not learning any more. Three of the four
agents are selected from those of the preliminary study,
namely that of S1, S5 and S7 (see Figure 3, right), which
showed a performance at the same level as human-human
performance. The fourth agent is the expert player’s agent,
trained for 160 trials with online updates, followed by
256,000 offline gradient updates on the full buffer of 160
trials. Participants start testing by playing 10 trials with their
own agent, then 10 trials each with the four other models (S1,
S5, S7 and expert, randomised), and finally playing another
set of 10 trials on their own agent. They are not told that
their own agent is among the testing agents, but are rather
told that they are being tested with 6 unspecified agents.
Game score and observed data are recorded for analysis. See
supplementary video for better understanding of experiments.

V. RESULTS & DISCUSSION

The results of all 7 players during testing with different
agents and their own is shown in Figure 4. We see a divide in
the participants’ results. Looking at when participants play
with their own model, particularly on round 2, we see 3
participants that are performing consistently well (P1, P2,
and P3). P4 and P5 have medium performances, whereas
the others have bad performances (P6 and P7). This divide

11164

Fig. 4: Boxplots of game scores of all 7 participants (P1 to P7)
playing with different agents: S1, S5, S7, expert, and their own
agent twice. The white squares indicate the mean.

seems to persist with some of the other agents, e.g. when
playing with the expert agent, we see that, again, P1, P2 and
P3 have more consistent performance than the others. This
can be explained with P5, P6, and P7 being generally bad
at the game – but this does not explain the results when
playing with S1. In this case, P1, P2 and P3 show very
inconsistent and mediocre performance, significantly lower
than their performance with their own agents, whereas P5,
P6 and P7 retain their average to high performance that they
showed with the expert agent, and outperform their results
with their own agents.

This result fits well with the hypothesis that co-learning
is occurring, and that personal models are important. P1, P2
and P3 have managed to develop a consistent collaborative
policy through their 80 trials, whereas this has occurred less
so for P4, and even less so for P5, P6 and almost not at all
for P7. However, we can already see from the results that
the issue with P5, P6 and P7 is the agent they developed,
and not necessarily an inherent skill issue, i.e. there exist
agents that improve their game. As an example, see P7’s
performance with S7, which is on level with the highest
performances achieved by any participant with any agent.
Perhaps this could have been achieved with their own agent
with longer training, or further policy update iterations.

To further analyse this, we compare the different trained
agents, independent of the human interacting with them. To
do this, we “test-drive” our agents offline, by feeding them
state iterations, evenly distributed to cover a fair sample of
all possible state ranges for all 8 state parameters. We iterate
x and y with 5.5cm intervals, ẋ and ẏ with 30cm/s intervals,
tray angles along the two axes with 0.05rad intervals and
respective angular velocities with 0.2rad/s intervals. Cross-
iterating all the state parameters, we record output actions of

Fig. 5: Left: Correlations between the behaviour of all participant-
trained agents, as well as the models they tested against, S1, S5,
S7 and expert. Right: Spatial representation of trained agents’
behaviour correlation with that of the pre-model, for participants
P2, P3, P6 and P7. The goal is marked as a green circle – see Figure
2 for reference. A higher correlation in a given position means that
the final agent’s policy has changed less from the original pre-model
on which training started.

the agents. This results in an output action vector of length
1,265,625 which can then be used to compare the behaviour
of different agents, through correlation analysis. The result
of this can be seen in Figure 5-Left. Note that the expert
agent has the highest correlations with the agents of P1, P2
and P3 – same participants that have the best performance
with it. Generally, the expert and S7 agents have the highest
correlations with the participants’ agents, and they are also
the agents that get the best performance from the participants,
aside from their own agents - see Figure 4. S1 and S5 have
the lowest correlations overall with our participants’ agents,
and again this fits with the performance plots of Figure 4. The
general trend observed by looking at individual participants’
agents and how they correlate with test agents, is that the
higher a test agent is correlated with the participant’s own
agent, the better the participant’s performance will be with it.
Note that the actions of an RL agent in isolation are relating
to the behaviour of the person that trained the RL agent,
when facing other RL agents. This is an indication that our
human-in-the-loop system is leading to co-learning, creating
agents that can serve as a representation of the human that
trained them, in terms of their skill in this game.

In order to show the meaning of these correlations more
intuitively, we present a spatial representation for 4 of the
participants across the spectrum. We take P2, P3, P6 and
P7. P2 and P3 show generally good performance on their
own models, the expert model and S7. P6 and P7 have poor
performance overall, though P7 plays well with S7. Figure 5-
Right, shows how these four participants’ agents, developed
their policies from the pre-model, in a spatial sense. The
figure depicts the game tray, with the heatmap values re-
flecting the correlation of the participant’s agent’s behaviour
in each position, with that of the pre-model on which they
started the training. A high correlation means that the pre-
model’s policy has been retained, whereas lower correlations
correspond to higher degrees of change in policy. The pre-
model has a good policy around the barrier, and is capable
of helping participants get to the goal side of the game. On
the goal side however, and particularly the corner closest

11165

Fig. 6: Success rate (reaching the goal) for all 7 participants as
they went through 80 trials of training, in 10-trial blocks, serving
as the learning curve. Mean and standard error of the mean across
all participants shown.

to the goal, it does not have the best policy: it implements
very coarse actions that are hard to coordinate with. We see
these reflected in the four participants’ policy changes: P2
and P3 have made bigger changes to the policy near the goal,
and smaller changes around the barrier, whereas P6 and P7
have done the reverse. This is reflected in their performance
results.

Finally, figure 6 is the learning curve based on success
rate, i.e. number of times reaching the goal, within 10-
trial blocks. Mean values and standard error of the mean
across all 7 participants are shown. We see the beginning of
a plateau occurring towards the end of the training phase,
but further improvement might be possible through further
training trials.

VI. CONCLUSIONS
We presented a real-world, human in-the-loop, reinforce-

ment learning setup for studies on human-robot collaborative
learning. The setup consists of a non-trivial ball and maze
game, which can only be solved through effective collabora-
tion. Following pilot studies with 10 participants confirming
feasibility, we conducted experiments for investigation into
human-robot co-learning. We tested 7 participants, for 80
trials. Participants trained on our collaborative motor task
together with an RL agent with minimal pre-training. Our
results show that with a human in-the-loop it is possible
to settle on an effective collaborative policy that leads to
consistent success in the game in less than 1 hour of co-
training. This is, however, variable across participants, and
highly dependent on the particular participant’s behaviour
during training with the RL agent. This is mirrored in the
neuroscience of motor learning, where we have shown evi-
dence of different learning strategies through neural analysis
[25]. We also see personalisation of RL policies confirmed
through analysis on how agents of different participants
correlate. Effectively, we are able to relate a human player’s
performance with new agents to how similar the new agents’
policy is to that of their own agent.

We see these outcomes as evidence to the benefits of
human in-the-loop systems that augment humans rather than
replacing them. Our setup represents a simplified example of
a collaborative motor task, but the findings can be extended
to real-world applications of human-robot collaboration, par-
ticularly in physically sensitive tasks, such as collaborative
factory robots [13], assistive robots that restore physical
abilities of paralysed users [11] or augmentation robots that
extend our physical capabilities [9].

REFERENCES

[1] D. M. Wolpert, J. Diedrichsen, and J. R. Flanagan, “Principles of
sensorimotor learning,” Nat. Rev. Neurosci., vol. 12, no. 12, pp. 739–
751, 2011.

[2] P. Stone and M. Veloso, “Multiagent Systems : A Survey from a
Machine Learning Perspective 1 Introduction 2 Multiagent Systems,”
Auton. Robots, vol. 8, no. 3, p. 345–383, 1997.

[3] P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “A survey and critique
of multiagent deep reinforcement learning,” Auton. Agent Multi-AG,
vol. 33, no. 6, pp. 750–797, 2019.

[4] W. B. Knox and P. Stone, “Interactively shaping agents via human
reinforcement: The TAMER framework,” K-CAP’09, pp. 9–16, 2009.

[5] G. Warnell, N. Waytowich, V. Lawhern, and P. Stone, “Deep TAMER:
Interactive agent shaping in high-dimensional state spaces,” AAAI,
pp. 1545–1553, 2018.

[6] P. F. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and
D. Amodei, “Deep reinforcement learning from human preferences,”
NeurIPS, pp. 4300–4308, 2017.

[7] S. Reddy, A. D. Dragan, and S. Levine, “Shared autonomy via deep
reinforcement learning,” in RSS, 2018.

[8] S. Javdani, H. Admoni, S. Pellegrinelli, S. S. Srinivasa, and J. A.
Bagnell, “Shared autonomy via hindsight optimization for teleopera-
tion and teaming,” Int. J. Robot. Res., vol. 37, no. 7, pp. 717–742,
2018.

[9] A. Shafti, S. Haar, R. M. Zaldivar, P. Guilleminot, and A. A. Faisal,
“Learning to play the piano with the supernumerary robotic 3rd
thumb,” bioRxiv doi:10.1101/2020.05.21.108407, 2020.

[10] N. Sim, C. Gavriel, W. W. Abbott, and A. A. Faisal, “The head mouse
— head gaze estimation "in-the-wild" with low-cost inertial sensors
for bmi use,” in IEEE/EMBS NER, pp. 735–738, 2013.

[11] A. Shafti, P. Orlov, and A. A. Faisal, “Gaze-based, context-aware
robotic system for assisted reaching and grasping,” in ICRA, pp. 863–
869, IEEE, 2019.

[12] A. Makrigiorgos, A. Shafti, A. Harston, J. Gerard, and A. A. Faisal,
“Human visual attention prediction boosts learning & performance of
autonomous driving agents,” arXiv preprint arXiv:1909.05003, 2019.

[13] A. Shafti, A. Ataka, B. U. Lazpita, A. Shiva, H. A. Wurdemann, and
K. Althoefer, “Real-time robot-assisted ergonomics,” in IEEE ICRA,
pp. 1975–1981, 2019.

[14] M. Xiloyannis, C. Gavriel, A. A. Thomik, and A. A. Faisal, “Gaus-
sian process autoregression for simultaneous proportional multi-modal
prosthetic control with natural hand kinematics,” IEEE T. Neur. Sys.
Reh. (TNSRE), vol. 25, no. 10, pp. 1785–1801, 2017.

[15] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware
motion planning with deep reinforcement learning,” IEEE/RSJ IROS,
pp. 1343–1350, 2017.

[16] J. Macglashan, R. Loftin, M. L. Littman, D. L. Roberts, and M. E.
Taylor, “A Need for Speed : Adapting Agent Action Speed to Improve
Task Learning from Non-Expert Humans Categories and Subject
Descriptors,” AAMAS, pp. 957–965, 2016.

[17] J. Foerster, R. Chen, M. Al-Shedivat, S. Whiteson, P. Abbeel, and
I. Mordatch, “Learning with opponent-learning awareness,” in AAMAS,
2018.

[18] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA WS on Open Source Software, 2009.

[19] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. MIT press, 2018.

[20] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in ICML, 2018.

[21] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” in AAAI, 2008.

[22] T. Haarnoja, A. Zhou, S. Ha, J. Tan, G. Tucker, and S. Levine,
“Learning to walk via deep reinforcement learning,” in RSS, 2019.

[23] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance
Deep Learning Library,” in NeurIPS, pp. 8024–8035, 2019.

[24] T. Haarnoja et al., “Soft actor-critic algorithms and applications,” arXiv
preprint arXiv:1812.05905, 2018.

[25] S. Haar and A. A. Faisal, “Brain activity reveals multi-
ple motor-learning mechanisms in a real-world task,” bioRxiv
doi:10.1101/2020.03.04.976951, 2020.

11166

